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Polak-Ribiére-Polyak (PRP) method [24,25]

βk =
gTk yk−1

||gk−1||2
,

Dai-Yuan (DY) method [8]

βk =
||gk||2

dTk−1yk−1
,

and the Hestenes-Stiefel (HS) method [16]

βk =
gTk yk−1

dTk−1yk−1
,

where yk−1 = gk − gk−1 and || · || denotes the Euclidean norm of vectors. These were
the first scalars βk for nonlinear conjugate gradient methods to be proposed. Since then,
other scalars βk have been proposed in the literature (see for example [4, 10, 12, 31, 33] and
references therein).

Hybrid scalars βk have also been suggested in the literature, where a combination of two
or more scalars are used in the same conjugate gradient method. Hybrids try to combine
attractive features of different algorithms. For instance, some methods have good global
convergence properties whilst they do not perform very well numerically, due to their in-
ability to avoid jamming, and others perform very well numerically but may not always
converge globally. Touti-Ahmed and Storey [27] proposed this hybrid method

βk =

{
βPRP
k , if 0 ≤ βPRP

k ≤ βFR
k

βFR
k otherwise,

to exploit the attractive convergence properties of βFR
k and to avoid jamming βPRP

k is used,
which in turn gives nice numerical performance. One other example of a hybrid that uses
the attractive features of βFR

k and βPRP
k is that of Hu and Storey [17]

βk = max
{
0,min

(
βFR
k , βPRP

k

)}
.

Other hybrids have been proposed by introducing parameters that combine them. For
example, Dai and Yuan [7] introduced a one-parameter family of conjugate gradient methods
by proposing

βk =
||gk||2

λk||gk−1||2 + (1− λk)dTk−1yk−1
,

where λk ∈ [0, 1] is a parameter. More examples of hybrid conjugate gradient methods can
be found in [1, 3, 5, 9, 14,15,18–21,30,32].

The step length αk is often chosen to satisfy certain line search conditions. It is very
important in the convergence analysis and implementation of conjugate gradient methods.
A number of line search rules have been discussed in the literature, see for example [6, 11,
23,26,31]. However, the weak Wolfe conditions

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk (1.4)

and
g(xk + αkdk)

T dk ≥ σgTk dk, (1.5)
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or the strong Wolfe conditions

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk (1.6)

and
|g(xk + αkdk)

T dk| ≤ −σgTk dk, (1.7)

where 0 < δ < σ < 1, are often used in the convergence analysis and implementation of
nonlinear conjugate gradient methods, see for example [1, 10,20,23,29,31,32,34].

In this paper, we suggest another approach to get a new hybrid nonlinear conjugate
gradient method. In section 2, we present the proposed method. In Section 3 we prove that
the proposed algorithm (method) globally converges. Section 4 presents some numerical
experiments and conclusion is given in Section 5.

2 Description of the Method

In this section, we present our proposed hybrid conjugate gradient method. This technique
we are proposing here is motivated by the work of Yueting and Mingyuan [32] and that of
Dai and Wen [10]. In [32], a new βk is proposed as

βk =


gTk gk

µ|gTk dk−1|+ dTk−1yk−1
, if ||gk||2 ≥ |gTk gk−1|

0, otherwise,

(2.1)

where µ > 1 is a parameter. The βk proposed above restarts the algorithm with dk = −gk
whenever |gTk gk−1| > ||gk||2. This method was shown to perform very well numerically. On
the other hand, Dai and Wen [10] proposed a modification to the HS method as

βk =
||gk||2 − ||gk||

||gk−1|| |g
T
k gk−1|

µ|gTk dk−1|+ dTk−1yk−1
. (2.2)

This βk satisfies βk ≥ 0 and produces sufficient descent directions with the weak Wolfe
conditions. Its global convergence was also established. Now, following the work described
above, we herein combine the two βk parameters to come up with

βk =



gTk

(
gk − ||gk||

||gk−1||gk−1

)
µ|dTk−1gk|+ dTk−1yk−1

, 0 ≤ gTk gk−1 ≤ ||gk||2

gTk gk
µ|dTk−1gk|+ dTk−1yk−1

, otherwise,

(2.3)

where µ > 1 is a constant. It is clear from the definition of βk above that

0 =
||gk||2 − ||gk||

||gk−1|| ||gk||||gk−1||
µ|dTk−1gk|+ dTk−1yk−1

≤
gTk

(
gk − ||gk||

||gk−1||gk−1

)
µ|dTk−1gk|+ dTk−1yk−1

≤ gTk gk
µ|dTk−1gk|+ dTk−1yk−1

,
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for all k ≥ 1. Thus,

0 ≤ βk ≤ gTk gk
µ|dTk−1gk|+ dTk−1yk−1

,∀k ≥ 1. (2.4)

We now present our modified hybrid conjugate gradient method as

Algorithm 2.1. Modified Hybrid Conjugate Gradient Method

1: Give initial guess x0 ∈ Rn, µ > 1, 0 < δ < σ < 1 and the tolerance ϵ > 0.
2: Set d0 = −g0 and k = 0. If ||g0|| < ϵ then stop.
3: for k = 0, 1, . . . do
4: Compute αk using the weak Wolfe conditions (1.4) and (1.5).
5: Set xk+1 = xk + αkdk, k = k + 1.
6: If ||gk|| < ϵ stop.
7: Compute βk using (2.3).
8: Compute dk = −gk + βkdk−1, go to Step 4.
9: end for

The search direction dk is generally required to satisfy the descent condition

gTk dk < 0.

However, in order to guarantee convergence, it is often required that it satisfies the sufficient
descent condition

gTk dk ≤ −c||gk||2, (2.5)

where c > 0 is a constant. The descent (or sufficient descent) property is very important for
an iterative method to be globally convergent.

Notice that from (1.5), we have that

dTk−1yk−1 = dTk−1(gk − gk−1)

≥ σdTk−1gk−1 − dTk−1gk−1

= (σ − 1)dTk−1gk−1

> 0, ∀k ≥ 1.

(2.6)

Lemma 2.2. Let {dk, αk, xk} be generated by Algorithm 2.1. If µ > 1, then dk satisfies the
sufficient descent condition (2.5) and

gTk dk ≤ −
(
1− 1

µ

)
||gk||2. (2.7)

Proof. For k = 0 we have that

gT0 d0 = −||g0||2 ≤ −
(
1− 1

µ

)
||gk||2,

so (2.7) holds. Now we prove that (2.7) holds for k ≥ 0. From (1.3), (2.3), (2.4) and (2.6),
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we have that

gTk dk = −gTk gk + βkg
T
k dk−1

≤ −||gk||2 +
||gk||2

µ|gTk dk−1|+ dTk−1yk−1
gTk dk−1

≤ −||gk||2 +
||gk||2

µ|gTk dk−1|+ dTk−1yk−1
|gTk dk−1|

≤ −||gk||2 +
||gk||2

µ|gTk dk−1|
|gTk dk−1|

= −(1− 1

µ
)||gk||2.

Let c = (1− 1
µ ) , then (2.5) holds for all k ≥ 0.

Now, from (2.4), (2.6) and Lemma 2.2, we obtain that

gTk dk = −||gk||2 + βkg
T
k dk−1

≤ −||gk||2 +
||gk||2

µ|dTk−1gk|+ dTk−1yk−1
gTk dk−1

= (−µ|dTk−1gk|+ dTk−1gk−1)
||gk||2

µ|dTk−1gk|+ dTk−1yk−1

≤ dTk−1gk−1
||gk||2

µ|dTk−1gk|+ dTk−1yk−1
,

which leads to the condition

||gk||2

µ|dTk−1gk|+ dTk−1yk−1
≤ dTk gk

dTk−1gk−1
. (2.8)

Hence, it follows from (2.4) and (2.8) that

βk ≤ dTk gk
dTk−1gk−1

, ∀k ≥ 1. (2.9)

3 Global Convergence of the Proposed Method

For the global convergence analysis of the proposed algorithm (Algorithm 2.1), we assume
the following assumptions on the objective function hold.

Assumption 3.1. The function f(x) is bounded from below in the level set

L = {x ∈ Rn : f(x) ≤ f(x0)},

where x0 is the starting point.
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Assumption 3.2. In a neighborhood N of the level set L, f(x) is differentiable and its
gradient g(x) is Lipschitz continuous, that is, there exists a constant L > 0 such that

||g(x)− g(y)|| ≤ L||x− y||, ∀x, y ∈ N .

Lemma 3.3. Suppose Assumptions 3.1 and 3.2 hold. Let xk be given by (1.2) and (1.3)
where dk is a descent direction, that is, dTk gk < 0, and let αk be determined by the weak
Wolfe conditions (1.4) and (1.5), then the Zoutendijk condition [23]

∞∑
k=0

(gTk dk)
2

||dk||2
< +∞ (3.1)

holds.

Proof. From (1.5) and Assumption 3.2, we get that

−(1− σ)dTk gk ≤ dTk (gk+1 − gk) ≤ ||dk||||gk+1 − gk||
≤ Lαk||dk||2,

which implies that

αk ≥ (σ − 1)

L||dk||2
dTk gk > 0. (3.2)

From (1.4) and the inequalty (3.2) above, we obtain

f(xk)− f(xk + αkdk) ≥
δ(1− σ)

L

(dTk gk)
2

||dk||2
. (3.3)

Using Assumption 3.1 and (3.3), we get that

∞∑
k=0

(dTk gk)
2

||dk||2
< +∞

holds.

Making use of Lemma 3.3, we are now in a position to establish the global convergence
of Algorithm 2.1.

Theorem 3.4 (Global convergence). Suppose that Assumptions 3.1 and 3.2 hold. Let
{dk, αk, xk} be generated by Algorithm 2.1, µ > 1 and αk is determined by the weak Wolfe
conditions (1.4) and (1.5), then

lim
k→∞

inf ||gk|| = 0. (3.4)

Proof. We prove this theorem by contradiction. Suppose the conclusion does not hold. Then
there exists a real number γ > 0 such that ||gk|| > γ, ∀k ≥ 1. Since dk + gk = βkdk−1, we
have that

||dk + gk||2 = β2
k||dk−1||2

⇒ ||dk||2 + 2gTk dk + ||gk||2 = β2
k||dk−1||2,

⇒ ||dk||2 = β2
k||dk−1||2 − ||gk||2 − 2gTk dk. (3.5)
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Dividing (3.5) on both sides by (gTk dk)
2, we get,

||dk||2

(gTk dk)
2

= β2
k

||dk−1||2

(gTk dk)
2
− ||gk||2

(gTk dk)
2
− 2

gTk dk
(gTk dk)

2

≤ ||dk−1||2

(gTk−1dk−1)2
− ||gk||2

(gTk dk)
2
− 2

gTk dk
(gTk dk)

2

=
||dk−1||2

(gTk−1dk−1)2
− ||gk||2

(gTk dk)
2
− 2

(gTk dk)

=
||dk−1||2

(gTk−1dk−1)2
−
(

||gk||
(gTk dk)

+
1

||gk||

)2

+
1

||gk||2

≤ ||dk−1||2

(gTk−1dk−1)2
+

1

||gk||2

≤ ||dk−1||2

(gTk−1dk−1)2
+

1

γ2
.

From d0 = −g0, it follows that

||dk||2

(gTk dk)
2
≤ k + 1

γ2
(3.6)

and hence
∞∑
k=0

(gTk dk)
2

||dk||2
≥

∞∑
k=0

γ2

k + 1
= ∞. (3.7)

The above conclusion contradicts Lemma 3.3, thus, (3.4) holds.

4 Numerical Experiments

In this section, we present some numerical experiments on some test problems chosen from
Morè, et al. [22] and Andrei [2] to analyse the efficiency and effectiveness of our proposed
hybrid conjugate gradient method. The test problems from these references are widely
used in the literature for testing unconstrained optimization algorithms. The test problems
selected for testing in this article are presented in Table 1, where the columns ‘Prob’ and
‘Dim’ represent the name and dimension of the test problem, respectively, with dimensions
of the problems ranging from 2 to 10000.

We compare our proposed new hybrid conjugate gradient method (βNM
k ) with the hybrids

of Touati-Ahmed and Storey (βTS
k ) [27], Liu (βCY

k ) [21], Yueting and Mingyuan (βYM
k ) [32]

and Hu and Storey (βHS
k ) [17]. Since βNM

k is a hybrid conjugate gradient method made up
of two other parameters, here we also make a comparison with its components. These are

βCG1
k =

gTk

(
gk − ||gk||

||gk−1||gk−1

)
µ|dTk−1gk|+ dTk−1yk−1

,

βCG2
k =


gTk

(
gk − ||gk||

||gk−1||gk−1

)
µ|dTk−1gk|+ dTk−1yk−1

, if gTk gk−1 ≥ 0

0, otherwise
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Prob Dim Prob Dim
Rosenbrock 2 Biggs EXP6 6
Freudenstein and Roth 2 Osborne 2 11
Beale 2 Broyden tridiagonal 30
Helical valley 3 Trigonometric 1000
Bard 3 Ext. Rosenbrock 5000

10000
Gaussian 3 Ext. Powell singular 1000

5000
10000

Gulf 3 Raydan 2 5000
10000

Box 3 Ext. Beale 1000
2000

Powell Singular 4 Ext. Himmelblau 1000
2000

Wood 4 Brown and Denis 4

Table 1: Table of test problems

and

βCG3
k =

gTk gk
µ|dTk−1gk|+ dTk−1yk−1

.

Notice here that βCG3
k is just a derivative of βYM

k .
We considered the stopping condition for the methods as ϵ = 10−5, that is, the algorithms

were stopped once the condition ||gk|| < 10−5 was satisfied. For the algorithms βTS
k and

βHS
k , the strong Wolfe conditions (1.6) and (1.7) were used to find the step length αk, with

δ = 0.0001 and σ = 0.33. For all other algorithms we used the weak Wolfe conditions (1.4)
and (1.5) with δ = 0.0001 and σ = 0.9. In all cases, αk = 1 is always tried first. The
parameter µ = 1.5 was found to give overall better results and hence it was used for all
the algorithms. All the methods were coded in MATLAB R2015a. Numerical results are
compared based on number of iterations, function evaluations and CPU time.

In order to compare and evaluate the performance of our methods, we use the perfor-
mance profiles tool proposed by Dolan and Moré [11]. This tool evaluates and compares the
performance of the set of solvers (methods) S on a set P of test problems. If we assume
that there exists ns solvers and np problems, then for each problem p ∈ P and solver s ∈ S,
we define

tp,s = function evaluations required to solve problem p by solver s.

We then compare the performance on problem p by solver s with the best performance by
any solver on this problem, that is, using the ratio,

r(p, s) =
tp,s

min{tp,s : s ∈ S}
.

In the case when solver s fails to solve problem p, the ratio rp,s is set to some sufficiently
large number. The overall performance profile function is then given as

ρs(τ) =
1

np
size{p : 1 ≤ p ≤ np, log(rp,s) ≤ τ},
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Figure 1: Function evaluations performance profile

Figure 2: Gradient evaluations performance profile
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Figure 3: CPU time performance profile

where τ ≥ 0. Note here that the function ρs(τ) is such that ρs(τ) ∈ [0, 1] and that the
inequality ρs(τ1) < ρt(τ1) shows that solver t outperforms solver s at τ1.

We now plot the performance profiles based on function evaluations, gradient evaluations
and CPU time. The results are presented in Figures 1, 2 and 3 for the number of function
evaluations, gradient evaluations and CPU time, respectively. We see from Figure 1 that βHS

k

and βTS
k outperforms the other methods with our proposed βNM

k being the third best and
outperforming all the remaining methods. βCG2

k and βYM
k performed very poorly compared

to the rest while βCG1
k is very competitive with βNM

k . We see from the results of βCG1
k and

βCG2
k that βCG1

k influences βNM
k more than βCG2

k and this seems to indicate that gTk gk−1

needs not be too positive.

Figure 2 shows that in terms of gradient evaluations, βNM
k is very competitive with βHS

k

and βTS
k , with βCG1

k again being very close to βNM
k , and βCG2

k and βYM
k again performing

poorly. The same trend is observed in Figure 3 where again βNM
k is very competitive with

βHS
k and βTS

k but outperforms the rest of the other methods. Thus, the performance profiles
of these algorithms show that the new method is very competitive and promising.

5 Conclusion

In this work, a new hybrid nonlinear conjugate gradient method for solving unconstrained
optimization problems was proposed. This new hybrid conjugate gradient method was
shown to possess the sufficient descent condition and also proved to converge globally with
the weak Wolfe line search conditions. The new hybrid conjugate gradient method was
tested on a number of unconstrained optimization problems that have been extensively used
in the literature to test optimization algorithms and the results show that the new method
is quite competitive.
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