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of variables have pairwise high correlations, as depicted in [21]. To better treat the above-
mentioned scenarios, Zou and Hastie [21] introduced the elastic net which applies Tikhonov’s
technique of ℓ2-norm regularization to the lasso. More precisely, the elastic net (EN) is the
minimization problem

min
x∈Rn

1

2
∥Ax− b∥22 + λ∥x∥1 + γ

1

2
∥x∥22, (1.2)

where λ > 0 and γ > 0 are two regularization parameters.
EN not only promotes sparsity due to the ℓ1-norm penalization, but also finds a minimal

ℓ2-norm solution due to the ℓ2-penalization so that the coefficients of the solution are not
permitted too large [17]. It is shown [21] that EN often outperforms the lasso, and in [17, p.
1045], Tropp called for further study of EN.

In the present paper we will generalize EN by replacing the Euclidean norm with a general
ℓp norm, which we call the p-elastic net (p-EN). Namely, p-EN refers to the minimization
problem:

min
x∈Rn

1

2
∥Ax− b∥22 + λ∥x∥1 + γ

1

p
∥x∥pp, (1.3)

where λ > 0, γ > 0, p ∈ (1,∞), and ∥ · ∥p stands for the ℓp-norm. It is clear that 2-EN
is precisely EN. Since the objective function of p-EN (1.3) is strictly convex, there exists a
unique solution which is denoted xλ,γ . The purpose of this paper is twofold. Firstly, we will
study properties of xλ,γ such as continuity and behavior as λ→ 0 and γ → 0; secondly, we
will provide a splitting proximal algorithm for solving p-EN (1.3).

2 Preliminaries

Recall that, for 1 ≤ p <∞, the ℓp norm of a vector x ∈ Rn is defined by

∥x∥p =

 n∑
j=1

|xj |p
 1

p

.

Recall also that a function φ : Rn → R := R ∪ {∞} is said to be convex if

φ((1− λ)x+ λy) ≤ (1− λ)φ(x) + λφ(y) (2.1)

for all λ ∈ (0, 1) and x, y ∈ Rn. We say that φ is strictly convex if the strict inequality
in (2.1) holds for all x ̸= y and λ ∈ (0, 1) and that φ is proper if there exists at least
one x ∈ Rn such that φ(x) is finite. Recall that φ is said to be lower semicontinuous if
lim infy→x φ(y) ≥ φ(x) for all x ∈ Rn.

The subdifferential operator of a convex function φ is defined as the operator ∂φ given
by

∂φ(x) = {ξ ∈ Rn : φ(y) ≥ φ(x) + ⟨ξ, y − x⟩, y ∈ Rn}, x ∈ Rn. (2.2)

The inequality in (2.2) is referred to as the subdifferential inequality of φ at x. We say that
f is subdifferentiable at x if ∂φ(x) is nonempty. It is well-known that for an everywhere
finite-valued convex function φ on Rn, φ is everywhere subdifferentiable.

Examples: (i) If φ(x) = |x| for x ∈ R, then ∂φ(0) = [−1, 1]; (ii) If φ(x) = ∥x∥1 for
x ∈ Rn, then ∂φ(x) is given componentwise by

(∂φ(x))j =

{
sgn(xj), if xj ̸= 0,

ξj ∈ [−1, 1], if xj = 0,
1 ≤ j ≤ n. (2.3)
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Here sgn is the sign function; that is, for a ∈ R,

sgn(a) =

 1, if a > 0,
0, if a = 0,

−1, if a < 0.

Assume p ∈ (1,∞). Then (Rn, ∥ · ∥p) is uniformly smooth and its duality map from
(Rn, ∥ · ∥p) to (Rn, ∥ · ∥q) with q = p/(p − 1), Jp(·) = ∇( 1p∥ · ∥pp), possesses the following
properties:

(J1) ⟨x, Jpx⟩ = ∥x∥pp and ∥Jpx∥q = ∥x∥p−1
p for all x ∈ Rn, where q = p/(p− 1). In fact, we

have the representation for Jp as follows:

(Jpx)j = xj |xj |p−2, j = 1, 2, · · · , n.

(J2) There exists a constant cp > 0 such that [18]:

⟨Jp(x)− Jp(y), x− y⟩ ≥ cp∥x− y∥pp, x, y ∈ Rn.

Consider the constrained minimization problem

min
x∈C

φ(x), (2.4)

where C is a closed convex subset of Rn. The following propositions are known in any
standard optimization textbook.

Proposition 2.1. Suppose that φ : Rn → R := (−∞,∞] is proper, lower-semicontinuous,
convex, and finite on C.

(i) If φ is strictly convex, then (2.4) admits at most one solution.

(ii) If φ satisfies the coercivity condition:

x ∈ C, ∥x∥ → ∞ =⇒ φ(x) → ∞,

then there exists at least one solution to (2.4). Therefore, if φ is both strictly convex
and coercive, there exists one and only one solution to (2.4).

In particular, the lasso (1.1) is solvable and p-EN (1.3) is uniquely solvable.

Proposition 2.2. Let φ : Rn → R be proper, lower-semicontinuous and convex. The
optimality condition for a point z ∈ C to be a solution to (2.4) is that there holds the
variational inequality

⟨ξ, x− z⟩ ≥ 0, ∀x ∈ C,

where ξ ∈ ∂φ(z); equivalently, z solves the inclusion

0 ∈ ∂φ(z) +NC(z),

where NC(z) is the normal cone to C at z. Namely, NC(z) = {y ∈ Rn : ⟨y, w−z⟩ ≤ 0, ∀w ∈
C}. Consequently, x ∈ Rn solves the unconstrained minimization problem

min
x∈Rn

φ(x) (2.5)

if and only if
0 ∈ ∂φ(x). (2.6)
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Lemma 2.3. Let f : Rn → R be a continuous, convex function such that

Sf := arg min
x∈Rn

f(x) ̸= ∅. (2.7)

Let p ∈ [1,∞) and consider the regularized minimization

min
x∈Rn

f(x) +
γ

p
∥x∥pp, (2.8)

where γ > 0 is a regularization parameter. Let S̄γ be the solution set of (2.8). Then {S̄γ}γ>0

is bounded. Moreover, if p > 1, then S̄γ consists of exactly one point denoted by x̄γ which is
convergent, as γ → 0, to x̄† := argminx∈Sf

∥x∥p. If p = 1, then every cluster point of {S̄γ}
as γ → 0 is a point of Sf of minimal ℓ1 norm.

Proof. We can derive that, for each x̄ ∈ Sf and γ > 0,

f(x̄) +
γ

p
∥x̄γ∥pp ≤ f(x̄γ) +

γ

p
∥x̄γ∥pp

≤ f(x̄) +
γ

p
∥x̄∥pp.

It turns out that
∥x̄γ∥p ≤ ∥x̄∥p. (2.9)

In particular, for all λ > 0,
∥x̄γ∥p ≤ ∥x̄†∥p. (2.10)

This shows that {x̄γ} is bounded. Now if {λk} is a null sequence such that λk → x∗ as
k → ∞, then x∗ ∈ Sf and from (2.10) it easily follows that ∥x∗∥p ≤ ∥x̄†∥p. Now if p > 1,
the uniqueness of the ℓp norm minimal element of Sf implies that x∗ = x̄†; consequently,
x̄γ → x̄† as γ → 0. If p = 1, then (2.10) implies that ∥x∗∥1 ≤ ∥x̄†∥1 = minx∈Sf

∥x∥1, hence,
x∗ ∈ Sf assumes minimal ℓ1 norm of Sf .

3 The p-Elastic Net

We consider a natural generalization of the elastic net where the Euclidean norm is replaced
with the general ℓp-norm, which is, therefore, called the p-elastic net (p-EN). Another inter-
pretation of the p-EN the lasso regularized by the ℓp norm. More precisely, the p-EN refers
to the following optimization:

min
x∈Rn

1

2
∥Ax− b∥22 + λ∥x∥1 + γ

1

p
∥x∥pp, (3.1)

where 1 < p <∞ is a fixed positive number. It is evident that 2-EN is precisely EN.
It is quite natural to extend EN to p-EN from the mathematical point of view. The

introduction of p-EN is also inspired by Tropp [17].
Let p ∈ (1,∞) be fixed and set

φpλ,γ(x) =
1

2
∥Ax− b∥22 + λ∥x∥1 + γ

1

p
∥x∥pp, (3.2)

where λ > 0 and γ > 0 are fixed regularization parameters. It is evident that φpλ,γ is

continuous and convex. It is also easy to find that the subdifferential operator of φpλ,γ is
given by

∂φpλ,γ(x) = At(Ax− b) + λ∂∥x∥1 + γJp(x). (3.3)
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Since φpλ,γ is continuous, convex, coercive, by Proposition 2.1(ii), there exists a unique

minimizer of φpλ,γ . Namely, p-EN (3.1) has a unique solution which is denoted xλ,γ . We
next discuss some properties of xλ,γ .

We use Sλ to denote the set of solutions of the lasso (1.1). Note that Sλ is closed, convex,

and nonempty. Hence, Sλ contains a unique point, denoted x†λ, assuming the minimal ℓp
norm, that is,

∥x†λ∥p = min{∥x∥p : x ∈ Sλ}. (3.4)

More properties of Sλ can be found in [19].
Let xγ , depending on p, be the unique solution to the minimization:

min
Rn

φpγ(x) :=
1

2
∥Ax− b∥22 + γ

1

p
∥x∥pp. (3.5)

We further assume that the least-squares problem

min
x∈Rn

∥Ax− b∥22 (3.6)

is solvable and use S to denote the solution set of (3.6). That is,

S := arg min
x∈Rn

∥Ax− b∥22 ̸= ∅. (3.7)

Lemma 3.1. Assume (3.7). Then {xλ,γ} is bounded. Indeed, there exists a constant c > 0
such that

sup
λ>0
γ>0

∥xλ,γ∥p ≤ c inf
x̄∈S

∥x̄∥1. (3.8)

Proof. Let c > 0 satisfy

∥x∥p ≤ c∥x∥1 for all x ∈ Rn. (3.9)

Apply Lemma 2.3 to the case where f(x) := 1
2∥Ax− b∥22 + λ∥x∥1 to get

∥xλ,γ∥p ≤ ∥xλ∥p for all xλ ∈ Sλ. (3.10)

Apply again Lemma 2.3 to the case where f(x) := 1
2∥Ax− b∥22 and p = 1 to get

∥xλ∥1 ≤ ∥x̄∥1 for all x̄ ∈ S. (3.11)

Combining (3.9)-(3.11) yields (3.8).

Proposition 3.2. We have

(i) xλ,γ is a continuous function of (λ, γ) over the region {(λ, γ) : λ > 0, γ > 0} and
uniformly continuous over the region {(λ, γ) : λ > 0, γ ≥ γ0} for each fixed γ0 > 0.

(ii) As γ → 0 (for each fixed λ > 0), xλ,γ → x†λ as defined in (3.4); moreover, as λ → 0,

every cluster point of x†λ is an ℓ1-minimal norm solution of the least-squares problem
(3.6), i.e., a point in the set argminx∈S ∥x∥1.

(iii) As λ → 0 (for each fixed γ > 0), xλ,γ → x̂γ . Moreover, as γ → 0, x̂γ → x̂ which is
the ℓp minimal norm solution of (3.6), that is, x̂ = argminx∈S ∥x∥p.
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Proof. By (3.3), the optimality condition

0 ∈ ∂φpλ,γ(xλ,γ)

turns out to be

− 1

λ

(
At(Axλ,γ − b) + γJp(xλ,γ)

)
∈ ∂∥xλ,γ∥1. (3.12)

Apply the subdifferential inequality to get

λ∥x∥1 ≥ λ∥xλ,γ∥1 − ⟨At(Axλ,γ − b) + γJp(xλ,γ), x− xλ,γ⟩ (3.13)

for x ∈ Rn. It follows that, for λ′ > 0 and γ′ > 0,

λ∥xλ′,γ′∥1 ≥ λ∥xλ,γ∥1 − ⟨At(Axλ,γ − b) + γJp(xλ,γ), xλ′,γ′ − xλ,γ⟩. (3.14)

Interchanging γ and γ′, and δ and δ′ yields

λ′∥xλ,γ∥1 ≥ λ′∥xλ′,γ′∥1 − ⟨At(Axλ′,γ′ − b) + γ′Jp(xλ′,γ′), xλ,γ − xλ′,γ′⟩. (3.15)

Now adding up (3.14) and (3.15) obtains

(λ′ − λ)(∥xλ,γ∥1 − ∥xλ′,γ′∥1)
≥ ∥Axλ,γ −Axλ′,γ′∥22 + ⟨γJp(xλ,γ)− γ′Jp(xλ′,γ′), xλ,γ − xλ′,γ′⟩ (3.16)

≥ ∥Axλ,γ −Axλ′,γ′∥22 + (γ − γ′)⟨Jp(xλ,γ), xλ,γ − xλ′,γ′⟩
+ γ′⟨Jp(xλ,γ)− Jp(xλ′,γ′), xλ,γ − xλ′,γ′⟩

≥ ∥Axλ,γ −Axλ′,γ′∥22 + (γ − γ′)⟨Jp(xλ,γ), xλ,γ − xλ′,γ′⟩
+ cpγ

′∥xλ,γ − xλ′,γ′∥pp. (3.17)

However, by Lemma 3.1, {xλ,γ} is bounded. It thus follows from (3.17) that

γ′∥xλ,γ − xλ′,γ′∥pp ≤ c(|λ− λ′|+ |γ − γ′|). (3.18)

This suffices to show that xλ,γ is continuous in the region {(λ, γ) : λ > 0, γ > 0} and
uniformly continuous over the region {(λ, γ) : λ > 0, γ ≥ γ0} for each fixed γ0 > 0.

Next, (ii) and (iii) are straightforward consequences of Lemma 2.3. For instance, applying
Lemma 2.3 first to the case of f(x) := 1

2∥Ax − b∥22 + λ∥x∥1 and second to the case of
f(x) = 1

2∥Ax− b∥22 with p = 1 immediately yields (ii). (iii) is similarly proved.

Remark 3.3. It is unclear if xλ,γ is uniformly continuous over the region {(λ, γ) : λ >
0, γ > 0}. It is also unclear if the double limλ→0,γ→0 xλ,γ exists or not. In addition, it
is interesting to find the monotonicity of the functions ∥xλ,γ∥1, ∥xλ,γ∥p, and ∥Axλ,γ − b∥22
under the partial ordering: (λ, γ) ≼ (λ′, γ′) if and only if λ ≤ λ′ and γ ≤ γ′.

In [19] it is shown that the solutions to the lasso (1.1) are trivial for large enough λ.
Below we show that this property is inherited by the p-EN.

Proposition 3.4. If λ > ∥Atb∥∞, then xλ,γ = 0 for all γ ∈ (0,∞).

Proof. By the optimality condition (3.12) and setting

zλ,γ := At(Axλ,γ − b) + γJp(xλ,γ),
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we have
−(zλ,γ)j = λ · sgn((xλ,γ)j), if (xλ,γ)j ̸= 0,
|(zλ,γ)j | ≤ λ, if (xλ,γ)j = 0.

(Here (z)j is the jth component of a vector z ∈ Rn.) Substituting 2xλ,γ for x in the
subdifferential inequality (3.13) yields

λ∥xλ,γ∥1 ≥ −⟨zλ,γ , xλ,γ⟩ = −
∑

(xλ,γ)j ̸=0

(zλ,γ)j(xλ,γ)j

= λ
∑

(xλ,γ)j ̸=0

(sgn(xλ,γ))j(xλ,γ)j

= λ
∑

(xλ,γ)j ̸=0

|(xλ,γ)j | = λ∥xλ,γ∥1.

It follows that

λ∥xλ,γ∥1 = −⟨zλ,γ , xλ,γ⟩
= −⟨Axγ − b, Axγ⟩ − γ⟨Jp(xλ,γ), xλ,γ⟩ (3.19)

= −∥Axλ,γ∥22 + ⟨xλ,γ , Atb⟩ − γ∥xλ,γ∥pp
≤ ⟨xλ,γ , Atb⟩ ≤ ∥xλ,γ∥1∥Atb∥∞. (3.20)

Consequently, we must have λ ≤ ∥Atb∥∞ from (3.20) should xλ,γ ̸= 0. This completes the
proof.

4 A Splitting Method

Splitting methods are popular in solving optimization problems with composite objective
functions and monotone operator equations; see [5,6,8,10,13,14] and the references therein.

In this section we provide a splitting method for solving the p-elastic net (p-EN) which
is recalled below:

min
x∈Rn

1

2
∥Ax− b∥22 + λ∥x∥1 + γ

1

p
∥x∥pp ≜ φpλ,γ(x), (4.1)

where λ > 0, γ > 0, and 1 < p <∞.
Observe that the minimization of p-EN (4.1) is split in the sense that the objective

φpλ,γ is written as the sum of three simpler convex functions, the first and third being

differentiable with gradients At(Ax− b) and γJp(x), respectively. Since Jp is not Lipschitz
continuous unless p = 2 (see [18, Remark 2, p. 1133]), applying the gradient methods where
Lipschitz continuity of gradients is required is therefore difficult. Consequently, we will try
the proximal method to solve (4.1).

Consider the composite minimization:

min
x∈Rn

f(x) + g(x), (4.2)

where f, g are convex functions on Rn.
The proximal algorithm [4, 19] is a powerful method to solve (4.2). To state it we need

the notion of proximal operators.

Definition 4.1 ([11, 12]). The proximal operator of a convex function φ defined on Rn is
defined as

proxφ(x) := arg min
v∈Rn

{
φ(v) +

1

2
∥v − x∥2

}
, x ∈ Rn.
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The proximal algorithm generates a sequence {xk} via the iteration process:

xk+1 = (proxλkg
◦ (I − λk∇f))xk (4.3)

where the initial guess x0 is arbitrarily chosen in Rn and {λk} is a sequence of positive real
numbers. The convergence of this algorithm is given below.

Since the minimization problem (4.2) is equivalent to the following fixed point problem

x = (proxαg ◦ (I − α∇f))x (4.4)

for any α > 0, the proximal algorithm (4.3) is a fixed point algorithm. However, its conver-
gence requires Lipschitz continuity of the gradient of f , ∇f .

Theorem 4.2. Assume (4.2) is solvable. Assume, in addition, that:

(i) f is differentiable and the gradient operator ∇f satisfies the Lipschitz continuity con-
dition:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, x, y ∈ Rn

where L > 0 is a constant,

(ii) 0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λk <
2

L
.

Then the sequence (xk) generated by the proximal algorithm (4.3) converges to a solution of
(4.2).

Remark 4.3. The implementability of the proximal algorithm (4.3) is determined by two
factors: (i) the Lipschitz continuity of the gradient ∇f and (ii) the computability of the
proximal operator proxλg (thus, the lasso (1.1) can be solved by the proximal algorithm
(4.3)). Though the p-EN (4.1) is the sum of three terms, it can also be solved by the
proximal algorithm (4.3) since it can be reformulated as the sum of two convex functions
as shown in (4.5) below, with one term having a Lipschitz continuous gradient and another
term having a computable proximal operator.

In order to apply the proximal algorithm (4.3) to the p-EN (4.1), we take

f(x) =
1

2
∥Ax− b∥22, g(x) = λ∥x∥1 + γ

1

p
∥x∥pp =

n∑
j=1

(
λ|xj |+

γ

p
|xj |p

)
. (4.5)

Notice that ∇f(x) = At(Ax − b) is ∥A∥2-Lipschitz continuous, and for each λk > 0, the
proximal operator proxλkg

(x) can be computed in the following decomposed way:

proxλkg
(x) =

n∑
j=1

proxgj (xj), (4.6)

where

gj(xj) = λkλ|xj |+
λkγ

p
|xj |p.

The lemma below provides a way to compute the proximal operator proxgj .
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Lemma 4.4. Let p ∈ (1,∞) and set ψ(t) = α|t|+ β|t|p for t ∈ R, with α > 0, β > 0. Then

proxψ(t) =

{
0, if |t| ≤ α,
s, if |t| > α,

(4.7)

where s ∈ R is the unique solution to the equation:

α · sgn(s) + βp|s|p−1sgn(s) + s− t = 0. (4.8)

Proof. By definition, we have

proxψ(t) = argmin
s∈R

{
α|s|+ β|s|p + 1

2
(s− t)2

}
.

It turns out that s := proxψ(t) is the unique solution to the inclusion

0 ∈ α∂|s|+ βp|s|p−1sgn(s) + s− t. (4.9)

By the formula (2.3), we find that in the case of s = 0, the last equation is reduced to
0 ∈ α[−1, 1] − t. Hence, proxψ(t) = 0 for |t| ≤ α. While in the case of |t| > α, (4.9) is
reduced to (4.8) as ∂|s| = sgn(s) for s ̸= 0.

Applying the proximal algorithm (4.3) and Theorem 4.2 to p-EN (4.1) yields the following
splitting algorithm and its convergence.

Theorem 4.5. Define f and g by (4.5). Generate a sequence {xk} by the following proximal
algorithm:

xk+1 = proxλkg
(xk − λkA

t(Axk − b)), (4.10)

where proxλkg
is the proximal operator of λkg given by (4.6) and for each j,

proxgj (xj) =

{
0, if |xj | ≤ λkλ,
sj , if |xj | > λkλ,

(4.11)

where sj ∈ R is the unique solution to the equation:

λkλ · sgn(sj) + λkγ|sj |p−1sgn(s) + s− t = 0. (4.12)

Assume

0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λk <
2

∥A∥22
. (4.13)

Then the sequence (xk) generated by the proximal algorithm (4.10) converges to the solution
of the p-EN (3.1).

Proof. By Lemma 4.4, this is a straightforward application of Theorem 4.2 to the case where
f and g are given by (4.5).

Remark 4.6. If we choose

f(x) =
1

2
∥Ax− b∥22 + γ

1

p
∥x∥pp, g(x) = λ∥x∥1, (4.14)

then f is differentiable with the gradient

∇f(x) = At(Ax− b) + γJp(x) (4.15)

for x ∈ Rn. The proximal algorithm (4.3) then yields the following algorithm:

xk+1 = proxλk∥·∥1
(xk − λk(A

t(Axk − b) + γJp(xk))). (4.16)

However, since Jp is not Lipschitz continuous (except for p = 2), Theorem 4.5 does not apply
to this choice of f . It is therefore interesting to know whether the sequence {xk} generated
by the algorithm (4.16) is convergent under the condition (4.13).
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