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In the proposed algorithm this approach is used for handling the constraints. Consequently
the initial point must be feasible (i.e. x0 ∈ Ω).

Every poll step explores the search space along a finite number of directions. If it fails
to find descent the incumbent solution is also referred to as a minimal frame center. The set
of normalized poll directions across at least one convergent subsequence of minimal frame
centers must be dense on the unit sphere. This requirement, however, does not prevent nor-
malized poll directions from concentrating in certain regions of the unit sphere. Nonsmooth
and constrained problems often have points where the cone of descent directions is signif-
icantly smaller than an open half-space. Probability of guessing a poll step that improves
the incumbent solution in the neighborhood of such points can be low. Consequently the
use of unevenly distributed normalized poll directions can result in slower convergence.

In MADS the set of poll directions applied in the neighborhood of the incumbent must
positively span [14] the search space [3]. This imposes an additional requirement on the
poll step generation algorithm. The first published instance of MADS [3] generated the poll
directions in a random manner. The positive spanning property was enforced by obtaining
the directions from a lower-triangular matrix (LTMADS). In [2] it was pointed out that the
distribution of normalized poll directions in LTMADS is far from uniform. As a remedy a
new algorithm was proposed deemed OrthoMADS. The set of poll directions in OrthoMADS
is a maximal positive basis that comprises an orthogonal basis for the search space and its
negative. The search directions are generated from the output of a quasi-random generator
(Halton sequence [18]) which makes the algorithm deterministic. A scaled Householder re-
flection matrix is built from a random direction and its columns together with their negatives
are used as scaled poll directions.

Although OrthoMADS distributes the normalized poll directions more uniformly than
LTMADS, the distribution rapidly deteriorates with increasing problem dimension. This was
first pointed out in [25]. There are two reasons for this. First of all the normalized random
direction in OrthoMADS is not uniformly distributed on the unit sphere. The uniformity of
the distribution deteriorates as the problem dimension increases. Secondly, the columns of
the Householder matrix exhibit a nonuniform distribution that progressively peaks around
coordinate directions as the problem dimension increases. In [25] a remedy was proposed
that involves generating the search directions by means of QR decomposition applied to a
random matrix (thus the name QRMADS). The columns of the resulting orthogonal matrix
and their negatives form a maximal positive basis for the search space. The title of the
paper [25] suggests the obtained distribution of normalized poll directions is uniform. No
proof of this claim was given. The distribution was visualized with 2-dimensional scatter
plots of projected normalized poll directions. Although the plots give the impression of
uniformity we show (section 6) the generated directions are not uniformly distributed on
the unit sphere. Nevertheless the distribution of normalized poll directions in QRMADS is
significantly more uniform than in OrthoMADS.

With the above mentioned shortcomings in mind we propose a different approach based
on a sequence of uniformly distributed orthogonal matrices [24] and a prototype set of
search directions that positively spans the search space. It guarantees that the members of
the set of normalized poll directions are uniformly distributed on the unit sphere. Unlike
QRMADS, where every positive basis comprises an orthogonal basis and its negative, the
proposed approach is capable of generating positive bases with arbitrary cardinality.

Because MADS algorithms base their convergence properties on selecting the evaluated
points from progressively finer meshes, the poll steps must be forced to lie on a grid. In
OrthoMADS this was achieved by scaling and rounding the generated random direction
so that the elements of the obtained Householder matrix were integers. In [25] and in
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the proposed algorithm every poll step is rounded to the nearest mesh point. Rounding
deteriorates the poll directions so that they are no longer orthogonal. It can even cause the
resulting set to no longer positively span the search space. To avoid this situation a bound
must be imposed on the length of the poll step with respect to the mesh density. This
bound was estimated in [25] using singular value decomposition of the matrix representing
the unrounded poll steps. We propose a more simple approach that is based on [8] and yields
the same result. An additional advantage of the proposed approach is that it can easily be
applied to positive spanning sets of arbitrary cardinality.

In section 2 an overview of the MADS algorithmic framework is given. Section 3 gives
an introduction to uniformly distributed orthogonal matrices. The algorithm for generating
scaled poll directions and its properties are the subject of section 4. Section 5 introduces the
proposed algorithm deemed UniMADS and shows it is a valid MADS instance. Numerical
results are given in Section 6.

Notation. We denote the coordinate vectors of the standard orthogonal basis by ei.
The element of matrix A from the i-th row of the j-th column is denoted by aij . ∥a∥
denotes the Euclidean norm of a. The smallest integer not smaller than a is denoted by
⌈a⌉. Sequences are denoted by {ai}∞i=0. N(a, σ2) is the normal distribution with mean value
a and variance σ2. R, Z, Q, and N denote the set of real, integer, rational, and natural
numbers, respectively. The rounding operator R choses one of the points from set G that
are closest to x.

R(x,G) ∈ argmin
v∈G

∥x− v∥. (1.2)

When argmin results in multiple points (with the same distance from x) a tie breaking rule
is used that chooses a unique point for every x and every G.

2 Overview of MADS

Let Sk be the set of points visited by the algorithm at the start of iteration k including the
initial point x0 ∈ Ω. Points visited at the k-th iteration lie on a mesh defined as

Mk = ∪x∈Sk
{x+ p : p ∈ Gk}. (2.1)

xk is the incumbent solution in k-th iteration (i.e. the feasible point with the lowest value of
f found in iterations 1, ..., k− 1). The grid Gk comprises all steps available to the algorithm
in k-th iteration. It is defined as

Gk = {∆m
k Dz : z ∈ NnD}, (2.2)

where ∆m
k > 0 is the mesh size parameter. The nD columns of D must positively span

Rn [14] and D must be a product of the form D = GZ where G is a real n× n matrix and
Z is an integer n × nD matrix. Convergence of the algorithm is enforced by means of poll
steps. Let Dk denote the set of scaled poll directions at k-th iteration. Every Dk is a finite
subset of Gk. Let Ω ⊆ Rn denote the feasible region defined by the constraints.

The MADS algorithmic framework can now be written as

Algorithm 2.1. MADS framework

1. Choose x0 ∈ Ω, ∆m
0 ≤ ∆p

0, D, 1 < τ ∈ Q, −1 ≥ w− ∈ Z, and 0 ≤ w+ ∈ Z.
Set k := 0 and f0 := fΩ(x0).

2. Evaluate fΩ on a finite subset of Mk.
If a point x′ is found satisfying fΩ(x

′) < fk, go to step 4.



816 Á. BŰRMEN AND T. TUMA

3. Evaluate f at points x′ = xk + d for d ∈ Dk until x′ is found satisfying
fΩ(x

′) < fk or the set Dk is exhausted.

4. Let x′ denote the point with lowest value of fΩ obtained in steps 2-3.
If fΩ(x

′) ≤ fk let xk+1 := x′, fk+1 := fΩ(x
′) and

choose wk ∈ Z satisfying 0 ≤ wk ≤ w+.
Otherwise let xk+1 := xk, fk+1 := fk, and
choose wk ∈ Z satisfying w− ≤ wk < 0.

5. Let ∆m
k+1 := τwk∆m

k and choose ∆p
k+1 ≥ ∆m

k+1.

6. Set k := k + 1 and go back to step 2.

Steps 2 and 3 are also referred to as the search and the poll step. ∆p
k is the poll

size parameter. Let D′
k = {d/∥d∥ : d ∈ Dk} be the set of normalized poll directions

corresponding to Dk. A refining subsequence {xk}k∈K is every subsequence for which ∆p
k

converges to zero. For Lipschitz continuous functions the subgradient of f at the limit points
of a refining subsequence includes 0 if the following requirements are satisfied:

(A) there exists C > 0 such that for all d ∈ Dk we have ∥d∥ ≤ C∆p
k,

(B) limk→∞ ∆p
k = 0 if and only if limk→∞ ∆m

k = 0,

(C) limit points of D′
k in the sense of [13] are positive spanning sets,

(D) the set ∪k∈KD′
k is dense on the unit sphere.

If f is continuously differentiable the generalized gradient is a set with a single element
∇f and the usual result (convergence to a stationary point) is obtained in the unconstrained
case. Details of the convergence analysis can be found in [3].

3 Uniformly Distributed Random Orthogonal Matrices

The notion of a random distribution over sets can be defined by means of a measure [10]. A
measure µ maps A ⊆ A0 to R and satisfies 3 properties. It is non-negative (µ(A) ≥ 0), it
is zero for an empty set (µ(∅) = 0), and is countably additive (µ(∪i∈IAi) =

∑
i∈I µ(Ai) for

any countable I and pairwise disjoint Ai). Let X be a random variable with sample space
A and let B ⊆ A. We can define the probability that X takes a value from B as

P (X ∈ B) = µ(B)/µ(A). (3.1)

Thus the measure µ defines the probability distribution of X over A. It is common to say
that X is a random variable from measure µ on A or shortly X is distributed according to
µ.

In Rn the most commonly used measure is the Lebesgue measure [10]. The Lebesgue
measure (λ) of a box in Rn (i.e. the Cartesian product of n intervals [ai, bi]) is defined as∏n

i=1(bi − ai). Random variables from λ are uniformly distributed over A. The Lebesgue
measure is invariant to translations and orthogonal linear transformations.

λ(A) = λ({x+ c : x ∈ A}), c ∈ Rn,

λ(A) = λ({Qx : x ∈ A}), Q ∈ On.

Orthogonal transformations can be represented as orthogonal matrices. An orthogonal ma-
trix Q has the property QTQ = I. The set of orthogonal matrices (On) is a subset of Rn2

.
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The uniform distribution over On is defined by the Haar measure (µH) [10] and is invariant
to orthogonal transformations. Let A and Q denote any subset and any element of On, re-
spectively. If µH(A) = µH ({QA : A ∈ A}) holds then µH is left invariant. A right-invariant
Haar measure satisfies µH(A) = µH ({AQ : A ∈ A}). On is a compact group and therefore
unimodular. Unimodular groups carry a Haar measure that is both left- and right-invariant.
A direct consequence of the left- and right-invariance is the following corollary.

Corollary 3.1. Let Q ∈ On be a given orthogonal matrix and let O ∈ On be distributed
according to µH. Then QO and OQ are also distributed according to µH.

QR decomposition factors matrix A into a product of an orthogonal matrix Q and an
upper triangular matrix R. It is, however, not unique in the sense that any pair (QD,DR)
is also a valid QR decomposition of A if D is a diagonal matrix with diagonal elements
coming from {−1, 1}.

Definition 3.2. Orthogonal matrix Q and upper triangular matrix R are the unique QR
decomposition of matrix A iff A = Q R and the diagonal elements of R are nonnegative.

Let O be an arbitrary orthogonal matrix. Then the unique QR decomposition of OA
is given by OQ and R. The unique QR decomposition can be obtained with the Gram-
Schmidt orthogonalization algorithm. Because this algorithm is numerically unstable the
decomposition is usually obtained by means of Householder reflections. The sign of the
diagonal elements of the resulting R varies and the decomposition is no longer unique.
Uniqueness can, however, be restored by choosing D in such manner that dii = sign(rii).

Using Corollary 3.1 along with QR decomposition one can devise an algorithm for gen-
erating a sequence of random orthogonal matrices from the Haar measure on On (see [24]).
Let N denote an n × n random matrix whose elements are independent random vari-
ables distributed according to N(0, 1). The joint probability density for such a matrix

is (2π)−n2/2 exp(tr(NTN)/2). Let Q denote an arbitrary orthogonal matrix. Because
(QN)T(QN) = NTQTQN = NTN the distribution is invariant to left multiplication by
Q. The invariance to right multiplication by Q follows from tr(NTN) = tr(NNT). Let
N = Q R denote the unique QR decomposition of N. The unique QR decomposition of
QN is then (QQ)R. Because QN has the same distribution as N, QQ must have the same
distribution as Q. Consequently Q must be distributed according to µH. The following
Lemma summarizes some of the properties of such a matrix.

Lemma 3.3. Let O ∈ On be a random matrix distributed according to µH, a an arbitrary
unit vector, Q1 a random orthogonal matrix, and a1 a random unit vector. Suppose Q1 and
a1 are independent from O. Then

1. OT is distributed according to µH,

2. Q1O and OQ1 are distributed according to µH,

3. Oa and aTO are uniformly distributed on the unit sphere,

4. Oa1 and aT1 O are uniformly distributed on the unit sphere, and

5. columns and rows of O are uniformly distributed on the unit sphere.

Proof. 1: Let Q be an arbitrary orthogonal matrix. We can express QOT = (OQT)T.
Matrix OQT has the same distribution as O. Therefore (OQT)T must have the same
distribution as OT. Consequently OT is distributed according to µH.
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2: Due to independence the conditional distribution p(O|Q1) is identical to p(O). Corol-
lary 3.1 implies the distributions p(Q1O|Q1) and p(OQ1|Q1) are identical to the distribution
of O. Matrix O is distributed according to µH. The conditional distribution p(Q1O|Q1) =
p(OQ1|Q1) = p(O) does not depend on Q1 so we can conclude p(Q1O) = p(OQ1) = p(O).
Note that the result holds for any distribution of Q1.

3: FromQ(Oa) = (QO)a and the fact theQO is distributed according to µH we conclude
that the distribution of vector Oa is identical to the distribution of Q(Oa). Therefore Oa
must be uniformly distributed on the unit sphere. The uniform distribution of aTO follows
from the fact that OT is distributed according to µH.

4: The proof relies on the uniform distribution of Oa, aTO, and the independence of a1.
The argument is similar to the one used to prove 2.

5: Substituting ei for a in property 3 yields the desired result.

Lemma 3.3 provides the theoretical background for generating poll sets with uniformly
distributed poll directions.

4 Generating the Set of Scaled Poll Directions

The set of scaled poll directions Dk must positively span Rn. There are many different ways
to construct a poll set, but most commonly it consists of n vectors (di, i = 1, .., n) that span
Rn and

1. their negatives dn+i = −di for i = 1, .., n or

2. a nonzero vector dn+1 from the open cone -
∑n

i=1 αidi, αi > 0.

In the former case Dk is a maximal positive basis while in the latter case it is a minimal
positive basis. In order to spread the directions as uniformly as possible the maximal positive
basis is often chosen in such manner that vectors di, i = 1, ..., n are mutually orthogonal.
The angle between two vectors in such a poll set is either π/2 or π. Minimal positive bases
with the analogous properties are referred to as regular n-simplices if all basis vectors have
unit length. The angle between any pair of vectors di ̸= dj in a regular n-simplex is equal to
arccos(−n−1). See [12] on how to generate a regular n-simplex. The idea of using a regular
simplex as the poll direction set was used in [15].

Let {Ni}∞i=0 denote a sequence of realizations of a random matrix whose elements are
independent identically distributed random variables distributed according to N(0, 1). Let
P = {b1, ...,bm} positively span Rn. This set is referred to as the prototype set of poll
directions. The following algorithm generates a sequence of sets of poll directions for which
the corresponding normalized unrounded poll directions are uniformly distributed on the
unit sphere.

Algorithm 4.1. Generating the k-th member of a sequence of sets of scaled poll directions.

1. QR decompose Ntk into Qtk and Rtk .

2. Construct a diagonal matrix Dtk with with elements dii = sign(rii).

3. Otk := QtkDtk ,

4. Uk := {∆p
kOtkp : p ∈ P}.

5. Dk := {R(u,Gk) : u ∈ Uk}.
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Steps 1-3 generate a random orthogonal matrix Otk distributed according to µH (see
section 3). This matrix is used for transforming the members of the prototype set of poll
directions in step 4. Every normalized member of the resulting set Uk is a realization of a
random vector with uniform distribution on the unit sphere (Lemma 3.3). Finally in step 5
the members of Uk are rounded to the nearest points on grid Gk to obtain the set of scaled
poll directions Dk. Due to rounding the subset of n orthogonal vectors from U is transformed
into a set of almost orthogonal vectors. Index tk assigns a member of the sequence {Ni}∞i=0

to k-th iteration of the MADS framework. Its role will become more clear in section 5.

Although the MADS algorithmic framework is very flexible when it comes to defining the
mesh points, most implementations use a simple orthogonal grid generated by D = [I,−I].
In the remainder of the paper we assume this type of grid is used. Finding the point in Gk

closest to some d is equivalent to rounding the components of d/∆m
k to the nearest integers.

The built-in rounding operation of the mathematical library includes a tie-breaking rule for
(1.2). Rounding the n components of a vector to nearest integers is equivalent to adding an
error vector that is bounded in norm by n1/2/2. Rounding d to the nearest member of Gk

is therefore equivalent to adding an error vector δ for which the following bound holds.

∥δ∥ ≤ δ0(∆
m
k ) = ∆m

k n1/2/2. (4.1)

Rounding can deteriorate a positive spanning set to such extent that it no longer positively
spans Rn. The cosine measure cm(Uk) [21] indicates how good is set Uk at positively spanning
Rn. This measure is greater than zero if and only if Uk positively spans Rn. Rounding the
members of Uk to the nearest points from Gk can decrease its cosine measure. Let umin

denote the member of Uk with the smallest Euclidean norm. In [8] the following relation
was derived

cm(Dk) ≥
cm(Uk)− δ0(∆

m
k )/∥umin∥

1 + δ0(∆m
k )/∥umin∥

. (4.2)

Because Otk is an orthogonal matrix ∥umin∥ = ∆p
k∥pmin∥ where pmin denotes the mem-

ber of P with the smallest Euclidean norm. The following Lemma establishes the condition
under which all limit points of {D′

k}∞k=0 are positive spanning sets.

Lemma 4.2. Assume a simple orthogonal grid is used and cm(P) > 0. If ∆m
k /∆p

k ≤
(1− ϵ)/γ, with 0 < ϵ < 1 and γ = n1/2/(2cm(P)∥pmin∥) then every limit point of {D′

k}∞k=0

is a positive spanning set.

Proof. Because Uk is obtained from P by multiplication with an orthogonal matrix we have
cm(Uk) = cm(P). From (4.2) it follows

cm(D′
k) = cm(Dk) ≥

cm(P)−∆m
k n1/2/(2∆p

k∥pmin∥)
1 + ∆m

k n1/2/(2∆p
k∥pmin∥)

≥ ϵcm(P)

1 + (1− ϵ)cm(P)
> 0. (4.3)

Because the cosine measure of D′
k is uniformly bounded away from 0 all limit points of

{D′
k}∞k=0 are positive spanning sets.

The cosine measure of a maximal positive basis comprising n orthogonal vectors and
their negatives is n−1/2. If the prototype set P is such a maximal positive basis we have
∥pmin∥ = 1 and γ = n/2. If, on the other hand, P is a regular simplex (with cosine measure
n−1, cf. [12]) we have γ = n3/2/2.

The following Lemma is the basis for proving ∪∞
k=0D′

k is dense on the unit sphere.
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Lemma 4.3. Suppose {di}∞i=0 is a sequence of vectors such that {di/∥di∥}∞i=0 is dense on
the unit sphere. Let dR

i = R(di,Gi). If ∆m
i /∥di∥ → 0 then {dR

i /∥dR
i ∥}∞i=0 is also dense on

the unit sphere.

Proof. Given any ϵ > 0 and any x satisfying ∥x∥ = 1 there exists by assumption an infinite
sequence of indices K such that that ∥x − dk/∥dk∥∥ < ϵ/2 for all k ∈ K. Because the
rounding error (δk) is proportional to ∆m

k we have ∥δk∥/∥dk∥ → 0 and∥∥∥∥ dk

∥dk∥
− dR

k

∥dR
k ∥

∥∥∥∥ =

∥∥∥∥ dk

∥dk∥
− dk + δk

∥dk + δk∥

∥∥∥∥
=

∥∥∥∥dk

(
1

∥dk∥
− 1

∥dk + δk∥

)
− δk

∥dk + δk∥

∥∥∥∥
≤ ∥dk∥

∣∣∣∣∥dk + δk∥ − ∥dk∥
∥dk∥∥dk + δk∥

∣∣∣∣+ ∥δk∥
∥dk + δk∥

≤ 2∥δk∥
∥dk + δk∥

≤ ϵ/2

for sufficiently large k. We conclude∥∥∥∥x− dR
k

∥dR
k ∥

∥∥∥∥ ≤
∥∥∥∥x− dk

∥dk∥

∥∥∥∥+

∥∥∥∥ dk

∥dk∥
− dR

k

∥dR
k ∥

∥∥∥∥ ≤ ϵ.

Lemma 4.4. Suppose K is such that {tk}k∈K = {0, 1, 2, ...}. Let D′
k denote the set of

normalized vectors corresponding to Dk. Then ∪k∈KD′
k is dense on the unit sphere with

probability 1.

Proof. Because Uk is obtained by scaling vectors of the form Oip the normalized vectors
from the sequence of sets {Uk}k∈K are uniformly distributed on the unit sphere (Lemma
3.3) and consequently the union of the normalized vectors from this sequence is dense on
the unit sphere with probability 1. Due to Lemma 4.3 normalized rounded vectors from the
sequence {Dk}k∈K are also dense on the unit sphere with probability 1 in the limit when
∆m

k /∆p
k → 0.

Rounding affects the distribution of normalized poll directions. The following Lemma
establishes the limiting distribution of normalized poll directions.

Lemma 4.5. Let U be a random matrix distributed according to µH and let a be an arbitrary
unit vector. Construct a random vector v = R(∆p

kUa,Gk). As ∆m
k /∆p

k approaches zero the
distribution of v approaches the uniform distribution on the unit sphere.

Proof. Rounding introduces an error denoted by δ.

v = ∆p
kUa+ δ.

The normalized vector v can be expressed as

v

∥v∥
=

∆p
k

∥∆p
kUa+ δ∥

Ua+
δ

∥∆p
kUa+ δ∥

. (4.4)
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The error has an upper bound expressed by (4.1). By taking into account ∆m
k /∆p

k → 0 we
have δ/∆p

k → 0. By also taking into account ∥Ua∥ = 1 we arrive at

∆p
k

∥∆p
kUa+ δ∥

=

∥∥∥∥Ua+
δ

∆p
k

∥∥∥∥−1

→ 1. (4.5)

Rewriting the second term in (4.4) and taking into account (4.5) yields

δ

∥∆p
kUa+ δ∥

=
δ

∆p
k

∥∥∥∥Ua+
δ

∆p
k

∥∥∥∥−1

→ δ

∆p
k

→ 0. (4.6)

From (4.4), (4.5), and (4.6) we conclude

v/∥v∥ → Ua.

Vector Ua is uniformly distributed on the unit sphere (see Lemma 3.3).

5 MADS with Uniformly Distributed Poll Directions

The algorithm for generating scaled poll directions (Algorithm 4.1) requires a sequence of
realizations of a random matrix whose elements are independent identically distributed ran-
dom variables with distribution N(0, 1). Generating one such matrix involves the generation
of n2 independent samples from N(0, 1). In order to make the algorithm repeatable one can
use a low discrepancy sequence for generating the samples. Similarly as in [15] we used a
Sobol sequence described in [20]. A Sobol sequence of dimension m uniformly covers [0, 1)m.
The algorithm and data from [20] are capable of generating Sobol sequences of dimension up
to m = 21201. We skip the first two members of the sequence to avoid the all-zero and all-
0.5 member. For transforming the uniformly distributed samples into normally distributed
samples one can use the Box-Muller transformation [7] that takes a pair of independent
random variables U1 and U2 with uniform distribution on (0, 1] and transforms them into
two independent random variables Z1 and Z2 distributed according to N(0, 1).

Z1 = (−2 ln(U1))
1/2 cos(2πU2),

Z2 = (−2 ln(U1))
1/2 sin(2πU2).

Generating an n× n matrix with independent identically distributed samples from N(0, 1)
requires a Sobol sequence of dimension m = 2⌈n2/2⌉. The Box-Muller transformation is
then used pairwise on the components of a Sobol sequence member to produce pairs of
samples from N(0, 1) and construct matrix Ntk .

The initial mesh size is set to ∆m
0 = ⌈1 + γ⌉−1 and τ = 4. When a better point is found

(i.e. f(x′) < fk in step 4 of algorithm 2.1) the mesh size is increased (wk = 1), otherwise it
is decreased (wk = −1). The mesh size has an upper bound ⌈1 + γ⌉−1. When this bound
is reached the mesh size parameter is no longer increased (i.e. wk = 0 when a better point
is found). The step size parameter is initially set to ∆p

0 = 1. It is increased by a factor of
two whenever a better point is found and decreased by a factor of two otherwise. Similarly
to [2, 25] we assign a mesh index (lk) to every iteration of the algorithm.

lk+1 =

{
lk − 1 f(x′) < fk in step 4 of algorithm 2.1
lk + 1 otherwise.

(5.1)
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The mesh and the step size update rules can be expressed with lk as

∆m
k =

min{1, 4−lk}
⌈1 + γ⌉

, (5.2)

∆p
k = 2−lk . (5.3)

In [2] tk was used for denoting the index of the set of scaled poll directions used in k-th
iteration of the algorithm. In our implementation it is initially set to t0 = 0. The following
rule is used for determining the value of tk for k > 0.

tk =

{
lk lk ≥ maxi<k li
1 + maxi<k ti otherwise.

(5.4)

By setting tk = lk in (5.4) whenever the mesh index is the largest so far we ensure the
existence of at least one refining subsequence of points {xk}k∈K for which the sequence of
normalized poll directions {D′

k}k∈K corresponds to the complete sequence {Ni}∞i=0 and is
thus dense on the unit sphere.

We refer to the MADS instance that uses Algorithm 4.1 along with (5.4) for generating
the scaled poll directions and equations (5.1)-(5.3) for updating the mesh and the poll size
as UniMADS.

Theorem 5.1. UniMADS is a valid MADS instance with convergence properties given
in [3].

Proof. From (5.2) and (5.3) we have

∆m
k

∆p
k

=
2−|lk|

⌈1 + γ⌉
≤ 1

⌈1 + γ⌉
. (5.5)

In the remainder of the proof we show requirements A-D are satisfied. Unrounded scaled
poll directions from the set u ∈ Uk satisfy ∥u∥ = ∆p

k. Rounding introduces an error δ. The
norm of a rounded scaled poll direction d ∈ Dk satisfies

∥d∥ ≤ ∆p
k +max ∥δ∥ = ∆p

k +∆m
k n1/2/2.

By choosing

C = 1 +
n1/2

2⌈1 + γ⌉
≥ 1 +

2−|lk|

⌈1 + γ⌉
· n

1/2

2
= 1 +

∆m
k

∆p
k

n1/2

2
≥ ∥d∥

∆p
k

requirement A is satisfied. Requirement B is satisfied by construction (see (5.2) and (5.3)).
From (5.5) we have

∆m
k

∆p
k

=
2−|lk|

⌈1 + γ⌉
≤ 1

1 + γ
=

1− ϵ

γ
.

By choosing ϵ = (1 + γ)−1 and taking into account Lemma 4.2 we see all limit points of
sequence {D′

k}k=0∞ are positive spanning sets (requirement C). Finally due to Lemma 4.4
requirement D is also satisfied with probability 1.

Due to Theorem 5.1 the convergence properties established in [3] also apply to UniMADS
with probability 1. The use of a low discrepancy sequence instead of a random number
generator has the advantage that “with probability 1” can be removed from Lemma 4.4 and
from the proof of Theorem 5.1.
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6 Numerical Results

In [25] the set of scaled poll directions is generated by forming a n× (n+1) matrix A where
the first column is a random point chosen from the uniform distribution on the unit sphere
and the remaining n columns form an orthogonal augmentation matrix QB. Matrix QB is
obtained by applying QR decomposition to a realization of a random n × n matrix with
independent random elements chosen from the uniform distribution over [−1, 1]. Next QR
decomposition is applied to A resulting in an orthogonal matrix Q and an upper trapezoidal
matrix R. The set of 2n scaled poll directions in QRMADS comprises the columns of Q
and their negatives. In [25] no proof was given for the uniform distribution of the resulting
normalized poll directions. The uniformity of the distribution was demonstrated by scatter
plots of 2-dimensional projections of the generated directions.

Figure 1: Scatter plot of the projected normalized poll directions (top) and the distribution
of the angle between the projected normalized directions and e1 (bottom) for QRMADS
(left) and UniMADS (right).

To compare the uniformity of the scaled poll directions we generated 106 scaled poll
directions with n set to 20. Figure 1 depicts the two-dimensional projections of the generated
directions and the distribution of the corresponding polar angle for QRMADS and UniMADS
with n orthogonal vectors and their negatives in the role of the prototype set. It is quite
obvious from the angular distributions that the normalized poll directions in QRMADS
are not uniformly distributed (Figure 1, left, extrema at kπ/4, k ∈ Z). The distribution
obtained with UniMADS is uniform (Figure 1, right). Both scatter plots in Figure 1 look
similar suggesting that plots of the projections of generated directions are not the best tool
for observing the uniformity of a distribution. Only a close look at the scatter plot in Figure
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1 (a) reveals that its shape resembles a square (directions close to π/4 + kπ/2, k ∈ Z are
more common than directions close to kπ/2).

The performance of UniMADS was compared to the performance of QRMADS and the
state of the art MADS implementation NOMAD [5]. For the purpose of comparison four
sets of test problems were used. The first three sets comprise 60 smooth problems, 62
nonsmooth problems, and 28 constrained problems from [25]. The fourth set (referred to
as the Moré-Wild set) comprises a mixture of 159 smooth, nonsmooth and deterministically
noisy problems [22] based on the CUTEst collection [16]. The dimension of the problems
ranged from 3 to 40 for the first three sets and from 2 to 12 for the fourth set. A random
orthogonal transformation was applied to all problems to eliminate any unfair advantage of
algorithms that generate scaled poll directions aligned with the descent directions of test
problems.

Figure 2: Data profiles for the constrained (top left), the nonsmooth (top right), the smooth
(bottom left), and the Moré-Wild (bottom right) set of test problems obtained with poll
direction sets comprising 2n members.

The constraints were handled with the extreme barrier approach which requires the
initial point to be feasible (i.e. x0 ∈ Ω). The results were expressed in terms of data
profiles [22]. A data profile visualizes the share of the solved problems with respect to the
computational budget expressed in terms of simplex gradient evaluations. Every simplex
gradient evaluation comprises n+1 function evaluations. A problem is considered as solved
when

fΩ < fL + ε(f0 − fL),
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where fL denotes the lowest value of fΩ observed across all compared algorithms and f0
denotes the value of fΩ at the initial point. The comparison tolerance was set to ε = 10−3.
We limit our comparisons to a computational budget of 2000(n + 1) function evaluations.
In order to evaluate the efficiency of the poll step we omit the search step completely. For
all tested algorithms the set of scaled poll directions is ordered before polling according to
the angle formed with the last scaled poll direction that decreased the value of fΩ. Polling
was interrupted as soon as a point with a lower value of fΩ was found. Optimization was
stopped when the poll size parameter satisfied ∆p

k < 10−6 or the computational budget was
exhausted.

Our goal was to compare the performance of different poll direction generators. Therefore
QRMADS used a different rounding than in [25]. A poll direction u was rounded to the
closest grid point without first normalizing it so that ∥u∥∞ = ∆p

k. This way the length of all
rounded poll directions was approximately equal to ∆p

k (like in OrthoMADS). The original
QRMADS rounding scheme results in poll directions with different lengths (i.e. the length
ratio between the shortest and the longest poll direction in a set can be up to 1 : n1/2).

In the first comparison we considered scaled poll direction sets with 2n members. We
compared UniMADS with NOMAD and QRMADS. The results are depicted in Figure 2.
On all but the Moré-Wild set of test problems UniMADS outperformed NOMAD. The
performance of UniMADS was slightly better than the performance of QRMADS on smooth
and constrained problems. This is consistent with the observed nonuniformity of directions
generated by QRMADS (Figure 1). On nonsmooth problems UniMADS and QRMADS
exhibited similar performance. On the Moré-Wild set of test problems the performance of
all three algorithms was similar.

Table 1: The number of problems solved by UniMADS/QRMADS/NOMAD listed by prob-
lem type and problem dimension. The set of poll directions comprised 2n directions. The
number of problems in every group is listed in parentheses.

n Constrained Nonsmooth Smooth Moré-Wild

1..5 4/3/3 (5) 9/7/8 (11) 15/14/14 (15) 50/50/53 (60)
6..10 7/5/3 (9) 12/10/6 (16) 11/8/8 (11) 62/63/62 (72)
11..20 3/3/3 (6) 9/11/9 (15) 10/11/10 (12) 22/26/22 (27)
21..30 3/3/1 (4) 9/9/5 (10) 9/9/7 (10) -/-/- (0)
31..40 3/3/2 (4) 6/9/6 (10) 12/10/9 (12) -/-/- (0)
All dimensions 20/17/12 (28) 45/46/34 (62) 57/52/48 (60) 134/139/137 (159)

Table 1 compares the performance of UniMADS, QRMADS, and NOMAD using 2n
poll directions for various problem types and problem dimensions. For almost all problems
and all dimensions QRMADS outperforms NOMAD. On constrained and smooth problems
UniMADS exhibits similar or better performance than QRMADS. The difference between
both algorithms is bigger for lower dimensional problems. This also holds for nonsmooth
problems with the exception of problem dimensions n = 11..20 and n = 31..40. For the
former UniMADS performs slightly worse than QRMADS, while for the latter the difference
is bigger. On the Moré-Wild set of problems the performance difference between UniMADS
and QRMADS is small up to n = 10. For n > 10 QRMADS performs better than UniMADS.

In our second comparison we considered algorithms for which the set of scaled poll
directions comprised n + 1 vectors. We compared the performance of UniMADS to the
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.eps

.eps

Figure 3: Data profiles for the constrained (top left), the nonsmooth (top right), the smooth
(bottom left), and the Moré-Wild (bottom right) set of test problems obtained with poll
direction sets comprising n+ 1 members.

performance of NOMAD instance from [4]. This instance choses the first n scaled poll
directions from the set of 2n poll directions used by NOMAD 2n. The selected directions
are mutually orthogonal and the angle between any of the first n directions and the last
poll direction that reduced the value of f does not exceed π/2. The (n+ 1)-th direction is
obtained as the negative sum of the first n directions. The results of the comparison are
depicted in Figure 3. On all sets of test problems UniMADS outperformed NOMAD, most
notably on nonsmooth problems.

We also tested the performance of UniMADS on two nominal simulation-based integrated
circuit sizing problems. Nominal circuit sizing is the initial step of automated circuit sizing
[17]. The goal of circuit sizing is to find the values of circuit’s design parameters for which
the circuit’s performance satisfies the design requirements. Two circuits were sized. The
first one was a Miller transconductance amplifier (MTA) in Figure 4 and the second one was
a folded cascode transconductance amplifier (FCTA) in Figure 5 [6].

The function subject to optimization reflects how much the circuit corresponding to
design parameters given by x violates the m design requirements. A systematic approach
for constructing f is given in [9]. It can be formulated as

f(x) =

m∑
i=1

pi(gi, yi(x)),
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Figure 4: Schematic of the Miller transconductance amplifier (MTA).

Figure 5: Schematic of the folded cascode transconductance amplifier (FCTA).

Table 2: Design requirements for MTA and FCTA.

Property Type MTA gi FCTA gi

VGS overdrive [mV] > 1 1
VDS overdrive [mV] > 1 1
Swing [V] > 1.5 0.5
Gain [dB] > 65 70
Unity gain bandwidth [MHz] > 40 7
Phase margin [◦] > 90 60
Overshoot [%] < 0.1 0.1
Undershoot [%] < 0.1 0.1
Rising slew rate [V/µs] > 20 1
Falling slew rate [V/µs] > 20 1
Area [µm2] < 1000 1000

where yi(x) is the value of i-th property computed by a circuit simulator and gi is the
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corresponding minimal requirement. Function pi is defined depending on the type of the
design requirement listed in Table 2 as

pi(gi, yi(x)) =

{
max(gi − yi(x), 0)/ni type(i) is >
max(yi(x)− gi, 0)/ni type(i) is < .

The norm ni was set to 1 for all properties, except for the circuit area where ni = 10−10

was used. Function f is nonnegative and nonsmooth with f(x) = 0 corresponding to design
parameters for which the circuit satisfies all design requirements. The MTA (FCTA) circuit
comprises 8 (16) transistors with two design parameters per transistor (i.e. channel width
and length). The first two design requirements (VGS and VDS overdrive) apply to the
operating point of every transistor. Therefore every overdrive requirement is composed of 8
sub-requirements in the MTA case and 16 sub-requirements in the FCTA case.

Certain design parameters must by construction be identical for a group of transistors.
In the MTA case such groups are (Mn1, Mn2, Mn3), (Mn4, Mn5), (Mp1, Mp2), and Mp3.
Together with the resistance of resistor R and the capacitance of capacitor C MTA has 10
design parameters. In the FCTA case the groups of transistors with identical dimensions
are (Mn1, Mn2), (Mn3, Mn4), (Mn5, Mn6), and (Mn7, Mn8). Transistors in groups (Mp1,
Mp3), (Mp2, Mp4), (Mp5, Mp6), and (Mp7, Mp8) share the same channel width, while
transistors in groups (Mp1, Mp2, Mp5, Mp6) and (Mp3, Mp4, Mp7, Mp8) share the same
channel length. This results in 14 design parameters for the FCTA case. Transistor channel
widths and lengths were limited to intervals [1µm, 95µm] and [0.18µm, 4µm], respectively.
Resistances and capacitances were limited to [1Ω, 200kΩ] and [10fF, 10pF], respectively. The
lower bounds of the respective parameters were chosen as the components of the initial point
x0.

Figure 6: Progression of the objective function value versus the number of evaluations for
the MTA (left) and the FCTA (right).

All simulations were performed using the HSPICE® circuit simulator [19] for temperature
25◦C, supply voltage 1.8V, and bias current (Ibias current source) 100µA for the MTA and
2µA for the FCTA case. The progress of UniMADS, QRMADS, and NOMAD is depicted in
Figure 6. Of both NOMAD instances the one using n+1 poll directions performed best. The
performance of QRMADS was better than the performance of NOMAD and worse than that
of UniMADS. On both cases the fastest progress was exhibited by UniMADS using n + 1
poll directions followed by UniMADS using 2n poll directions. Both algorithms found a
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point where f(x) = 0. The remaining algorithms were only able to decrease the constraint
violation. QRMADS was better than NOMAD n+1, which in turn was better than NOMAD
2n. Most algorithms managed to reduce the value of f for at least 3 orders of magnitude
(the only exceptions were the NOMAD algorithms in the MTA case and the NOMAD 2n
algorithm in the FCTA case). This reduction is significant from a design perspective.

Table 3: Scores of the tested algorithms on 100 randomly rotated versions of the MTA and
FCTA problem.

UniMADS n+ 1 UniMADS 2n QRMADS NOMAD n+ 1 NOMAD 2n

MTA 252 266 263 122 97
FCTA 276 252 268 106 98

Finally, we optimized 100 randomly rotated versions of the MTA and the FCTA problem.
For every run the algorithms were ranked using the best found value of f as the primary
criterion and the number of evaluations required for finding that value as the secondary
criterion. Points were assigned to algorithms depending on the rank. Algorithms were
assigned scores from 4 to 0 depending on the achieved rank (the highest ranking algorithm
received a score of 4). Table 3 lists the sums of scores across 100 runs. The best performing
algorithm was in both cases UniMADS, albeit it was not always the version using n + 1
poll directions. Using a smaller number of poll directions decreases the number of function
evaluations required for one iteration of the MADS algorithm. On the other hand, fewer poll
directions mean that the neighborhood of the incumbent solution is explored less thoroughly.
QRMADS outperformed both versions of NOMAD. The worst performing algorithm was
NOMAD using 2n poll directions.

7 Conclusion

Instances of MADS rely on sequence of sets of normalized poll directions that is dense
on the unit sphere to find descent and converge to points with favorable properties. One
does not know in advance the scaled poll directions that will yield descent while at the
same time result in a feasible point. Therefore a reasonable strategy is to examine the
function subject to optimization in directions that are uniformly distributed on the unit
sphere. In the past several MADS algorithms were proposed that gradually approached
this goal: LTMADS, OrthoMADS, and QRMADS. The last one yielded most promising
results although the uniformity of the distribution of the normalized poll directions was
never proven mathematically. Another drawback of QRMADS is the fact that constructing
poll sets with cardinality different from 2n is not trivial (see [15] for poll sets with n + 1
members).

The proposed algorithm (UniMADS) relies on a sequence of realizations of a random
orthogonal matrix from the Haar measure on On. A given prototype set of poll directions is
transformed using the members of this sequence to produce a sequence of sets of directions
that are realizations of a random unit vector with uniform distribution on the unit sphere.
By scaling the members of these sets and rounding them to the grid a sequence of sets
of scaled poll directions is obtained. The cardinality of the resulting sets is equal to the
cardinality of the prototype set and is not restricted to 2n.
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Because MADS requires the generated points to lie on a mesh, the scaled poll directions
must be rounded to a grid. The effect of rounding can deteriorate the quality of the set of
poll directions, in some cases even resulting in a set that no longer positively spans the search
space. To avoid such situations the poll step length must be sufficiently large compared to
the mesh size. The lower bound on the ratio between the minimal poll step length and
the mesh size was established for arbitrary prototype sets of poll directions. Rounding
also affects the distribution of normalized poll directions. We show that in the limit this
distribution approaches the uniform distribution on the unit sphere.

The proposed approach for generating the sets of scaled poll directions was used as the
basis for a new instance of MADS deemed UniMADS. The distribution of the normalized
poll directions in UniMADS was compared to that of QRMADS. The comparison shows
the normalized poll directions generated by QRMADS are not uniformly distributed on
the unit sphere. UniMADS, QRMADS, and the state of the art MADS implementation
(NOMAD) were compared on four sets of test problems. Two variants of UniMADS were
tested that differed in the number of directions constituting the prototype set (2n and
n+1). Both variants outperformed the corresponding MADS algorithms in NOMAD on all
sets of test problems. UniMADS 2n exhibited slightly better performance than QRMADS.
All mentioned algorithms were also tested on two nominal circuit sizing problems. Both
variants of UniMADS outperformed QRMADS and the algorithms in NOMAD in terms of
both speed and final solution quality. The best performing algorithm was UniMADS with
a prototype set comprising n+ 1 directions. Running 100 rotated versions of both problem
revealed that UniMADS n+1 is not always better than UniMADS 2n. We attribute this to
the fact that albeit a smaller number of poll directions results in faster search, such search
is less thorough and can therefore miss a descent direction.
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