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where

I(w) =
1

2

∫ T

0

∫
Ω

[
Cy

Q(yw(x, t)− yQ(x, t))
2 + Cu

Q(uw(x, t)− uQ(x, t))
2

+Cv
Q(vw(x, t)− vQ(x, t))

2
]
dxdt+

1

2

∫
Ω

[
Cy

T (yw(x, T )− yT (x))
2

+Cu
T (uw(x, T )− uT (x))

2 + Cv
T (vw(x, T )− vT (x))

2
]
dxdt (1.3)

+
κ

2

∫ T

0

∫
Ω

(w)2(x, t)dxdt,

j(w) =

∫ T

0

∫
Ω

| w(x, t) | dxdt,

where Cy
Q, C

u
Q, C

v
Q, C

y
T , C

u
T , C

v
T , and κ are nonnegative constants, and the state (yw, uw, vw)

is the unique solution of systems (1.1) for the given control w. The given desired terminal
states yQ, uQ, vQ, yT , uT , vT are elements of L2(Q), L2(Ω), respectively.

The control functions w are taken from the set of admissible controls defined as

Uad := {w(x, t) ∈ L∞(QT ) | a(x, t) ≤ w(x, t) ≤ b(x, t) ∀(x, t) ∈ QT (a.e.)}, (1.4)

where the functions a(x, t), b(x, t) are given in L∞(QT ) such that a(x, t) ≤ b(x, t) holds
almost everywhere in QT .

It might be helpful to mention certain applications of the system (1.1). If a1 = −a2 = 1
and R(y), p1(y), p2(y), w(x, t) take the following form

R(y) =
y3

3
− y, p1(y) = −c1y − δ1, p2(y) = c2y − δ2, w(x, t) =

A

|Ω|
cos(|Ω|t),

where ci, δi( i = 1, 2.) and A are positive constants, and |Ω| is the measure of Ω, then
FitzHugh-Nagumo neurons systems (1.1) is a set of coupled differential equations which
arises in computational neuroscience. The function w(x, t) represents the external stimulus.
The variable y represents the potential difference between the dendritic spine head and its
surrounding medium, u is the recovery variable, and v represents the slowly moving current
in the dendrite. In such a model, y and u together make up a fast subsystem relative to v. In
recent years, there has been extensive interest for the study of the synchronization of chaotic
systems and optimal control under partial differential equation constraints ( e.g., Jiang [9],
Jiang et al [10], Hintz et al [7], Thompson [16], Mishra et al [12] and references therein). Of
particular interest is Mishra’s paper [12], in which a nonlinear controller has been designed to
synchronize a coupled modified FitzHugh-Nagumo model and the dynamical characteristics
of that model under external stimulation are discussed.

In another application, R(y), p1(y), and a2 have the following form:

R(y) = k(y − y1)(y − y2)(y − y3), p1(y) = −γy, a2 = 0, (1.5)

where k, γ are positive numbers. Then system (1.1) is a simplified version of the Hodgkin-
Huxley model, which can reproduce most of qualitative features of the latter model. The
variable y is the electrical potential across the axonal membrane and u is a recovery variable
associated to the permeability of the membrane to the principal ionic components of the
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transmembrane current. The right-hand term w(x, t) of the first equation in system (1.1)
is the medicine actuator (the control variable), see [5, 6] for more details. It is natural to
consider a control problem for this model. In this case, problem (1.1)–(1.3) under conditions
(1.5) becomes the so-called Nagumo model. Existence and uniqueness theorems for the
Nagumo system have already been proved by several authors. In particular, we mention
the paper [8] by Jackson on the FitzHugh-Nagumo system with non-smooth data. See also
the books [13, 15]. In [3], Casas et al proved the differentiability of the control-to-state
mapping for both dynamical systems by an L∞-approach, showed the well-posedness of the
optimal control problems, derived first-order necessary optimality conditions, and proved
the sparsity of optimal controls.

Our paper makes the following contributions. First, we prove existence and uniqueness
of a solution to the FitzHugh-Nagumo systems in the more general form (1.1) (namely, All
p1(y), p2(y), R(y) and w(x, t) are in general form); second, we show the second-order Fréchet
differentiability of the control-to-state mapping; and third, we derive first-order necessary
optimality conditions of sparse optimal controls for the more general control problem (1.2).

2 Well-Posedness of the State Equation

Throughout this paper, we make the following assumptions.
There exist positive constants Ci(i = 0, 1, 2, 3, 4.) for all y ∈ R1, such that

(H)1 R′(y) ≥ C0.

(H)2 |p1(y)| ≤ C|y|+ C2, |p2(y)| ≤ C3|y|+ C4.

To prove the existence and uniqueness of the solution (y, u, v) of the state systems (1.1),
we first transform (1.1) to an integro-differential equation.

2.1 Transformation of the State Equation

The last two equations of systems (1.1) can be solved by

u(x, t) = e−btu0(x) +

∫ t

0

e−b(t−s)p1(y(x, s))ds

= e−btu0(x) +K1(y(x, t)),

v(x, t) = e−ctv0(x) +

∫ t

0

e−c(t−s)p2(y(x, s))ds

= e−ctv0(x) +K2(y(x, t)),

(2.1)

where the integral operators Ki, i = 1, 2, are defined as

K1(y(x, t)) =

∫ t

0

e−b(t−s)p1(y(x, s))ds,

K2(y(x, t)) =

∫ t

0

e−c(t−s)p2(y(x, s))ds.

(2.2)

Inserting (2.1) in the first equation of systems (1.1), we obtain the following integro-differential
equation

∂y/∂t− d0△y +R(y) + a1K1(y(x, t)) + a2K2(y(x, t))

= w(x, t)− a1e
−btu0(x)− a2e

−ctv0(x), (x, t) ∈ QT .
(2.3)
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Note that R(y) is not assumed to be monotone, we substitute

y(x, t) := eηtz(x, t) (2.4)

with a sufficiently large real parameter η. This leads to a new equation for z

∂z/∂t− d0△z + e−ηtR(eηtz) + ηz + a1e
−ηtK1η(e

ηtz(x, t)) + a2e
−ηtK2η(e

ηtz(x, t))

= e−ηt[w(x, t)− a1e
−btu0(x)− a2e

−ctv0(x)],
(2.5)

with the given initial and boundary conditions, where the operators (K1η) and (K2η) are
respectively defined as

K1η(e
ηtz(x, t)) =

∫ t

0

e−b(t−s)p1(e
ηsz(x, s))ds,

K2η(e
ηtz(x, t)) =

∫ t

0

e−c(t−s)p2(e
ηsz(x, s))ds.

(2.6)

For convenience we write

w := e−ηt[w(x, t)− a1e
−btu0(x)− a2e

−ctv0(x)]. (2.7)

Thus, systems (1.1) becomes

∂z/∂t− d0△z + e−ηtR(eηtz) + ηz
+a1e

−ηtK1η(e
ηtz(x, t)) + a2e

−ηtK2η(e
ηtz(x, t)) = w, (x, t) ∈ QT ,

∂nz = 0, (x, t) ∈ ΣT ;
z(x, 0) = y0(x), (x, t) ∈ Ω.

(2.8)

2.2 A Priori Estimates

Let

W (0, T ) =
{
y ∈ L2(0, T ;H1(Ω)) | ∂y

∂t
∈ L2(0, T ;H1(Ω)∗)

}
. (2.9)

We give the definition of a weak solution of equation (2.8).

Definition 2.1. A function y ∈ W (0, T ) is said to be a weak solution of equation (2.8) if

∫ T

0

∂z/∂tφ+ d0

∫ T

0

∫
Ω

{∇z∇φ+ [e−ηtR(eηtz) + ηz]φdxdt

+

∫ T

0

∫
Ω

[a1e
−ηtK1η(e

ηtz(x, t)) + a2e
−ηtK2η(e

ηtz(x, t))]φdxdt

=

∫ T

0

∫
Ω

wφdxdt,

(2.10)

holds for all φ ∈ W (0, T ). Here, z(x, t) := e−ηty(x, t), and y(x, 0) = y0.
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We next estimate the norm of the operator K1η,K2η. We have that

|e−ηtK1η(e
ηtz(x, t))| = e−ηt

∣∣∣∣∫ t

0

e−b(t−s)p1(e
ηsz(x, s))ds

∣∣∣∣
≤ e−(b+η)t

∫ t

0

ebs|p1(eηsz(x, s))|ds

≤ e−(b+η)t

∫ t

0

ebs(Ceηs|z|+ C2)ds

≤ e−(b+η)t

[
C
(∫ t

0

e2(b+η)sds
)1/2

(∫ t

0

z2ds

)1/2

+
C2

b
(ebt − 1)

]
(2.11)

≤ e−(b+η)t

[
C

√
1

2(b+ η)
[e2(b+η)t − 1]

(∫ t

0

z2ds

)1/2

+
C2

b
(ebt − 1)

]

≤ C

√
1

2(b+ η)

(∫ t

0

z2ds

)1/2

+
C2

b
e−(b+η)t(ebt − 1).

Thus, for sufficiently large η, we have that∫ T

0

∫
Ω

|e−ηtK1η(e
ηtz(x, t))|2 ≤

∫ T

0

∫
Ω

2

[
C2

1

2(b+ η)

∫ t

0

z(x, t)2 +
C2

2

b2
e−2ηt

]
dxdt

≤ C2
1

(b+ η)

∫ T

0

∫
Ω

[∫ T

0

z(x, t)2dt

]
dxdt+

C2
2

b2η
|Ω| (2.12)

≤ C2
1T

(b+ η)
∥z∥2L2(QT ) +

C2
2

b2η
|Ω|.

Similarly, we can get the estimate of operator K2η. In conclusion, we have

Lemma 2.2. Under the assumption (H)2 , if (y, u, v) is a solution of systems (1.1), y(x, t) :=
eηtz(x, t), then for sufficiently large η we have that∫ T

0

∫
Ω

|e−ηtK1η(e
ηtz(x, t))|2 ≤ C2

1

(b+ η)
∥z∥2L2(QT ) +

C2
2

b2η
|Ω|,∫ T

0

∫
Ω

|e−ηtK2η(e
ηtz(x, t))|2 ≤ C2

3

(c+ η)
∥z∥2L2(QT ) +

C2
4

c2η
|Ω|.

(2.13)

On the L2 estimate of solution (y, u, v), we have the following result.

Lemma 2.3. (L2-a-priori estimate) Under assumptions (H)1 and (H)2, for sufficiently
large η, there exists a positive constant C with the following properties: If η ≥ η0 and z ∈
W (0, T )∩L∞(QT ) is any weak solution of system (1.1), then there holds for all w ∈ L2(QT )
and y0 ∈ L2(Ω) that

∥z∥L2(0,T ;H1(Ω)) ≤ C

(
∥w∥L2(QT ) + ∥y0∥L2(Ω) + |R(0)|+ C2

2

b2η
|Ω|+ C2

4

c2η
|Ω|

)
. (2.14)
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Proof. Let

Rη(t, z) = e−ηtR(eηtz) +
η

3
z. (2.15)

Then (2.8) becomes

∂z/∂t− d0△z +Rη(t, z) +

[
1

6
ηz + a1e

−ηtK1η(e
ηtz(x, t))

]
+

[
1

6
ηz + a2e

−ηtK2η(e
ηtz(x, t))

]
+

1

3
ηz = w, (x, t) ∈ QT ,

∂nz = 0, (x, t) ∈ ΣT ,

z(x, 0) = y0(x), (x, t) ∈ Ω.
(2.16)

From (H)1, we have that
∂

∂z
Rη(t, z) = C0 +

η

3
. (2.17)

Thus, for sufficiently large η,Rη(t, z) is a monotone function, we obtain

1

2
∥z(T )∥2L2(Ω) +

∫ T

0

∫
Ω

(|∇z|2 + η

3
z2)dxdt+

∫ T

0

∫
Ω

(Rη(t, z)−Rη(t, 0))(z − 0)

+

[
η

6
− C2

1

(b+ η)

]
∥z∥2L2(QT ) +

[
η

6
− C2

3

(c+ η)

]
∥z∥2L2(QT ) −

[
C2

2

b2η
|Ω|+ C2

4

c2η
|Ω|

]
∥z∥2L2(QT )

≤
∫ T

0

∫
Ω

|w −Rη(t, 0)||z|dxdt+
1

2
∥z(0)∥2L2(Ω) +

C2
2

b2η
|Ω|+ C2

4

c2η
|Ω| (2.18)

By the monotonicity of Rη(t, z) for sufficiently large η, (2.18) becomes

1

2
∥z(T )∥2L2(Ω) +

∫ T

0

∫
Ω

(|∇z|2 + η

6
z2)dxdt

≤
∫ T

0

∫
Ω

|w −Rη(t, 0)||z|dxdt+
1

2
∥z(0)∥2L2(Ω) +

C2
2

b2η
|Ω|+ C2

4

c2η
|Ω|.

(2.19)

Young’s inequality yields that for sufficiently large η∫ T

0

∫
Ω

(
|∇z|2+ η

7
z2
)
dxdt ≤ C

[
∥w − e−ηR(t, 0)∥2L2(QT ) + ∥z(0)∥2L2(Ω) +

C2
2

b2η
|Ω|+ C2

4

c2η
|Ω|

]
.

(2.20)
An application of the triangle inequality and e−η ≤ 1 yields that

∥z∥L2(0,T ;H1(Ω)) ≤ C

(
∥w∥L2(QT ) + ∥y0∥L2(Ω) + |R(0)|+ C2

2

b2η
|Ω|+ C2

4

c2η
|Ω|

)
.

In the following, we will replace this L2-estimate by an L∞-estimate.

Lemma 2.4 (L∞-a-priori estimate). Assume that w ∈ Lp(QT ) with p > 5/2 and y0 ∈
L∞(Ω). If η ≥ η0 and z ∈ W (0, T )∩L∞(QT ) is any weak solution of the system (1.1), then
there is a positive constance C∞, such that

∥z∥L∞(QT ) ≤ C∞(∥w∥Lp(QT ) + |R(0)|+ ∥y0∥L∞(Ω) + 1). (2.21)
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Proof. Under hypothesis (H)2, for all t ∈ [0, T ] we easily verify

∥∥∥∥e−ηt

∫ t

0

e−b(t−s)p1(e
ηsz)ds

∥∥∥∥
H1(Ω)

≤
∫ t

0

e−(b+η)t+bs ∥ p1(e
ηs)z ∥H1(Ω) ds

≤
∫ t

0

Ce−(b+η)(t−s) ∥ z ∥H1(Ω) ds+

∫ t

0

C2e
−(b+η)t+bsds

≤ C√
2(b+ η)

∥ z ∥L2(0,T ;H1(Ω)) +
C2e

−ηt(1− e−bt)

b
.

(2.22)
Similar to (2.22), for all t ∈ [0, T ] we obtain∥∥∥∥e−ηt

∫ t

0

e−c(t−s)p2(e
ηsz)ds

∥∥∥∥
H1(Ω)

≤ C3√
2(c+ η)

∥ z ∥L2(0,T ;H1(Ω)) +
C4e

−ηt(1− e−ct)

c
.

(2.23)
The continuous embedding of H1(Ω) in L6(Ω) for n ≤ 3 yields

∥K1ηz∥L6(QT ) ≤ C∥K1ηz∥C([0,T ];L6(Ω)) ≤ C∥K1ηz∥C([0,T ];H1(Ω))

≤ C√
2(b+ η)

∥ z ∥L2(0,T ;H1(Ω)) +
C2e

−ηt(1− e−bt)

b

(2.24)
and

∥K2ηz∥L6(QT ) ≤
C3√

2(c+ η)
∥ z ∥L2(0,T ;H1(Ω)) +

C4e
−ηt(1− e−ct)

c
. (2.25)

Assume now that u ∈ Lp(QT ) with p > 5/2 and set q := min{p, 6}. In (2.8), we shift the
term K1ηz, K2ηz to the right-hand side and consider the associated semilinear equation

∂z/∂t− d0△z + e−ηtR(eηtz) + ηz =
w − a1e

−ηtK1η(e
ηtz(x, t))− a2e

−ηtK2η(e
ηtz(x, t)), (x, t) ∈ QT ,

∂nz = 0, (x, t) ∈ ΣT ;
z(x, 0) = y0(x), (x, t) ∈ Ω.

(2.26)

We can invoke the known L∞-estimates for semilinear parabolic equations for the given
q (cf. the treatment of quasilinear equations in [11]) and obtain that

∥z∥L∞(QT ) ≤ C(∥w − a1e
−ηtK1η(e

ηtz)− a2e
−ηtK2η(e

ηtz)

−e−ηtR(0)∥Lq(QT )) + ∥y0∥L∞(Ω)

≤ C(∥w∥Lq(QT ) + a1∥e−ηtK1η(e
ηtz)∥L6(QT )

+a2∥e−ηtK2η(e
ηtz)∥L6(QT ) + |R(0)|+ ∥y0∥L∞(Ω)) (2.27)

≤ C(∥w∥Lq(QT ) + |R(0)|+ ∥y0∥L∞(Ω)+ ∥ z ∥L2(0,T ;H1(Ω)) +1).

By Lemma 2.3, (2.27) implies

∥z∥L∞(QT ) ≤ C
(
∥w∥Lq(QT ) + |R(0)|+ ∥y0∥L∞(Ω)

+ C
(
∥w∥L2(QT ) + ∥y0∥L2(Ω) + |R(0)|+ C2

2

b21η
|Ω|+ C2

4

c21η
|Ω|

)
+ 1

)
≤ C(∥w∥Lp(QT ) + |R(0)|+ ∥y0∥L∞(Ω) + 1).

(2.28)
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2.3 Solvability of the State Equation

Now we keep the given control u, together with y0 being fixed and set

M∞ := C∞(∥w∥Lp(QT ) + |R(0)|+ ∥y0∥L∞(Ω) + 1). (2.29)

Here, C∞ is a constance in Lemma 2.4. We define the following auxiliary function cutting
off Rη

R̂η(t, z) = Rη(t,M∞), if z ≥ M∞;

R̂η(t, z) = Rη(t, z), if | z |< M∞;

R̂η(t, z) = Rη(t,−M∞), if z ≤ −M∞.

(2.30)

Theorem 2.5 (Existence and uniqueness). Assume that w ∈ Lp(QT ) with p > 5/2 and
y0 ∈ L∞(Ω). Then the integro-differential equation (2.8) has a unique solution z ∈ W (0, T )∩
L∞(QT ) ∩ C(Ω× (0, T ]) such that

∥z∥L∞(QT ) + ∥z∥W (0,T ) ≤ C(∥w∥Lp(QT ) + ∥y0∥L∞(Ω) + |R(0)|+ 1). (2.31)

If y0 is continuous in Ω̄, then the solution z belongs to C(Q̄T ).

Proof. (i). Existence of a solution
For given h ∈ L2(QT ), we consider the equation

∂z/∂t− d0△z + R̂η(t, z) +
2η

3
z =

w − a1e
−ηtK1η(e

ηth(x, t))− a2e
−ηtK2η(e

ηth(x, t)), (x, t) ∈ QT ,
∂nz = 0, (x, t) ∈ ΣT ;

z(x, 0) = y0(x), (x, t) ∈ Ω.

(2.32)

Let us denote by F the solution mapping of (2.32) F : h 7→ z acting in L2(QT ). Since (2.32)
is a monotone linear system, the mapping F is well defined. Consider the following equation
with a1 = a2 = 0 in (2.8)

∂z/∂t− d0△z + e−ηtR(eηtz) + ηz = w, inQT ,
∂nz = 0, inΣT ;

z(x, 0) = y0(x), inΩ.
(2.33)

From Lemma 2.3, there exist positive constants C∗ such that

∥z∥L2(0,T ;H1(Ω)) ≤ C∗(∥w∥L2(QT ) + ∥y0∥L2(Ω) + |R(0)|). (2.34)

We define
M0 := C∗(∥w∥L2(QT ) + ∥y0∥L2(Ω) + |R(0)|). (2.35)

We assume that ∥ h ∥L2(QT )≤ 2M0. Then we have

∥F (h)∥L2(QT ) = ∥z∥L2(QT ) ≤ ∥z∥L2(0,T ;H1(Ω))

≤ C∗(∥w∥L2(QT ) + a1∥e−ηtK1η(e
ηth(x, t))∥L2(QT )

+ a2∥e−ηtK2η(e
ηth(x, t))∥L2(QT ) + ∥y0∥L2(Ω) + |R(0)|)

≤ M0 + a1∥e−ηtK1η(e
ηth(x, t))∥L2(QT ) + a2∥e−ηtK2η(e

ηth(x, t))∥L2(QT )

≤ M0 + a1
C2

1

(b+ η)
∥z∥2L2(QT ) +

C2
2

b2η
|Ω|+ a2

C2
3

(c+ η)
∥z∥2L2(QT ) +

C2
4

c2η
|Ω|.

(2.36)
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If η is sufficiently large, then F maps B2M0(0), the closed ball of L2(QT ) around zero with
radius 2M0, into itself, and ∥F (h)∥ ≤ C, for all h ∈ B2M0(0) (see [3] or [11]). By Aubin’s
lemma, bounded sets of W (0;T ) are relatively compact in L2(QT ). Hence the mapping F
is compact. By Schauder’s theorem, F has a fixed point in B2M0(0), this is a solution to
(2.36).

By Lemma 2.4, the solution v satisfies the L∞-estimate (2.21) provided that η is taken
sufficiently large. In this case, R̂η(t, z) = Rη(t, z) is satisfied, so z is a solution of (2.8).

(ii). Uniqueness of the solution.

Suppose that z1 and z2 are solutions of (2.8) and set z := z1 − z2. Subtracting the
associated equations and applying the mean value theorem to the appearing difference
Rη(t, z1)−Rη(t, z2), we see that v solves

∂z/∂t− d0△z +
( ∂

∂z
R̂η(t, z(θ1)) +

2

3
η
)
z

+a1e
−ηt

( ∂

∂z
K1η(e

ηtz(θ2))
)
z + a2e

−ηt
( ∂

∂z
K2η(e

ηtz(θ3))
)
z = 0, (x, t) ∈ QT ,

∂nz = 0, (x, t) ∈ ΣT ,
z(x, 0) = 0, (x, t) ∈ Ω,

(2.37)
where

zθi = z1 + θi(z2 − z1), i = 1, 2, 3. (2.38)

Equation (2.37) is a linear equation with non-negative coefficient. Applying the same
technique as in the proof of Lemma 2.3, we can find that z = 0, hence, z1 = z2 showing the
uniqueness.

(iii). Continuity properties of z.

On the continuity properties of z, we refer to [1, 14].

2.4 Differentiability of the Control-to-State Mapping

To show the differentiability of the control-to-state mapping w → y, we first state an analog
of Theorem 2.5 for a linear system without proof.

Lemma 2.6. If η is taken sufficiently large, c0 ∈ L∞(QT ) is almost everywhere nonnegative,
w ∈ L2(QT )and y0 ∈ L2(Ω), then the linear integro-differential system

∂z/∂t− d0△z + c0(x, t)z + ηz + a1(K1η)z + a2(K2η)z = w, (x, t) ∈ QT

∂nz = 0, (x, t) ∈ ΣT ;
z(x, 0) = y0(x), (x, t) ∈ Ω

(2.39)

has a unique solution z ∈ W (0, T ). There is C > 0 depending neither on y0 nor on c0 such
that

∥z∥W (0,T ) ≤ C(∥w∥L2(QT ) + ∥y0∥L2(Ω)). (2.40)

For the differentiability, we have the following results.
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Lemma 2.7. For all p > 5/2 and all sufficiently large η, the solution mapping Γη : w → z
for equation (2.8) is of class C2 : Lp(QT ) → W (0, T ) ∩ L∞(QT ) ∩ C(Ω× (0, T ]).

Proof. First, we consider the semilinear parabolic differential equation of monotone type

∂z/∂t− d0△z +Rη(z) +
2

3
ηz = w, (x, t) ∈ QT

∂nz = 0, (x, t) ∈ ΣT ;

z(x, 0) = y0(x), (x, t) ∈ Ω.

(2.41)

where

Rη(z) = e−ηtR(eηtz) +
1

3
ηz. (2.42)

From (2.41), for sufficiently large η, Rη(t, z) is a monotone function, we obtain

∂Rη(z)

∂z
≥ 0. (2.43)

For each w ∈ Lp(QT ), y0 ∈ L∞(Ω) and η ≥ η0, this equation has a unique solution
zw ∈ V∞ := W (0, T ) ∩ L∞(QT ) ∩ C(Ω × (0, T ]). Let Gη denote the associated solution
mapping

Gη : Lp(QT ) ∋ w 7→ zw ∈ V∞. (2.44)

It is known that Gη is twice continuously Fréchet-differentiable. For this differentiability
property and the concrete form of the first- and second-order derivatives, we refer to [2].

By Theorem 2.5, there exists a constant C such that

∥zw∥L∞(QT ) ≤ C(∥w∥L2(QT ) + ∥y0∥L∞(Ω)) (2.45)

holds. We return to the nonlinear equation (2.8) in the form

∂z/∂t− d0△z +Rη(z) +
2

3
ηz + a1(K1η)z(x, t) + a2(K2η)z(x, t) = w, (x, t) ∈ QT ,

∂nz = 0, (x, t) ∈ ΣT ,
z(x, 0) = y0(x), (x, t) ∈ Ω.

(2.46)
Obviously, by using the mapping Gη for (2.41), z solves (2.46) if only if

z −Gη (w − a1(K1η)z(x, t)− a2(K2η)z(x, t)) =: F (z, w) = 0, (2.47)

and we have

∂

∂z
F (z0, w0) = I +G

′

η(w0 − a1(K1η)z0 − a2(K2η)z0)[a1(K1η) + a2(K2η)]. (2.48)

From Lemma 2.2, the norms of ∥K1η∥L2(QT ) and ∥K2η∥L2(QT ) tend to zero as η → ∞,
hence

∥G
′

η(w0 − a1(K1η)z0 − a2(K2η)z0)[a1(K1η) + a2(K2η)]∥L2(QT ) < 1 (2.49)

holds for all sufficiently large η. Therefore ∂
∂zF (z0, w0) is continuously invertible for suffi-

ciently large η. By the implicit function theorem, the mapping Γη : w → z is also of class
C2 from Lp(QT ) to L∞(QT ) for sufficiently large η.
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From the above result, it is easy to prove our main result concerning differentiability.

Theorem 2.8 (Differentiable of the control-to-state mapping). The solution mapping as-
sociated with systems (1.1)

G : w 7→ (y(w), u(w), v(w))(Lp(QT ) → (W (0, T ) ∩ L∞(QT ) ∩ C(Ω× (0, T ]))3) (2.50)

is twice continuously Fréchet-differentiable and

(1) The derivative (yh(w), uh(w), vh(w)) := G′(w)h equal to the pair (y, u, v) solving the
following system

∂y/∂t− d0△y +R′(y(w))y + a1u+ a2v = h, (x, t) ∈ QT ,

∂ny = 0, (x, t) ∈ ΣT ;

y(x, 0) = 0, (x, t) ∈ Ω;

∂u/∂t+ bu+ b0y = 0, (x, t) ∈ QT , (2.51)

u(x, 0) = 0, (x, t) ∈ Ω;

∂v/∂t+ cv + c0y = 0, (x, t) ∈ QT ,

v(x, 0) = 0, (x, t) ∈ Ω.

(2) The second derivative (yh1h2(w), uh1h2(w), vh1h2(w)) := G′′(w)[h1, h2] equal to the pair
(y, u, v) solving the following system

∂y/∂t− d0△y +R′(y(w))y + a1u+ a2v = 0, (x, t) ∈ QT ,

∂ny = 0, (x, t) ∈ ΣT ;

y(x, 0) = 0, (x, t) ∈ Ω;

∂u/∂t+ bu+ b0y = 0, (x, t) ∈ QT , (2.52)

u(x, 0) = 0, (x, t) ∈ Ω;

∂v/∂t+ cv + c0y = 0, (x, t) ∈ QT ,

v(x, 0) = 0, (x, t) ∈ Ω;

where b0 = p′1(y(w)), c0 = p′2(y(w)).

3 Well-Posedness of the Optimal Control Problems and First-Order
Necessary Optimality Conditions

3.1. Solvability of the general optimal control problem

For the optimal control problems (1.1)-(1.3), we have the following results.

Theorem 3.1 (Existence of an optimal solution). The optimal control problem (1.2) with
constraint (1.1) has at least one optimal solution w̄ with associated optimal state

(ȳ(w̄), ū(w̄), v̄(w̄)) := G(w̄). (3.1)
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Proof. The set Uad is non-empty and weakly compact in Lp(QT ). Moreover, the reduced
objective functional J(w) is weakly lower semi-continuous in Lp(QT ) for p > 2 because of
the compactness of the mapping

w ∈ Lp(QT ) → (yw, uw, vw) ∈ (Lp(QT ))
3 (3.2)

and the convexity of the terms involving the control. Notice also that the mapping

G : u 7→ (yw, uw, vw) (3.3)

is of class C2. The result now follows by standard arguments.

3.2. First-Order Necessary Optimality Conditions

Let w ∈ Uad be a locally optimal control with associated state (yw, uw, vw). Since
any global solution is also a local one, we formulate the optimality conditions for local
solutions. The triple (yw, uw, vw) and w has to satisfy a variational inequality including the
sub-differential ∂j(w̄). We recall that

∂j(w̄) =

{
λ ∈ L∞(QT ) : j(w) ≥ j(w̄) +

∫ T

0

∫
Ω

λ(w − w̄)dxdt,∀w ∈ L∞(QT )

}
. (3.4)

Obviously,

λ = 1, if w̄(x, t) > 0,

λ ∈ [−1, 1], if w̄(x, t) = 0, (3.5)

λ = −1, if w̄(x, t) < 0.

From the theory of standard variational inequality, we can obtain the following results.

Lemma 3.2. If (y, u, v, w) is a local solution to the optimal control problem(1.1)-(1.3), then
there exists a function λ̄ ∈ ∂j(w̄) with µ such that

I ′(w̄)(w − w̄) +

∫ T

0

∫
Ω

µλ̄(w − w̄)dxdt ≥ 0, ∀w ∈ Uad. (3.6)

For any w ∈ Ua,d, let h = w − w. Then, (yh, uh, vh) solves the following linear system

∂y/∂t− d0△y +R′(y)y + a1u+ a2v = h, (x, t) ∈ QT ,

∂ny = 0, (x, t) ∈ ΣT ;

y(x, 0) = 0, (x, t) ∈ Ω;

∂u/∂t+ bu+ b0y = 0, (x, t) ∈ QT , (3.7)

u(x, 0) = 0, (x, t) ∈ Ω;

∂v/∂t+ cv + c0y = 0, (x, t) ∈ QT ,

v(x, 0) = 0, (x, t) ∈ Ω.
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We define the following adjoint system for a pair of adjoint states (φ1, φ2, φ3) ∈ (W (0, T ))3.

−∂φ1/∂t− d0△φ1 +R′(y)φ1 + b0φ2 + c0φ3 = Cy
Q(y − yQ), (x, t) ∈ QT ,

∂nφ1 = 0, (x, t) ∈ ΣT ;

φ1(x, T ) = Cy
T (x)(y(x, T )− yT (x)), (x, t) ∈ Ω;

−∂φ2/∂t+ bφ2 + a1φ1 = Cu
Q(u− uQ), (x, t) ∈ QT , (3.8)

φ2(x, T ) = Cu
T (x)(u(x, T )− uT (x)), (x, t) ∈ Ω;

−∂φ3/∂t+ cφ3 + a2φ1 = Cv
Q(v − vQ), (x, t) ∈ QT ,

φ3(x, T ) = Cv
T (x)(v(x, T )− vT (x)), (x, t) ∈ Ω.

Lemma 3.3. Let (φ1, φ2, φ3) ∈ (W (0, T ))3 be the unique solution of the adjoint system
(3.8). Then there holds∫ T

0

∫
Ω

hφ1dxdt =

∫ T

0

∫
Ω

[Cy
Q(y − yQ)y + Cu

Q(u− uQ)u+ Cv
Q(v − vQ)v]dxdt

=

∫
Ω

Cy
T (x)(y(x, T )− yT (x))y(·, T )dx

+

∫
Ω

Cu
T (x)(u(x, T )− uT (x))u(·, T )dx

+

∫
Ω

Cv
T (x)(v(x, T )− vT (x))v(·, T )]dx.

(3.9)

Proof. We multiply the first equation in (3.7) with φ1, the fourth equation with φ2, and the
sixth equation with φ3, integrate the three equations over QT and integrate by parts for the
term containing ∆y. We then add these equations to obtain∫ T

0

∫
Ω

hφ1 =

∫ T

0

[∂y
∂t

φ1 +
∂u

∂t
φ2 +

∂v

∂t
φ3

]
dt

+

∫ T

0

∫
Ω

{∇y∇φ1 + [R′(y)y + a1u+ a2v]φ1}dxdt

+

∫ T

0

∫
Ω

{[bu+ b0y]φ2 + [cv + c0y]φ3}dxdt.

(3.10)

Next, we multiple the first equation of (3.8) with y, the fourth equation with u, and the
sixth equation with v, integrate the three equations over QT and integrate by parts in the
term containing ∆y. We then add these equations to obtain∫ T

0

∫
Ω

[Cy
Q(y − yQ)y + Cu

Q(u− uQ)u+ Cv
Q(v − vQ)v]dxdt

= −
∫
Ω

[φ1(·, T )y(·, T ) + φ2(·, T )u(·, T ) + φ3(·, T )v(·, T )]dx

+

∫ T

0

[∂y
∂t

φ1 +
∂u

∂t
φ2 +

∂v

∂t
φ3

]
dt

+

∫ T

0

∫
Ω

{∇y∇φ1 + [R′(y)y + a1u+ a2v]φ1}dxdt

+

∫ T

0

∫
Ω

{[bu+ b0y]φ2 + [cv + c0y]φ3}dxdt.

(3.11)
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From (3.10) and (3.11), we have that∫ T

0

∫
Ω

[Cy
Q(y − yQ)y + Cu

Q(u− uQ)u+ Cv
Q(v − vQ)v]dxdt

= −
∫
Ω

[φ1(·, T )y(·, T ) + φ2(·, T )u(·, T ) + φ3(·, T )v(·, T )]dx

+

∫ T

0

∫
Ω

hφ1dxdt.

(3.12)

This is equivalent to the statement of the lemma.

Theorem 3.4. (Necessary optimality conditions). Let (y, u, v, w) be a local solution to the
optimal control problem. Then, there exists a unique triple (φ1, φ2, φ3) ∈ (W (0, T ))3 of
adjoint states solving the adjoint system and a function λ ∈ L∞(QT ) such that∫ T

0

∫
Ω

(φ1(x, t) + kw(x, t) + µλ(x, t))(w(x, t)− w(x, t)))dxdt ≥ 0,∀w ⊆ Ua,d. (3.13)

Proof. The theorem follows from Lemma 3.2 and Lemma 3.3.

In case that k > 0, from [1,17], the following standard projection formula can be obtained

w(x, t) = P[a,b]

{
−1

k
(φ1(x, t) + µλ(x, t))

}
, ∀(x, t) ∈ QT a.e. (3.14)

Further, we have the following results from [3].

Theorem 3.5. Assume that k > 0, µ > 0, Then, for almost all (x, t) ∈ QT , there holds

w(x, t) = 0 ⇔ {|φ1| ≤ µ, ifa < 0;φ1 ≥ −µ, ifa = 0}. (3.15)

and

λ(x, t) = P[−1,1]

{
− 1

µ
(φ1(x, t)

}
. (3.16)

4 Applications

In this section, we present some examples of the optimal control of the FitzHugh-Nagumo
neurons systems with general form (1.1).

Example 1 ( [3, 4, FitzHugh-Nagumo system]). Let R(y), p1(y), p2(y) take the following
form

R(y) = α1y
3 + α2y

2 + α3y + α4,

p1(y) = −γy + δ,

α1 > 0, αi ∈ R1(i = 2, 3, 4.), γ > 0, δ > 0, a2 = 0.

(4.1)

In this case, the state systems is as following.

∂y/∂t− d0△y + (α1y
3 + α2y

2 + α3y + α4) + a1u = w(x, t), (x, t) ∈ QT ,
∂ny = 0, (x, t) ∈ ΣT ;

y(x, 0) = y0(x), (x, t) ∈ Ω;
∂u/∂t+ bu− γy + δ = 0, (x, t) ∈ QT ,

u(x, 0) = u0(x), (x, t) ∈ Ω;

(4.2)
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the objective functional is

I(w) : =
1

2

∫ T

0

∫
Ω

[Cy
Q(yw(x, t)− yQ(x, t))

2 + Cu
Q(uw(x, t)− uQ(x, t))

2]dxdt

+
1

2

∫
Ω

[Cy
T (yw(x, T )− yT (x))

2 + Cu
T (uw(x, T )− uT (x))

2]dxdt

+
κ

2

∫ T

0

∫
Ω

(w)2(x, t)dxdt

j(w) :=

∫ T

0

∫
Ω

| w(x, t) | dxdt.

(4.3)

Obviously, hypotheses (H)1 and (H)2 are satisfied, from Theorem 3.1 and Theorem 3.4,
we have that

Theorem 4.1. The optimal control problem (4.2) with (4.3) has at least one optimal solution
w̄ with associated optimal state

(ȳ(w̄), ū(w̄)) := G(w̄). (4.4)

If (y, u, w) is a local solution to the optimal control problem, then there exists a unique
pair (φ1, φ2) ∈ (W (0, T ))2 of adjoint states solving the adjoint system and a function λ ∈
L∞(QT ) such that∫ T

0

∫
Ω

(φ1(x, t) + kw(x, t) + µλ(x, t))(w(x, t)− w(x, t)))dxdt ≥ 0,∀w ⊆ Ua,d. (4.5)

The adjoint system is as following.

−∂φ1/∂t− d0△φ1 +R′(y)φ1 + γφ2 = Cy
Q(y − yQ), (x, t) ∈ QT ,

∂nφ1 = 0, (x, t) ∈ ΣT ;
φ1(x, T ) = Cy

T (x)(y(x, T )− yT (x)), (x, t) ∈ Ω;
−∂φ2/∂t+ bφ2 + a1φ1 = Cu

Q(u− uQ), (x, t) ∈ QT ,

φ2(x, T ) = Cu
T (x)(u(x, T )− uT (x)), (x, t) ∈ Ω.

(4.6)

Remark 4.2. In fact, if R(y), p1(y), p2(y) take the following form

R(y) = α1y
2k+1 + α2y

2k + · · ·+ α2k+1y + α2k+2,

p1(y) = −γy + δ,

α1 > 0, αi ∈ R1(i = 2, 3, . . . 2k + 2.), γ > 0, δ > 0, a2 = 0.

(4.7)

Then Theorem 4.1 still holds.

Example 2. Let R(y), p1(y), p2(y) take the following form

R(y) =
1

3
y3 − y,

p1(y) = −cy − δ1,

p2(y) = c2y − δ2,

δi > 0, i = 1, 2.

(4.8)
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We obtain three coupled reaction-diffusion with differential equations which arising com-
putational neuroscience similar to system (1.5) as the following.

∂y/∂t− d0∆y + y3

3 − y + u− v = F (t), (x, t) ∈ QT ,
∂ny = 0, (x, t) ∈ ΣT ;

y(x, 0) = y0(x), (x, t) ∈ Ω;
∂u/∂t+ bu− cy − δ1 = 0, (x, t) ∈ QT ,

u(x, 0) = u0(x), (x, t) ∈ Ω;
∂v/∂t+ b2v + c2y − δ2 = 0, (x, t) ∈ QT ,

v(x, 0) = v0(x), (x, t) ∈ Ω.

(4.9)

Hypotheses (H)1 and (H)2 are satisfied. From Theorem 3.1 and Theorem 3.4 we have
that

Theorem 4.3. The optimal control problem (4.9) with (1.3) has at least one optimal solution
w̄ with associated optimal state

(ȳ(w̄), ū(w̄), v̄(w̄)) := G(w̄). (4.10)

If (y, u, v, w) is a local solution to the optimal control problem, then there exists a unique
pair (φ1, φ2, φ3) ∈ (W (0, T ))3 of adjoint states solving the adjoint system and a function
λ ∈ L∞(QT ) such that∫ T

0

∫
Ω

(φ1(x, t) + kw(x, t) + µλ(x, t))(w(x, t)− w(x, t)))dxdt ≥ 0,∀w ⊆ Ua,d. (4.11)

The adjoint system is

−∂φ1/∂t− d0△φ1 + (y2 − 1)φ1 + cφ2 − c2φ3 = Cy
Q(y − yQ) (x, t) ∈ QT ,

∂nφ1 = 0 (x, t) ∈ ΣT ,
φ1(x, T ) = Cy

T (x)(y(x, T )− yT (x)) (x, t) ∈ Ω;
−∂φ2/∂t+ bφ2 + φ1 = Cu

Q(u− uQ) (x, t) ∈ QT ,

φ2(x, T ) = Cu
T (x)(u(x, T )− uT (x)) (x, t) ∈ Ω;

−∂φ3/∂t+ b2φ3 − φ1 = Cv
Q(v − vQ) (x, t) ∈ QT ,

φ3(x, T ) = Cv
T (x)(v(x, T )− vT (x)) (x, t) ∈ Ω.

(4.12)
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