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of random variables defined on probability (Ω,F , P ) with support set Ξ ⊂ IRq, and EP [·]
denotes the expected value with respect to probability measure P , and ‘⊥’ denotes the
perpendicularity of two vectors.

From the perspective of stochastic optimization, SMOPCC is an extension of deter-
ministic multiobjective optimization problems with equilibrium constraints [18, 19, 31] by
considering the case that some random data involved in the objective and the constraints.
From the perspective of multiobjective optimization, SMOPCC is an extension of stochastic
mathematical programs with complementarity constraints (SMPCC) by extending the single
valued objective to multiple objective. The SMPCC model plays a very important role in
many fields such as engineering design, economic equilibrium, multilevel game and it has
been receiving much attention in the recent optimization world, see [16,28,29] and the sur-
vey paper [10] for some recent developments in SMPCC. Moreover, SMOPCC is related to
stochastic equilibrium problems with equilibrium constraints (SEPEC) [7]. SEPEC model
characterizes the behavior of the decision makers when they are looking for an equilibria.
SMOPCC model is suited for SEPEC when decision makers who are looking for Pareto type
optimality, see [7, 33] and the references therein for more results on SEPECs.

Our focus here is on the stability analysis of the SMOPCC. Specifically, we look into
the change of the optimal value, the optimal solutions and the stationary points as the
underlying probability measure varies under some appropriate metric. This kind of research
is numerically motivated in practice due to lack of complete information of the distribution
of the random variables, it is often difficult to obtain a closed form of the expected values of
the random functions in the objective and constraints and subsequently numerical schemes
are proposed to approximate the expected values. The stability results presented here may
provide a unified theoretical framework for various numerical approximation schemes of
the expected values of the underlying functions in the SMOPCC. Indeed, such a stability
analysis has been well-known for stochastic programs with single valued objective, equality
and/or inequality constraints although it is new for SMOPCC; see for instance [8, 21, 22]
and [3, 4, 15] for the recent development when this kind of stability analysis is applied to
stochastic mathematical programs with dominance constraints.

We can not apply the existing stability results in [21, 22] as the multiple objective and
the complementarity constraints. The trouble is that the “optimal solution” defined for
SMOPCC is different with optimization problems with single valued objective. Moreover,
the reformulation of the complementarity constraints as a system of equalities or inequalities
does not guarantee certain constraint qualifications (such as linear independence constraint
qualification, Mangasarian-Fromovitz constraint qualification) which are often necessary for
stability analysis. This motivates us to undertake an independent stability analysis.

As far as we concerned, the contributions of the paper can be summarized as follows:

1. We present some continuity results of the optimal solutions and the optimal value
function of SMOPCC with respect to the probability measure. Our results are related
to the recently work [1,6] where a special approximation, empirical probability measure
approximation, are considered.

2. By employing some new results on stochastic generalized equations and the reformu-
lation of stationary points of SMOPCC, we study the upper semi-continuity of the
stationary points with respect to the probability measure.

3. Similar to the work [1, 6], we utilize the sample average method to approximate the
expectation. Under some moderate conditions, we show that, with probability ap-
proaching one exponentially fast with the increase of sample size, a stationary point to
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the SAA problem becomes a stationary point to its true counterpart. Our result is a
complementarity of [6] where the exponential rate convergence of the optimal solutions
is studied.

The rest of the paper is organized as follows. In section 2, we provide some basic
definitions and the stability of stochastic generalized equations. In section 3, we study the
stability of the optimal solutions, the optimal value and the stationary points with respect
to the probability measure. Specifically, we present some continuity results of the optimal
solution and the optimal valued function first and then investigate the stationary point of
SMOPCC by employing some new results on stochastic generalized equations. In section 4,
we focus on empirical probability measure approximation and some exponential convergence
results are provided.

2 Preliminaries

For vectors a, b ∈ IRn, aT b denotes the scalar product, ∥ · ∥ denotes the Euclidean norm
of a vector, ∥ · ∥F denotes the Frobenius norm of a matrix, B denotes the closed unit ball
in the respective space. d(z,D) := infz′∈D ∥z − z′∥ denotes the distance from a point z to a
set D. For two compact sets C and D,

D(C,D) := sup
z∈C

d(z,D)

denotes the deviation of C from D and H(C,D) := max (D(C,D),D(D, C)) denotes the
Hausdorff distance between C and D. Moreover, C + D denotes the Minkowski addition

of the two sets, that is, {C + D : C ∈ C, D ∈ D}. For a function g : IRs → IRs′ , we
use ∇g(z) to denote the transposed Jacobian of g at z. If g(z) is a scalar-valued func-
tion, ∇g(z) denotes the gradient of g at point z. Finally, for a set {(x, y) = z : z ∈ Z},
ΠxZ = {x : ∃ y such that (x, y) = z ∈ Z}.

Let Ψ : X ⇒ Y be a set-valued mapping. Ψ is said to be closed at x̄ if xk ∈ X, xk → x̄,
yk ∈ Ψ(xk) and yk → ȳ implies ȳ ∈ Ψ(x̄). Ψ is said to be upper semi-continuous (usc for
short) at x̄ ∈ X if for every ϵ > 0, there exists a constant δ > 0 such that

Ψ(x̄+ δB) ⊂ Ψ(x̄) + ϵB.

Ψ is said to be lower semi-continuous (lsc for short) at x̄ ∈ X if for every ϵ > 0, there exists
a constant δ > 0 such that

Ψ(x̄) ⊂ Ψ(x̄+ δB) + ϵB.
Ψ is said to be continuous at x̄ if it is both usc and lsc at the point. Ψ is said to be metrically
regular at x̄ for ȳ if there exist constant α > 0, neighborhoods U of x̄ and V of ȳ such that

d(x,Ψ−1(y)) ≤ αd(y,Ψ(x)), ∀x ∈ U, ∀y ∈ V.

2.1 Optimal solutions and stationary points of SMOPCC

Let K ⊆ IRm be a closed and convex cone with intK ̸= ∅. The cone K introduces the order
relation ≤K in IRn defined as follows: for x′, x′′ ∈ IRm

x′ ≦K x′′ ⇔ x′′ − x′ ∈ K,

x′ <K x′′ ⇔ x′′ − x′ ∈ intK.
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Definition 2.1 ( [17]). The feasible point z̄ is said to be an optimal solution of problem (1.1)
for the given domination cone K if does not exist feasible point z such that f(z) ≦K f(z̄); z̄
is said to be a weak optimal solution of problem (1.1) if does not exist feasible point z such
that f(z) <K f(z̄).

Definition 2.2. [11] We call the feasible point z̄ a Clarke or C-stationary point of problem
(1.1) for the given domination cone K if there exist multipliers (τ, u, v) ∈ IRs × IRm × IRm

such that τ ∈ K and

0 ∈ ∇EP [f(z̄, ξ)]τ −∇EP [G(z̄, ξ)]u−∇EP [H(z̄, ξ)]v +NZ(z̄), (2.1)
s∑

i=1

τi = 1, (2.2)

ui = 0, i /∈ IEP [G](z̄), (2.3)

vi = 0, i /∈ IEP [H](z̄), (2.4)

uivi ≥ 0, i ∈ IEP [G](z̄) ∩ IEP [H](z̄), (2.5)

where NZ(z̄) denotes the convex normal cone of convex set Z at z̄,

IEP [G](z̄) := {i : EP [Gi(z̄, ξ)] = 0, i = 1, . . . ,m}

and
IEP [H](z̄) := {i : EP [Hi(z̄, ξ)] = 0, i = 1, . . . ,m}.

We call z̄ ∈ F a Mordukhovich or M-stationary point of problem (1.1) if (2.1)–(2.4) hold
and min(ui, vi) > 0 or uivi = 0 hold for each i ∈ IEP [G](z̄) ∩ IEP [H](z̄).

We call z̄ ∈ F a Strongly or S-stationary point of problem (1.1) if (2.1)–(2.4) hold and
ui ≥ 0 and vi ≥ 0 hold for each i ∈ IEP [G](z̄) ∩ IEP [H](z̄).

Indeed, Definition 2.2 is the Fritz-John type of stationarity conditions. We call them
C-, M - or S-stationary points by following the notation of SMPCC. Under some constraint
qualifications such as generalized Mangasarian-Fromovitz constraint qualification [11], the
stationary points defined above characterize the local solution of SMPOCC, that is, the
local optimal solutions of SMPOCC satisfy the optimality condition above. In what follows,
the domination cone K is fixed as K = IRm

+ which implies that the order defined above is
the Pareto order. Then the optimal solution is Pareto optimal solution and the stationary
points are Pareto C-, M - or S-stationary points. Moreover, we should note the condition
τ ∈ K in Definition 2.2 should be replaced by τi ≥ 0, i = 1, . . . , s.

2.2 Stochastic generalized equations

Consider the following stochastic generalized equation (SGE):

0 ∈ EP [Γ(x, ξ)] + G(x), (2.6)

and its perturbation

0 ∈ EQ[Γ(x, ξ)] + G(x). (2.7)

where Γ : X × Ξ ⇒ Y and G : X ⇒ Y are closed set-valued mappings, X and Y are subsets
of Banach spaces X and Y , ξ : Ω → Ξ is a random vector with support set Ξ ⊂ IRd. EP [·]
(EQ[·]) denotes the expected value with respect to probability measure P (Q).
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Let Γ(x, ξ) be defined as above and σ(Γ(x, ·), u) be its support function. Let X be a
compact subset of X. Define

G := {g(·) : g(ξ) := σ(Γ(x, ξ), u), forx ∈ X , ∥u∥ ≤ 1}.

Then G consists of all functions generated by the support function σ(Γ(x, ·), u) over the set
X × {u : ∥u∥ ≤ 1}. Define

D(Q,P ) := sup
g(ξ)∈G

(
EQ[g(ξ)]− EP [g(ξ)]

)
and

H(Q,P ) := max
(
D(Q,P ),D(P,Q)

)
.

Neither H nor D is a metric but one may enlarge the set G so that H(Q,P ) = 0 implies
Q = P . We call H(Q,P ) a pseudometric. It is also known as a distance of probability
measures having ζ-structure, see [34].

The following stability results of SGE have been provided by Liu et al [12].

Lemma 2.3. Consider the stochastic generalized equation (2.6) and its perturbation (2.7).
Let X be a compact subset of X, and S(P ) and S(Q) denote the set of solutions of (2.6) and
(2.7) restricted to X respectively. Assume: (a) Y is a Euclidean space and Γ is a set-valued
mapping taking convex and compact set-values in Y; (b) Γ is upper semi-continuous with
respect to x for every ξ ∈ Ξ and bounded by a P -integrable function κ(ξ) for x ∈ X ; (c) G is
upper semi-continuous; (d) S(Q) is nonempty for Q ∈ P(Ω) and D(Q,P ) sufficiently small.
Then the following assertions hold:

(i) For any ϵ > 0, let

R(ϵ) := inf
x∈X , d(x,S(P ))≥ϵ

d(0,EP [Γ(x, ξ)] + G(x)). (2.8)

Then

D(S(Q), S(P )) ≤ R−1(2D(Q,P )),

where R−1(ϵ) := min{t ∈ IR+ : R(t) = ϵ}, and R−1(ϵ) → 0 as ϵ ↓ 0.

(ii) For any ϵ > 0, there exists a δ > 0 such that if D(Q,P ) ≤ δ, then D(S(Q), S(P )) ≤ ϵ.

(iii) If x∗ ∈ S(P ) and Φ(x) := EP [Γ(x, ξ)] + G(x) is metrically regular at x∗ for 0 with
regularity modulus α, then there exists neighborhood Ux∗ of x∗ such that

d(x, S(P )) ≤ αD(Q,P ) (2.9)

for x ∈ S(Q) ∩ Ux∗ ; if Φ is strongly metrically regular at x∗ for 0 with the same
regularity modulus and neighborhood, then

∥x− x∗∥X ≤ αD(Q,P ) (2.10)

for x ∈ S(Q) close to Φ−1(0).
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3 Stability of SMOPCC

Let P(Ω) denote the set of all Borel probability measures. Assuming Q ∈ P(Ω) is close to P
under some metric to be defined shortly, we investigate the following optimization problem:

min EQ[f(z, ξ)]
s.t. z ∈ Z,

0 ≤ EQ[G(z, ξ)] ⊥ EQ[H(z, ξ)] ≥ 0,
(3.1)

which is regarded as a perturbation of problem (1.1). Specifically, we study the relationship
between the perturbed problem (3.1) and the original problem (1.1) in terms of the optimal
value, the optimal solutions and the stationary points when Q is close to P .

Let us start by introducing a distance function for the set P(Ω), which is appropriate for
our analyzing. Define the set of functions:

Go := {g(·) = fi(z, ·) : z ∈ Z, i = 1, . . . , s} ∪ {g(·) = Gi(z, ·) : z ∈ Z, i = 1, . . . ,m}
∪{g(·) = Hi(z, ·) : z ∈ Z, i = 1, . . . ,m}.

The distance function for the elements in set P(Ω) is defined as:

Do(P,Q) := sup
g(ξ)∈Go

∣∣EP [g(ξ)]− EQ[g(ξ)]
∣∣.

This kind of distance is first studied by Römisch in the 1980s, see the excellent review by
Römisch [22] for more details.

Throughout this section, we use the following notation:

F(Q) :=
{
z ∈ Z : 0 ≤ EQ[G(z, ξ)] ⊥ EQ[H(z, ξ)] ≥ 0

}
,

E(Q) :=
{
EQ[f(z, ξ)] : z ∈ F(Q)

}
,

ϑ(Q) :=
{
ȳ : there exists no y ∈ E(Q) such that y ≦K ȳ},

ϑ̄(Q) :=
{
ȳ : there exists no y ∈ E(Q) such that y <K ȳ},

So(Q) :=
{
z ∈ F(Q) : EQ[f(z, ξ)] ∈ ϑ(Q)

}
,

S̄o(Q) :=
{
z ∈ F(Q) : EQ[f(z, ξ)] ∈ ϑ̄(Q)

}
,

PGo(Ω) :=

{
Q ∈ P(Ω) : −∞ < inf

g(ξ)∈Go

EQ[g(ξ)] and sup
g(ξ)∈Go

EQ[g(ξ)] < ∞

}
.

It is easy to see that for P,Q ∈ PGo(Ω), Do(P,Q) < ∞.

3.1 Optimal solutions

Assumption 3.1. There exist a neighborhood UP of P , positive constants β and δ such
that for any Q ∈ UP and z ∈ Z ∩ B(F(Q), δ),

d(z,F(Q)) ≤ β ∥min{EQ[G(z, ξ)],EQ[H(z, ξ)]}∥ , (3.2)

where B(U, δ) denotes the δ neighborhood of set U .

Assumption 3.2. There exist a neighborhood UP of P , positive constants β and δ such
that for any Q ∈ UP and z ∈ Z ∩ B(F(Q), δ),

d(z,F(Q)) ≤ β ∥(−EQ[G(z, ξ)],−EQ[H(z, ξ)],EQ[G(z, ξ)] ◦ EQ[H(z, ξ)])+∥ , (3.3)

where (a)+ := max{a, 0} for a vector “a” and the maximum is taken componentwise and
“◦” denotes the Hadamard product.
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In the literature [20, 32], inequality (3.2) is known as natural type error bound whereas
inequality (3.3) is known as S-type error bound of the complementarity constraint. See [14]
for more details of the two kinds of error bounds for stochastic complementary problems.
Moreover, we refer readers interested in the topic to monograph [5] and a survey paper by
Pang [20] on error bound of variational inequalities and complementarity problems.

Proposition 3.3 ([14]). Assume Assumption 3.1 or Assumption 3.2 hold. Suppose that
there exist a neighborhood ŨP of P and a nonnegative function κ(ξ) such that
max(∥G(z, ξ)∥, ∥H(z, ξ)∥) ≤ κ(ξ) and EQ[κ(ξ)] < ∞ for Q ∈ ŨP and z ∈ Z. Then, there
exist a neighborhood U∗ of P and a positive constant β∗ such that the feasible set mapping
F(Q) is Lipschitz continuous with modulus β∗ on U∗, that is

H (F(Q1),F(Q2)) ≤ β∗Do(Q1, Q2), ∀Q1, Q2 ∈ U∗.

The following definition is introduced by Lemaire [9].

Definition 3.4. Let {(fN ,FN )} be a sequence of multiobjective optimization problems
where fN : IRn → IRs and FN ⊂ IRn denote the objective and the set of feasible points
respectively. The sequence {(fN ,FN )} is said to be converging to the multiobjective op-
timization problem (f,F), denoted by (fN ,FN ) → (f,F), if the following two conditions
hold:

∀z ∈ F , ∃zN ∈ FN such that limN→∞ zN = z and

lim sup
N→∞

fN
i (zN ) ≤ fi(z) for all i = 1, . . . , s,

∀z ∈ Z, ∀zN → z such that

lim inf
N→∞

f̄N
i (zN ) ≥ f̄i(z) for all i = 1, . . . , s,

where

f̄(z) =

{
+∞, if z ̸∈ F
f(z), if z ∈ F , f̄N (z) =

{
+∞, if z ̸∈ FN

fN (z), if z ∈ FN .

We should notice that (fN ,FN ) → (f,F) implies epi-convergence of fN
i +δFN to fi+δF

for i = 1, . . . , s, where δD denotes the index function of set D, that is, δD(z) = 0 iff
z ∈ D, otherwise δD(z) = +∞. In general, it is a stronger notion of convergence since the
approximating sequence is supposed to be independent of i = 1, . . . , s.

Theorem 3.5. Assume the conditions of Proposition 3.3. Then, ϑ(Q) and So(Q) are lower
semi-continuous at point P . Moreover, if So(P ) = S̄o(P ), ϑ(Q) and So(Q) are continuous
at point P .

Proof. If the optimal solution set-valued mapping So(Q) is semi-continuous at point P , and
EQ[f(z, ξ)] is continuous at point P uniformly on z ∈ Z, ϑ(Q) is semi-continuous at point
P . By the definition of Do(·, ·),

sup
z∈Z

∥EQ[f(z, ξ)]− EP [f(z, ξ)]∥ ≤ Do(Q,P ), (3.4)
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which shows the uniform continuity of EQ[f(z, ξ)]. Then, we just need to study the contin-
uous properties of So(Q).

Lower semi-continuity. Since the conditions of Proposition 3.3 hold, there exist a neigh-
borhood U∗of P and a positive constant β∗ such that

H (F(Q1),F(Q2)) ≤ β∗Do(Q1, Q2), ∀ Q1, Q2 ∈ U∗.

Then, taking advantage of (3.4),

(EQ[f(·, ξ)],F(Q)) → (EP [f(·, ξ)],F(P ))

with Do(Q,P ) tends to zero. Together with the compactness of Z, we get the lower semi-
continuity of So(Q) at P by [9, Theorem 2.3].

Upper semi-continuity. Let QN ∈ PGo(Ω) be any sequence of probability measure such
that Do(Q

N , P ) tends to zero. For ∀zN ∈ So(Q
N ), we just need to show that the accumu-

lation points of sequence {zN} are contained in So(P ). Taking a subsequence if necessary,
we may assume that zN → z̄ as N tends to infinity. Assume a contradiction that z̄ ̸∈ So(P ),
then there exists ẑ ∈ F(P ) such that

EP [f(ẑ, ξ)] ≦K EP [f(z̄, ξ)].

Since So(P ) = S̄o(P ), the formula above can be strengthened as

EP [f(ẑ, ξ)] <K EP [f(z̄, ξ)].

Taking advantage of the continuity of the feasible set F(Q) and EQ[f(z, ξ)] on Q, there
exists a sequence {ẑN} such that ẑN → ẑ and for N large enough,

EQN [f(ẑN , ξ)] ≦K EQN [f(zN , ξ)],

which contradicts the fact that zN ∈ So(Q
N ). The proof is complete.

3.2 Stationary points

By introducing some slack and auxiliary variables, the first order optimality condition of
problem (1.1) which characterizes the Pareto M-stationarity can be reformulated as a con-
strained generalized equation [11]:

0 ∈ EP [Φ(z, τ, α1, α2, β1, β2, β3, β4, u, v, ξ)] +NZ(z)× 0, (3.5)

where (z, τ, α1, α2, β1, β2, β3, β4, u, v) ∈ Z ×W,

Φ(z, τ, α1, α2, β1, β2, β3, β4, u, v, ξ) =



∇f(z, ξ)τ −∇G(z, ξ)u−∇H(z, ξ)v
τT1− 1

α1 −G(z, ξ)
α2 −H(z, ξ)

αT
1 α2

u ◦ α1

v ◦ α2

β1 − u ◦ v
βT
3 β4

β2 − β3 − u
β2 − β4 − v


,
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W =
{
w
∣∣∣w = (τ, α1, α2, β1, β2, β3, β4, u, v), τ ≥ 0, α1, α2 ≥ 0;βi ≥ 0 (i = 1, 2, 3, 4)

}
,

0(1) denotes the vector whose each component is 0 (1). This means that z ∈ Z is an M -
stationary point if and only if there exist multiplier w ∈ W such that (z, w) is a solution of
the stochastic generalized equation (3.5) and hence studying the stability of the stationary
point amounts to that of the generalized equation. Similarly, the stationary point of problem
(3.1) can be characterized by the following stochastic generalized equation:

0 ∈ EQ[Φ(z, τ, α1, α2, β1, β2, β3, β4, u, v, ξ)] +NZ(z)× 0. (3.6)

Firstly, we need to introduce a distance which is appropriate for characterizing stationary
point. Let W∗ be a compact subset of W, we denote

Gs := {g(ξ) : g(ξ) := σ(Φ(z, w, ξ), ν), for (z, w) ∈ Z ×W∗, ∥ν∥ ≤ 1},
Ds(Q,P ) := sup

g(ξ)∈Gs

(
EQ[g(ξ)]− EP [g(ξ)]

)
,

Hs(Q,P ) := max
(
Ds(Q,P ),Ds(P,Q)

)
.

It is ready to study the stability of stationary points of problem (1.1).

Theorem 3.6. Assume: (a’) there exist neighborhoods UP of P and a compact set W∗ ⊂ W
such that the set of stationary points of problem (3.1), denoted by Ss(Q), is not empty
and for every Q ∈ UP , the solution set of stochastic generalized equation (3.6) is bounded
by Z × W∗;(b’) the Lipschitz modulus of f(z, ξ), G(z, ξ) and H(z, ξ) are bounded by a
positive constant L for any ξ ∈ Ξ, (c’) Gi(z, ·) and Hi(z, ·) are bounded for any z ∈ Z and
i = 1, . . . ,m. Then the conclusions (i)-(iii) of Lemma 2.3 hold for Ss(P ) and Ss(Q).

Proof. The thrust of the proof is to apply Lemma 2.3 to generalized equation (3.5) and its
perturbation (3.6). To this end, we verify the hypotheses of Lemma 2.3.

Observe first that Φ(·) is single valued, it is convex and compact valued and hence verifies
(a). The upper semi-continuity of Φ(·) and its integrable boundedness follows from the fact
that all the involved functions are continuously differentiable, (b’) and (c’) hold and hence
verifies (b). The condition (c) follows from the upper semi-continuity of normal cone, while
(d) coincides with (a’). The proof is complete.

Remark 3.7. (i) Some words on Ds. Denote

Φ∗(z, w, ξ) :=

 ∇f(z, ξ)τ −∇G(z, ξ)u−∇H(z, ξ)v
G(z, ξ)
H(z, ξ)

 ,

G∗
s := {g(ξ) : g(ξ) := σ(Φ∗(z, w, ξ), ν), for (z, w) ∈ Z ×W∗, ∥ν∥ ≤ 1},

D∗
s(Q,P ) := sup

g(ξ)∈G∗
s

(
EQ[g(ξ)]− EP [g(ξ)]

)
.

By some easy analysis, we have Ds = D∗
s . Note that Φ∗(·) is a single valued function, we

denote G#
o := Go ∪ {g(·) = ∇(fι(z, ·))k, (∇Gi(z, ·))k, (∇Hj(z, ·))k : z ∈ Z, ι = 1, . . . , s, 1 ≤

i ≤ m, 1 ≤ j ≤ m, k = 1, . . . , n} and

D#(P,Q) := sup
g(ξ)∈G#

o

∣∣EP [g(ξ)]− EQ[g(ξ)]
∣∣.

By letting
u∗ = sup

u∈ΠuW∗
∥u∥, v∗ = sup

v∈ΠvW∗
∥v∥,
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we have

D∗
s(Q,P ) = sup

∥ν∥≤1, z∈Z

|EQ[Φ
∗(z, w, ξ)T ν]− EP [Φ

∗(z, w, ξ)T ν]|

≤ sup
z∈Z

∥EQ[Φ
∗(z, w, ξ)]− EP [Φ

∗(z, w, ξ)]∥

≤ sup
z∈Z

(
∥∇EQ[f(z, ξ)]−∇EP [f(z, ξ)]∥F + u∗ ∥∇EQ[G(z, ξ)]−∇EP [G(z, ξ)]∥F

+v∗ ∥∇EQ[H(z, ξ)]−∇EP [H(z, ξ)]∥F

+∥EQ[G(z, ξ)]− EP [G(z, ξ)]∥+ ∥EQ[H(z, ξ)]− EP [H(z, ξ)]∥
)

≤ γ∗D#(P,Q), (3.7)

where

γ∗ = ns+ nm(u∗ + v∗) + 2m, (3.8)

n, s,m are the dimensions of variable z, functions f and G respectively.

(ii) The boundedness condition (a’). The boundedness of Lagrange multipliers has been
well discussed in the past decades, see [23,30] for the developments on optimization problems
with equilibrium constraint. If the abstract constraints Z of problem (1.1) is characterized
by some equalities and/or inequalities, the boundedness condition in Theorem 3.6 can be
ensured by MPCC Mangasarian-Fromovitz constraint qualification holding at every feasible
point of problem (1.1), see [13] for a similar discussion.

(iii) Lin et al. [11] have studied the convergence of stationary points of SMPOCC when
the true probability measure is approximated by empirical probability measure. Theorem
3.6 extends their results to a general case. Interested readers see the section 5 of [11] for the
applications of convergence results.

4 Empirical Probability Measure

In practice, the distribution of ξ is often unknown or it is numerically too expensive to
calculate the expected values. Instead it might be possible to obtain a sample of the random
vector ξ from past data. A well-known approximation method in stochastic programming
based on sampling is sample average approximation (SAA), that is, if we have an independent
identically distributed (iid) sample ξ1, . . . , ξN of random vector ξ, then we may use the
empirical probability measure

PN :=
1

N

N∑
k=1

Iξk(ω),

to approximate the original probability measure P , where

Iξk(ω) :=
{

1, if ξ(ω) = ξk,
0, if ξ(ω) ̸= ξk.

Denote

fN (z) := EPN [f(z, ξ)], GN (z) := EPN [G(z, ξ)], HN (z) := EPN [H(z, ξ)].
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Then the corresponding sample average problem is

min fN (z)
s.t. z ∈ Z,

0 ≤ GN (z) ⊥ HN (z) ≥ 0.
(4.1)

Under some moderate conditions, it is easy to show by [24, Propostion 7] thatDo(P
N , P )

tends to zero with probability one. Therefore Theorem 3.5 implies immediately almost sure
convergence of the optimal value and the optimal solutions of the SAA problem to their true
counterparts. Our focus here is on the quantitative behavior of the stationary points as the
sample size increases. Next, we study the exponential rate of convergence of the stationary
points.

We said that zN is an M -stationary point of (4.1) if there exists multiplier wN ∈ W such
that (zN , wN ) is the solution of the generalized equation

0 ∈ ΦN (zN , τN , αN
1 , αN

2 , βN
1 , βN

2 , βN
3 , βN

4 , uN , vN ) +NZ(z
N )× 0, (4.2)

where

ΦN (z, τ, α1, α2, β1, β2, β3, β4, u, v) =



∇fN (z)τ −∇GN (z)u−∇HN (z)v
(τ)T1− 1
α1 −GN (z)
α2 −HN (z)

αT
1 α2

u ◦ α1

v ◦ α2

β1 − u ◦ v
βT
3 β4

β2 − β3 − u
β2 − β4 − v


.

Assumption 4.1. Let functions f,G,H be differentiable and θ(z, ξ) denote any element in
the collection of functions

{(∇fi(z, ξ))k, (∇Gj(z, ξ))k, (∇Hj(z, ξ))k, Gj(z, ξ),Hj(z, ξ),

i = 1, . . . , s, j = 1, . . . ,m, k = 1, . . . , n}.

Then θ(z, ξ) possesses the following properties:

(a) for every z ∈ Z the moment generating function E[e(θ(z,ξ)−EP [θ(z,ξ)])t] of the random
variable θ(z, ξ)− EP [θ(z, ξ)] is finite valued for t close to 0;

(b) there exist a (measurable) function κ2(ξ) and a constant γ2 > 0, such that

|θ(z, ξ)− θ(z′, ξ)| ≤ κ2(ξ)∥z − z′∥γ2 ,

for all ξ ∈ Ξ and z′, z ∈ Z;

(c) the moment generating function Mκ2(t) of κ2(ξ), is finite valued for all t in a neigh-
borhood of zero.

Assumption 4.1 (a) holds if the support set Ξ is a compact set. Assumption 4.1 (b)
requires θ(z, ξ) to be globally Hölder continuous with respect to z. Assumption 4.1 (c) is a
bounded condition. See [15,25] for a similar discussion.
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Theorem 4.2. Let zN be a sequence of M-stationary points of problem (4.1), wN be the
corresponding multiplier and (z∗, w∗) be a limiting point of sequence {(zN , wN )}. Suppose
that Assumption 4.1 holds and

Υ(z, τ, α1, α2, β1, β2, β3, β4, u, v) := EP [Φ(z, ξ, τ, α1, α2, β1, β2, β3, β4, u, v)] +NZ(z)× 0

is metrically regular at point (z∗, w∗) for 0. Then for any small positive number ϵ, there
exist positive constants C(ϵ) > 0, β(ϵ) > 0 independent of N such that for N sufficiently
large

Prob{d(zN , Ss(P )) ≥ λϵ} ≤ C(ϵ)e−Nβ(ϵ), (4.3)

where λ := αγ∗, α is the metric modulus and γ∗ is defined by (3.8).

Proof. Under Assumption 4.1 and the metric regularity condition, conclusion (iii) of Lemma
2.3 holds. Then, there exists neighborhood Uz∗ of z∗ such that

d(z, Ss(P )) ≤ αDs(P
N , P ), z ∈ Uz∗ .

Subsequently, by formula (3.7) in Remark 3.7,

d(z, Ss(P )) ≤ αγ∗D#(PN , P ),

where γ∗ is defined by (3.8). Then,

Prob{d(z, Ss(P )) ≥ λϵ} ≤ Prob{D#(PN , P ) ≥ ϵ}. (4.4)

By the definition of D#(P,Q),

Prob{D#(PN , P ) ≥ ϵ}

≤ Prob

{
sup
z∈Z

(
∥EPN [f(z, ξ)]− EP [f(z, ξ)]∥+ ∥EPN [G(z, ξ)]− EP [G(z, ξ)]∥

+∥EPN [H(z, ξ)]− EP [H(z, ξ)]∥+ ∥EPN [∇zf(z, ξ)]− EP [∇zf(z, ξ)]∥F
+∥EPN [∇zG(z, ξ)]− EP [∇zG(z, ξ)]∥F + ∥EPN [∇zH(z, ξ)]

−EP [∇zH(z, ξ)]∥F
)

≥ ϵ

}
≤ Prob{sup

z∈Z
|EPN [f(z, ξ)]− EP [f(z, ξ)]| ≥ ϵ/6}

+Prob{sup
z∈Z

∥EPN [G(z, ξ)]− EP [G(z, ξ)]∥ ≥ ϵ/6}

+Prob{sup
z∈Z

∥EPN [H(z, ξ)]− EP [H(z, ξ)]∥ ≥ ϵ/6}

+Prob{sup
z∈Z

∥EPN [∇zf(z, ξ)]− EP [∇zf(z, ξ)]∥F ≥ ϵ/6}

+Prob{sup
z∈Z

∥EPN [∇zG(z, ξ)]− EP [∇zG(z, ξ)]∥F ≥ ϵ/6}

+Prob{sup
z∈Z

∥EPN [∇zH(z, ξ)]− EP [∇zH(z, ξ)]∥F ≥ ϵ/6}.

Taking advantage of [25, Theorem 5.1], there exist positive constants (Ci(ϵ/6), βi(ϵ/6)), i =
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1, . . . , 6, such that

Prob{sup
z∈Z

∥∥fN (z)− EP [f(z, ξ)]
∥∥ ≥ ϵ/6} ≤ C1(ϵ/6)e

−Nβ1(ϵ/6),

Prob{sup
z∈Z

∥∥GN (z)− EP [G(z, ξ)]
∥∥ ≥ ϵ/6} ≤ C2(ϵ/6)e

−Nβ2(ϵ/6),

Prob{sup
z∈Z

∥∥HN (z)− EP [H(z, ξ)]
∥∥ ≥ ϵ/6} ≤ C3(ϵ/6)e

−Nβ3(ϵ/6),

Prob{sup
z∈Z

∥∥∇fN (z)− EP [∇zf(z, ξ)]
∥∥
F
≥ ϵ/6} ≤ C4(ϵ/6)e

−Nβ4(ϵ/6),

Prob{sup
z∈Z

∥∥∇GN (z)− EP [∇zG(z, ξ)]
∥∥
F
≥ ϵ/6} ≤ C5(ϵ/6)e

−Nβ5(ϵ/6),

Prob{sup
z∈Z

∥∥∇HN (z)− EP [∇zH(z, ξ)]
∥∥
F
≥ ϵ/6} ≤ C6(ϵ/6)e

−Nβ6(ϵ/6).

Combining (4.4) and the estimations above, (4.3) holds with

C(ϵ) = C1(ϵ/6) + C2(ϵ/6) + C3(ϵ/6) + C4(ϵ/6) + C5(ϵ/6) + C6(ϵ/6)

and
β(ϵ) = min{β1(ϵ/6), β2(ϵ/6), β3(ϵ/6), β4(ϵ/6), β5(ϵ/6), β6(ϵ/6)}.

The proof is complete.

In [6], Fliege and Xu present the exponential rate convergence of the optimal solutions
of Stochastic MOP. As a complementary work, we study the exponential rate of the M -
stationary point. Similar results can be obtained for C- and S-stationary points. If we
strengthen the conditions in Assumption 4.1 to the following:

there exists a constant ϱ > 0 such that for every z ∈ Z,

E[e(θ(z,ξ)−EP [θ(z,ξ)])t] ≤ eϱ
2t2/2, ∀t ∈ IR,

the constant γ2 equals to 1.

Then by formula (5.13) in [25], we have

Prob{sup
z∈Z

∣∣θN (z)− EP [θ(z, ξ)]
∣∣

≥ ϵ} ≤ e−Nϱ∗
+ 2

O(1) sup
z′,z′′∈Z

∥z′ − z′′∥E[κ2(ξ)]

ϵ

n

e
(−N ϵ2

32ϱ2
)
,

where O(1) is a generic constant and ϱ∗ is a positive constant given by Cramér’s Large
Deviation Theorem, see [25, Theorem 5.1] and the following comments for more details.
Then

Prob{sup
z∈Z

∥∥fN (z)− EP [f(z, ξ)]
∥∥ ≥ ϵ/6}

≤ Prob
{
sup
z∈Z

sup
1≤i≤s

∣∣fN
i (z)− EP [fi(z, ξ)]

∣∣ ≥ ϵ

6s

}

≤ e−Nϱ∗
+ 2

O(1) sup
z′,z′′∈Z

∥z′ − z′′∥E[κ2(ξ)]

ϵ/6s

n

e
(−N

(ϵ/6s)2

32ϱ2
)
,
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where s is the dimension of function f . Similarly, we can estimate the rest five probabilities
in the proof of Theorem 4.2. Then Theorem 4.2 holds with

C(ϵ) = 6× 2

O(1) sup
z′,z′′∈Z

∥z′ − z′′∥E[κ2(ξ)]

ϵ/6σn
+ 1

n

,

β(ϵ) = min
{
ϱ∗,

(ϵ/6σn)2

32ϱ2

}
,

where σ = max{s,m}, m and n are the dimensions of function G and variable z respectively.
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