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PROPERTIES AND SPLITTING METHOD FOR THE
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Abstract: The lasso of Tibshirani is a popular model for variable selection. The elastic net of Zou and
Hastie applies Tikhonov’s regularization to the lasso to break some limitations of the lasso in the case where
the number of predictors is much bigger than the number of observations, or where a group of variables
have pairwise high correlations. We generalize the elastic net by replacing Tikhonov’s regularization with a
more general ¢,-norm regularization which we refer to as the p-elastic net. One difficulty for dealing with
the p-elastic net lies in the fact that the £p-norm raised to the pth power fails to have a Lipschitz continuous
gradient. We discuss some fundamental properties of the p-elastic net, and moreover, provide a splitting
proximal algorithm for solving the p-elastic net.
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Introduction

The lasso of Tibshirani [15] is a popular model for variable selections. It recently also
became a fundamental model for the compressed sensing of recovering a highly undersampled
signal [1,2,7].

The lasso amounts to the minimization problem

1
Inin 514z = bll5 + Allz 1, (1.1)

where A is an m x n (real) matrix, b € R™, and A > 0 is a tuning parameter.

A feature of the lasso is the fact that the £; norm can promote sparsity of the signal to be
recovered. As a matter of fact, if the measurement matrix A satisfies certain property (such
as the restricted isometry property [2]), the lasso actually recovers the sparsest signal. The
lasso is also known as the basis pursuit denoising by Chen, et al [3] and has many variants
in statistical sciences (see [9,16,20] and the references therein).

In spite of its great success, the lasso has its limitations [21] in the scenarios where the
number of predictors is much bigger than the number of observations, or where a group
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of variables have pairwise high correlations, as depicted in [21]. To better treat the above-
mentioned scenarios, Zou and Hastie [21] introduced the elastic net which applies Tikhonov’s
technique of ¢o-norm regularization to the lasso. More precisely, the elastic net (EN) is the
minimization problem . .

min |4z = b3 + el + 752l (12)
where A > 0 and v > 0 are two regularization parameters.

EN not only promotes sparsity due to the £1-norm penalization, but also finds a minimal
£o-norm solution due to the fs-penalization so that the coefficients of the solution are not
permitted too large [17]. Tt is shown [21] that EN often outperforms the lasso, and in [17, p.
1045], Tropp called for further study of EN.

In the present paper we will generalize EN by replacing the Euclidean norm with a general
¢, norm, which we call the p-elastic net (p-EN). Namely, p-EN refers to the minimization
problem:

1 ) 1
min gflAz = bz + Ay +75||x||§7 (1.3)

where A > 0, v > 0, p € (1,00), and || - ||, stands for the ¢,-norm. It is clear that 2-EN
is precisely EN. Since the objective function of p-EN (1.3) is strictly convex, there exists a
unique solution which is denoted x . The purpose of this paper is twofold. Firstly, we will
study properties of x , such as continuity and behavior as A — 0 and v — 0; secondly, we
will provide a splitting proximal algorithm for solving p-EN (1.3).

Preliminaries

Recall that, for 1 < p < oo, the £, norm of a vector x € R" is defined by

P

n
lllp = | Yl P
j=1

Recall also that a function ¢ : R® — R := RU {oc} is said to be convex if

(1 =Xz + Ay) < (1= Nep(z) + Ap(y) (2.1)

for all A € (0,1) and z,y € R™. We say that ¢ is strictly convex if the strict inequality
n (2.1) holds for all  # y and A € (0,1) and that ¢ is proper if there exists at least
one € R™ such that ¢(x) is finite. Recall that ¢ is said to be lower semicontinuous if
liminf, ., ¢(y) > ¢(x) for all z € R".
The subdifferential operator of a convex function ¢ is defined as the operator dy given
by
Op(x) ={{ €R™: p(y) Z p(x) + ({,y — ), yeR"}, =xzeR™ (2.2)

The inequality in (2.2) is referred to as the subdifferential inequality of ¢ at z. We say that
f is subdifferentiable at x if Op(x) is nonempty. It is well-known that for an everywhere
finite-valued convex function ¢ on R™, ¢ is everywhere subdifferentiable.

Examples: (i) If o(x) = |z| for z € R, then 9p(0) = [-1,1]; (ii) If p(z) = ||z|]1 for
x € R™, then dp(x) is given componentwise by

e o e ¢ A I T (23
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Here sgn is the sign function; that is, for a € R,

1, if a > 0,

sgn(a) = 0, ifa=0,

-1, ifa <0.
Assume p € (1,00). Then (R™,| - ||,) is uniformly smooth and its duality map from
®R™, | llp) to (R™ [ [lg) with ¢ = p/(p — 1), Jp(-) = V(3| - [[}), possesses the following

properties:

(J1) (z, Jpx) = ||lz||5 and [|Jpz|, = [lz[[5~" for all z € R", where ¢ = p/(p —1). In fact, we
have the representation for J, as follows:

(Jpw)j = zjla; P72, j=1,2,-- .
(J2) There exists a constant ¢, > 0 such that [18]:
(Jp(x) = Jp(),x —y) 2 cpllz —yllp, =y €R™
Consider the constrained minimization problem

min p(), (2.4)

where C' is a closed convex subset of R™. The following propositions are known in any
standard optimization textbook.

Proposition 2.1. Suppose that ¢ : R® — R := (—o0, c0] is proper, lower-semicontinuous,
convez, and finite on C.

(i) If p is strictly convez, then (2.4) admits at most one solution.
(ii) If ¢ satisfies the coercivity condition:
xel, |z|| 200 = pr)— 0,

then there exists at least one solution to (2.4). Therefore, if ¢ is both strictly convex

and coercive, there exists one and only one solution to (2.4).

In particular, the lasso (1.1) is solvable and p-EN (1.3) is uniquely solvable.
Proposition 2.2. Let ¢ : R® — R be proper, lower-semicontinuous and convex. The
optimality condition for a point z € C to be a solution to (2.4) is thatl there holds the

variational inequality
(&x—2)>0, VxeC,

where & € 0p(z); equivalently, z solves the inclusion
0 € dp(2) + No(2),

where N¢(z) is the normal cone to C' at z. Namely, No(z) = {y € R" : (y,w—2) <0, Yw €
C}. Consequently, x € R™ solves the unconstrained minimization problem

52%31 o(z) (2.5)
if and only if
0 € 9p(z). (2.6)
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Lemma 2.3. Let f: R"™ — R be a continuous, convex function such that
Sy :=arg min f(z) # 0. (2.7)
TER™
Let p € [1,00) and consider the regqularized minimization

: Yip
! 2.8
min f(z) + » ][5, (2.8)
where ~y > 0 is a regularization parameter. Let Sy, be the solution set of (2.8). Then {S,},>0
is bounded. Moreover, if p > 1, then S consists of exactly one point denoted by ., which is
convergent, as y — 0, to T := arg minges, |z|,. If p=1, then every cluster point of {S,}
as v — 0 is a point of Sy of minimal {1 norm.

Proof. We can derive that, for each £ € Sy and v > 0,
- Y= - e
F@) + 2y [l5 < F(2y) + 124117
p p
_ Y=
< @)+ Sl

It turns out that
1Z4[lp < (|2l (2.9)

In particular, for all A > 0,
1Z41lp < [1Z"]],- (2.10)

This shows that {z,} is bounded. Now if {\;} is a null sequence such that A\, — z* as
k — oo, then z* € Sy and from (2.10) it easily follows that ||z*|, < ||Z'||,. Now if p > 1,
the uniqueness of the £, norm minimal element of Sy implies that z* = z'; consequently,
Zy — &' as y — 0. If p =1, then (2.10) implies that [[z*||; < [|Z'[|1 = minges, |21, hence,
z* € Sy assumes minimal ¢; norm of Sy. O

The p-Elastic Net

We consider a natural generalization of the elastic net where the Euclidean norm is replaced
with the general ¢,-norm, which is, therefore, called the p-elastic net (p-EN). Another inter-
pretation of the p-EN the lasso regularized by the ¢, norm. More precisely, the p-EN refers
to the following optimization:

1 ) 1
min oAz = bz + Alz]ly +75||w||£7 (3.1)

where 1 < p < 0o is a fixed positive number. It is evident that 2-EN is precisely EN.

It is quite natural to extend EN to p-EN from the mathematical point of view. The
introduction of p-EN is also inspired by Tropp [17].

Let p € (1,00) be fixed and set

1 1
PR (@) = 5l Az = b5 + Azl +75||x||§7 (3-2)

where A > 0 and v > 0 are fixed regularization parameters. It is evident that 30§7 is
continuous and convex. It is also easy to find that the subdifferential operator of cpiv,y is
given by

9% . (x) = A'(Az — b) + A0|z|l1 + 7Ty (). (3.3)
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Since npﬁl - is continuous, convex, coercive, by Proposition 2.1(ii), there exists a unique
minimizer of goiﬁ. Namely, p-EN (3.1) has a unique solution which is denoted zy . We
next discuss some properties of xy .

We use S to denote the set of solutions of the lasso (1.1). Note that S} is closed, convex,

and nonempty. Hence, S contains a unique point, denoted x;, assuming the minimal ¢,
norm, that is,

|z}l = min{|lz], : @ € Sx}. (3.4)

More properties of Sy can be found in [19].
Let z., depending on p, be the unique solution to the minimization:

. 1 , 1
min ¢ (@) 1= 5l Az ~ b3 + 7 a5 (3.5)

We further assume that the least-squares problem

: _ 2
min || Az — bl (3.6)

is solvable and use S to denote the solution set of (3.6). That is,

§ = arg min || Az - bll3 # 0. (3.7)

Lemma 3.1. Assume (3.7). Then {xx} is bounded. Indeed, there exists a constant ¢ > 0
such that

sup ([ [l < ¢ inf [z} (3.8)
A>0 zes
v>0
Proof. Let ¢ > 0 satisfy
lz|l, < c|lz]|1 for all z € R™. (3.9)
Apply Lemma 2.3 to the case where f(z) := 3||Az — b||3 + A||z||1 to get
H‘TAWH;D < ||x>\||p for all ), € S). (3.10)
Apply again Lemma 2.3 to the case where f(z) := §||Az — b||3 and p =1 to get
lzalls < ||Z]]1 for all T € S. (3.11)
Combining (3.9)-(3.11) yields (3.8). O

Proposition 3.2. We have

(1) zx~ is a continuous function of (X,7) over the region {(A\,v) : A > 0,7 > 0} and
uniformly continuous over the region {(A,7) : X\ > 0,7 > o} for each fixed o > 0.

(i) Asy — 0 (for each fixed A > 0), xx, — .T; as defined in (3.4); moreover, as A\ — 0,
every cluster point of a:; is an {1-minimal norm solution of the least-squares problem
(3.6), i.e., a point in the set arg mingeg ||z]1-

(iii) As A = 0 (for each fixzed v > 0), x — &,. Moreover, as vy = 0, &, — & which is
the £, minimal norm solution of (3.6), that is, & = arg minges ||z||,-
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Proof. By (3.3), the optimality condition

0c 8901))\,7($>\7'Y)

turns out to be )
BB\ (At(Ax/\,v —b)+ 'YJ;D(JJA,W)) € Ollwx |- (3.12)

Apply the subdifferential inequality to get
Mol = Manll = (A Az — 8) + 7y (@rm)s 0 — 20) (313)
for x € R™. Tt follows that, for A’ > 0 and v/ > 0,
Max iyl = Mzaq i = (A (A y = b) + 9 Tp(224), Tx iy = Tag)- (3.14)
Interchanging v and v/, and § and ¢’ yields
Nlzxqlle = Nl el = (A (Azx = B) + 7 (@ 4)s Eay — Txy) (3.15)
Now adding up (3.14) and (3.15) obtains

(N = N (leaqll = llzar v lln)
> |Azyy — Az}\’,’%”% + (Y Tp(@rn) =Y Tp(Tr40), Tay = Taryr) (3.16)
> [|Azxy — Az l5 + (v = YN Tp (@2 7)s Er 5 — Tar47)
+ Y (Tp(@ay) = Tp(Txr ), Tay — T y7)
2 [[Azxy — Az 13+ (v - VI Tp(Trn)s Ty — T y7)
+ Y |oay — zar ][ (3.17)

However, by Lemma 3.1, {z ,} is bounded. It thus follows from (3.17) that
Vlzaqy —ax oyl < c(ld =X+ 1y =) (3.18)

This suffices to show that z) , is continuous in the region {(A,7) : A > 0,7 > 0} and
uniformly continuous over the region {(A,7) : A > 0,7 > o} for each fixed o > 0.

Next, (ii) and (iii) are straightforward consequences of Lemma 2.3. For instance, applying
Lemma 2.3 first to the case of f(x) := 3||Az — b||3 + A||z[1 and second to the case of

f(z) = 3||Az — b||3 with p = 1 immediately yields (ii). (iii) is similarly proved. O

Remark 3.3. It is unclear if x, . is uniformly continuous over the region {(A,7y) : A >
0,7 > 0}. It is also unclear if the double limy_,o 0 exists or not. In addition, it
is interesting to find the monotonicity of the functions ||z |1, ||[Zx 4|y, and ||Azy . — b|13
under the partial ordering: (X,7y) < (V,v/) if and only if A < X and v < +/.

In [19] it is shown that the solutions to the lasso (1.1) are trivial for large enough .
Below we show that this property is inherited by the p-EN.

Proposition 3.4. If A > ||A'||o, then zx, =0 for all v € (0, 00).

Proof. By the optimality condition (3.12) and setting

Zay = AN Az, — b) +7Tp(22 ),
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we have

—(2aq); = A-sgn((zaq);), if (zx4); # 0,

(239 A, if (zx4); =0.
(Here (z); is the jth component of a vector z € R™.) Substituting 2z, for « in the
subdifferential inequality (3.13) yields

IN

Mzryll = =(2amzay) == D (2an)i(@rs);
(zx,7);7#0
=A Z (sgn(rq))j(@ry);
(zx,~);#0
=2 2 @il = Mlzas
(wx,~);70
It follows that
Maxqylli = =(aaq:2a0)
= —(Azy = b, Azy) =y (Jp(2ry), Tr ) (3.19)
—[[ Az 115 + (2xq, AD) = Yllaas ]
< {oa AD) < Jlaag [l A oo (3.20)
Consequently, we must have A < [[A'D||o from (3.20) should zy , # 0. This completes the
proof. 0

A Splitting Method

Splitting methods are popular in solving optimization problems with composite objective
functions and monotone operator equations; see [5,6,8,10,13,14] and the references therein.

In this section we provide a splitting method for solving the p-elastic net (p-EN) which
is recalled below:

Inin *IIA!E = blI3 + Allz[lx +’Y*||x||” P34 (), (4.1)

where A > 0, v > 0, and1<p<oo.

Observe that the minimization of p-EN (4.1) is split in the sense that the objective
901;,7 is written as the sum of three simpler convex functions, the first and third being
differentiable with gradients A’(Az — b) and ~.J,(x), respectively. Since .J, is not Lipschitz
continuous unless p = 2 (see [18, Remark 2, p. 1133]), applying the gradient methods where
Lipschitz continuity of gradients is required is therefore difficult. Consequently, we will try
the proximal method to solve (4.1).

Consider the composite minimization:

min f(z) + g(2), (42)

where f, g are convex functions on R™.
The proximal algorithm [4,19] is a powerful method to solve (4.2). To state it we need
the notion of proximal operators.

Definition 4.1 ([11,12]). The proximal operator of a convex function ¢ defined on R" is
defined as

1
prox,, () := arggrelkr}l {gp(v) + §HU - x||2} , xeR"



808 N. ALTWALJRY, S. CHEBBI AND H.-K. XU

The proximal algorithm generates a sequence {x} via the iteration process:

Ty = (proxy, g o (I — MV f))zk (4.3)

where the initial guess xz is arbitrarily chosen in R™ and {\x} is a sequence of positive real
numbers. The convergence of this algorithm is given below.
Since the minimization problem (4.2) is equivalent to the following fixed point problem

x = (prox,, o (I —aVf))x (4.4)

for any a > 0, the proximal algorithm (4.3) is a fixed point algorithm. However, its conver-
gence requires Lipschitz continuity of the gradient of f, V f.

Theorem 4.2. Assume (4.2) is solvable. Assume, in addition, that:

(i) f is differentiable and the gradient operator V f satisfies the Lipschitz continuity con-
dition:
IVf(x) = Vil < Lilz—yll, zyeR"

where L > 0 is a constant,

2
(if) 0 < liminf Ay <limsup A\ < —.
k— o0 k— 00 L

Then the sequence (xy) generated by the proximal algorithm (4.3) converges to a solution of

(4-2).

Remark 4.3. The implementability of the proximal algorithm (4.3) is determined by two
factors: (i) the Lipschitz continuity of the gradient Vf and (ii) the computability of the
proximal operator prox,, (thus, the lasso (1.1) can be solved by the proximal algorithm
(4.3)). Though the p-EN (4.1) is the sum of three terms, it can also be solved by the
proximal algorithm (4.3) since it can be reformulated as the sum of two convex functions
as shown in (4.5) below, with one term having a Lipschitz continuous gradient and another
term having a computable proximal operator.

In order to apply the proximal algorithm (4.3) to the p-EN (4.1), we take

n

1 1 ¥
@) = 3l4s =0l ofa) = Nell +r3lell; = 3 (Nal + 2asP) . 45)
j=1
Notice that Vf(x) = A'(Ax — b) is ||A||?>-Lipschitz continuous, and for each Ay > 0, the

proximal operator prox,, g(:v) can be computed in the following decomposed way:

prox,, ,(z) = Zproxgj (x;), (4.6)
j=1

where \
kY
9;(x5) = AeAlz;| + ?|xj|p-

The lemma below provides a way to compute the proximal operator Proxg .
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Lemma 4.4. Let p € (1,00) and set ¥(t) = aft| + S|t|P fort € R, with o > 0,8 > 0. Then

[0, it <a,
prox,(t) = { s iflt>a (4.7
where s € R is the unique solution to the equation:
o -sgn(s) + Bp|s/P~tsgn(s) + s —t = 0. (4.8)

Proof. By definition, we have
1
t) = i Py —(s—1)%}.
prox, (1) = gy {als + BlsP + 55~ 1}
It turns out that s := prox,(t) is the unique solution to the inclusion

0 € ad|s| + Bp|s|P'sgn(s) + s — t. (4.9)

By the formula (2.3), we find that in the case of s = 0, the last equation is reduced to
0 € a[-1,1] — t. Hence, prox,(t) = 0 for |t| < a. While in the case of |t| > a, (4.9) is
reduced to (4.8) as d|s| = sgn(s) for s # 0. O

Applying the proximal algorithm (4.3) and Theorem 4.2 to p-EN (4.1) yields the following
splitting algorithm and its convergence.

Theorem 4.5. Define f and g by (4.5). Generate a sequence {x1} by the following prozimal
algorithm:
Tpq1 = proxy,  (xr — MeA'(Azy — b)), (4.10)

where prox,, , is the prozimal operator of A\xg given by (4.6) and for each j,

N0 x| < A,
prox, (z;) = { s if [ > AN, (4.11)
where s; € R is the unique solution to the equation:
M - sgn(s;) + Aryls;|P tsgn(s) +s —t = 0. (4.12)
Assume 9
0 < liminf A\ < limsup A\ < ——. 4.13
e N P -

Then the sequence (xy) generated by the prozimal algorithm (4.10) converges to the solution
of the p-EN (8.1).

Proof. By Lemma 4.4, this is a straightforward application of Theorem 4.2 to the case where

f and g are given by (4.5). O
Remark 4.6. If we choose
£@) = 314z =Bl + 7 llelf,  gla) = Azl (114)
then f is differentiable with the gradient
Vf(x) = A"(Ax — b) + vJ,(z) (4.15)
for € R™. The proximal algorithm (4.3) then yields the following algorithm:
Tt1 = Proxy, ., (Tx — Mo (At (Azy — b) + v Jp(21)))- (4.16)

However, since J,, is not Lipschitz continuous (except for p = 2), Theorem 4.5 does not apply
to this choice of f. It is therefore interesting to know whether the sequence {xj} generated
by the algorithm (4.16) is convergent under the condition (4.13).
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