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where f is an appropriate regularization term through which some regularity is enforced on
the recovered signal, and δ > 0.

Clearly it is desirable if solutions of the regularized problem are also solutions of the
original problem. In Example 1.1, this amounts to saying that solution(s) of the regularized
problem are solutions for Ax = y0. Friedlander and Tseng [6] presented a systematic study
for exact regularization of a convex program. According to [6] the regularization is exact
if the solutions of perturbed problems are also solutions of the original problem for all
values of penalty parameters below some positive threshold value. In [4], using a variational
approach to saddle points of the Lagrangian function associated with a given problem,
we demonstrate that the main results of [6] can be completely generalized to non-convex
programs; thereby potential applications of the exact regularization technique have been
significantly expanded. Further investigations on the notion of strongly exact regularization
introduced in [5] and its connections to normal cone identity, and to weak sharp minima [2, 3]
are carried out in [5]. In this note, we provide new characterizations (see Theorem 3.1) for
exact regularization including exact penalization and stability for perturbed problems (a
property closely related to the calmness property). Along the way, we discuss and illustrate,
by examples, implications of newly derived results.

The notation used in this note is standard. See e.g. [8]. All vectors are column vectors
and the symbol “T” denotes the transpose of a column vector.

2 Problem Statement and Review of Existing Results

To facilitate our discussion in a rigorous mathematical framework, let us consider the fol-
lowing nonlinear program

(P) min g(x) s.t. x ∈ C,

where g : Rn → R is a continuous function, and C is a non-empty closed set in Rn. Let S be
the set of all optimal solutions of (P). Throughout the note we suppose that the solution set
S is nonempty, and denote the optimal value of (P) by p∗. When (P) has multiple solutions
or is very sensitive to data perturbations, a popular way to regularize the problem is to
modify the objective function by adding a new function f (which is called a regularization
function). This leads to the following regularized problem

(P(δ)) min g(x)+δf(x) s.t. x ∈ C,

where f : Rn → R is a continuous function and δ is a nonnegative regularization parameter.
Let Sδ be the set of optimal solutions of (P(δ)). In this note, we do not assume f is convex;
that is, the regularization function f may be nonlinear, non-convex or non-differentiable.
A popular choice, commonly known as Tikhonov regularization, of f is ||x||22, which is
used to select a least two-norm solution. Another popular choice is l1 regularization with
f(x) = ||x||1, which usually find an optimal solution with the property of the least number
of nonzero elements among all solutions giving the least-f value.

The notion of exact regularization follows.

Definition 2.1 ([6]). For (P) with a given regularization function f , we say that regular-
ization is exact if the solutions of (P(δ)) are also solutions of (P) for all values of δ below
some positive threshold value δ̄; that is, Sδ ⊂ S for all δ ≤ δ̄.

As done in [6, 4], a crucial approach to understanding exact regularization is to study a
related nonlinear program that selects solutions of (P) with the least value measured by f :

(Q) min f(x) s.t x ∈ C, g(x) ≤ p∗,
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where p∗ denotes the optimal value of (P). Let SQ be the set of optimal solutions of (Q),
and suppose that SQ ̸= ∅. The Lagrangian function for problem (Q) is the function over
C ×R+ ⊂ Rn ×R defined by

L(x, y) = f(x) + y(g(x)− p∗).

We say that a pair of vector (x̄, ȳ) ∈ C × R+ gives a saddle point of the Lagrangian L on
C ×R+ if

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ) ∀x ∈ C, ∀y ∈ R+.

It is well known that problem (Q) does not have to have a Lagrange multiplier even for
the convex case as illustrated by the following example.

Example 2.2. Let f(x) = x, g(x) = (x − 1)2, and C = R. Then SQ = S = {1} and
the optimal value of (Q) is 1. For the Lagrangian L(x, y) = x + y(x − 1)2, there are
no saddle points for L over R × R+ since for y ≥ 0, infx∈C L(x, y) = −∞ if y = 0 and
infx∈C L(x, y) = − 1

4y + 1 if y > 0.
For the convex case, by which we mean that f , g and C are convex, Friedlander and

Tseng [6] were able to to characterize exact regularization by way of the existence of
Lagrangian- multipliers for (Q). For the general case, we presented a saddle-point ap-
proach to characterize exact regularization of a non-convex program in [4]. We list below as
Theorems 2.3 and 2.4 some key results from [4], which will be used in this note. Note that
Theorem 2.3 is not true for general non-convex programs.

Theorem 2.3 (Theorem 2.3 of [4])). For problem (Q), a pair (x̄, ȳ) ∈ C × R+ is a saddle
point of the Lagrangian L if and only if the pair satisfies the conditions:

(I) x̄ ∈ S;

(II) x̄ is a minimizer of L(·, ȳ) over C.

In particular, x̄ is an optimal solution of (Q).

Theorem 2.4 (Corollary 2.7 of [4]). If there is some ȳ > 0 such that (x̄, ȳ) is a saddle point
of L, then x̄ ∈ Sδ where δ = 1/ȳ. Conversely if Sδ ∩ S ̸= ∅, then for any x̄ ∈ Sδ ∩ S, (x̄, ȳ)
is a saddle point of L where ȳ = 1/δ.

3 New Characterizations

To better understand the role of Lagrange multiplier y, we define the perturbation function
as follows:

ρ(u) = inf{f(x) | x ∈ C(u)}, where C(u) = {x ∈ C| g(x) ≤ p∗ + u},

and we use the convention that ρ(u) = +∞ if C(u) = ∅. We see that C(0) = C ∩ S.
Recall [7] that (Q) is said to be stable if ρ(0) is finite and there is a scalar M > 0 such

that
ρ(u)− ρ(0)

|u|
≥ −M for all |u| ̸= 0.

Our new characterizations of exact regularization can now be stated as follows.

Theorem 3.1. Let x̄ be an optimal solution of (Q). Then the following are equivalent:
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(a) there is some ȳ ≥ 0 such that (x̄, ȳ) is a saddle point of the Lagrangian L;

(b) there is some ȳ ≥ 0 such that ρ(u) + ȳu ≥ ρ(0) ∀u ∈ R;

(c) there is some M > 0 such that ρ(u)−ρ(0)
u ≥ −M for all u > 0;

(d) there is some r > 0 such that x̄ is an optimal solution to the problem of minimizing

f(x) + rmax{g(x)− p∗, 0} over C.

(a) ⇒ (b). : For any given real number u, let Lu(x, y) = f(x) + y(g(x) − p∗ − u). From
supy∈R+

Lu(x, y) ≥ f(x) + ȳ(g(x)− p∗ − u), we get

ρ(u) = inf
x∈C

{ sup
y∈R+

Lu(x, y)} ≥ inf
x∈C

{f(x) + ȳ(g(x)− p∗ − u)}

= inf
x∈C

{f(x) + ȳ(g(x)− p∗)} − ȳu = f(x̄)− ȳu = ρ(0)− ȳu.

[(b) ⇒ (c)] : This is evident.
[(c) ⇒ (d)]: We prove this statement by negation. Suppose that there are sequences

{xk} ⊂ C and {rk} ⊂ R+ with rk → +∞ such that

f(xk) + rk max{g(xk)− p∗, 0} < f(x̄). (3.1)

If g(xk) ≤ p∗, then f(xk) = f(xk) + rk max{g(xk)− p∗, 0} < f(x̄), a contradiction. Hence,
g(xk) > p∗ for all k. Set uk = g(xk) − p∗ for each k. Then uk > 0 and ρ(uk) ≤ f(xk) and
by (3.1)

ρ(uk)− ρ(0)

uk
≤ f(xk)− f(x̄)

max{g(xk)− p∗, 0}
≤ −rk → −∞,

which is a contradiction to Statement (c). This shows that (3.1) is impossible and we are
done.

[(d) ⇒ (a)]: Suppose that there is some r > 0 such that x̄ solves the problem of mini-
mizing f(x)+rmax{g(x)−p∗, 0} over C. As g(x) ≥ p∗ for all x ∈ C, we have that x̄ solves
the problem of minimizing the Lagrangian L(·, r) = f(·) + r(g(·)− p∗) over C. By Theorem
2.3, (x̄, r) is a saddle point for L. This completes the proof.

Remark 3.2. Statement (b) says that ȳ is a ‘subgradient ’ of the perturbation function ρ,
which may not be convex in general unless f , g, and C are convex. Statement (c) means
that (Q) is stable, which is closely related to the notion of calmness [1, 8]; and Statement
(d) says x̄ is a minimizer of an exact penalty function. Theorem 3.1 states that they all are
equivalent to the existence of a saddle point for the Lagrangian L.

To illustrate Theorem 3.1, let us compute ρ for a non-convex program with f(x) = x3,
g(x) = (x−1)2, and C = R, for u ≥ 0. Then (x−1)2 ≤ u is equivalent to −

√
u ≤ x−1 ≤

√
u.

This gives ρ(u) = (−
√
u + 1)3 = 1 − 3

√
u + 3u − u3/2, and ρ(u)−ρ(0)

u → −∞ as u ↓ 0. By
Theorem 3.1, there is no saddle point(s) for the Lagrangian function for (Q).

We now consider a special case where g is convex and differentiable, and C is a closed
convex set. In this case, as well-known ∇g(x) is a constant vector on S. So we just denote
it by g′, and we have the following consequence based on Theorem 3.1.

Corollary 3.3. Let x̄ ∈ SQ. Suppose that there is some ȳ ≥ 0 such that x̄ solves the problem
of minimizing

f(x) + ȳ(g′)T (x− x̄) over C.

Then (x̄, ȳ) is a saddle point of the Lagrangian function L for (Q).
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Proof. Since x̄ ∈ SQ ⊂ S, ∇g(x̄) = g′ and g(x̄) = p∗. By convexity of g, for any x ∈ C, we
have

f(x) + ȳ(g(x)− p∗) = f(x) + ȳ(g(x)− g(x̄)) ≥ f(x) + ȳ(g′)T (x− x̄).

So (x̄, ȳ) is a saddle point of the Lagrangian function L by Theorem 2.3. This completes
the proof.

Remark 3.4. An attractive feature of Corollary 3.3 is that the assumptions of Corollary 3.3
can be interpreted as (x̄, ȳ) being a saddle point of the Lagrangian function for the following
“linearized” problem of minimizing f(x) subject to x ∈ C and (g′)T (x− x̄) ≤ 0.
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