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In 1998, Kanzow and Kleinmichel [11] introduced an one-parametric class of comple-
mentarity functions φλ defined by

φλ(a, b) =

√
(a− b)

2
+ λab− a− b, (1.3)

where λ ∈ (0, 4) . We will refer to (1.3) as the Kanzow function. Note that, this function
is nonsmooth at (0, 0). Moreover, in the special case λ = 2, φλ reduces to the Fischer
function [10], whereas in the limiting case λ → 0, the function φλ becomes a multiple of
the minimum function [16] [15].

Now, if we define the function Φλ : Rn −→ Rn by

Φλ(x ) =

 φλ(x1, F1(x))
...

φλ(xn, Fn(x))

 (1.4)

then it follows immediately from the definition of an NCP-function that x∗ solves NCP
if and only if x∗ solves Φλ(x) = 0 [11]. Alternatively, if Ψλ : Rn −→ R denotes the
corresponding merit function

Ψλ(x) =
1

2
Φλ(x)

TΦλ(x) =
1

2
∥Φλ(x)∥22, (1.5)

then we may rewrite the NCP as the unconstrained minimization problem

Minimize Ψλ(x) . (1.6)
x ∈ Rn

This merit function is continuously differentiable [11].

In [11], the authors present a global semismooth Newton-type method for solving the
minimization problem (6) and recently, in [1], the author proposes a local quasi-Newton
method for solving Φλ(x) = 0 therefore, solving the NCP. Moreover, this author leaves
open the possibility of introducing globalization strategies to improve the performance of
his algorithm.

Considering the limitations that may have a local algorithm, in this paper, we propose a
global quasi-Newton method for the NCP solving alternatively the unconstrained minimiza-
tion problem (1.5). For this, we propose a globalization of the algorithm proposed in [1]
and we established global and local convergence properties. Moreover, we include numerical
test, that show a good performance of the algorithm proposed.

We organized this paper as follows. In Section 2, we present some theoretical results that
will be useful in the development of the convergence results of our algorithm. In Section 3, we
introduce a global nonsmooth quasi-Newton method for solving nonlinear complementarity
problems through the minimization of the merit function (1.5) and we prove, under suitable
assumptions, global and local convergence results for this method. In Section 4, we analyze
numerically, the local performance of the algorithm introduced in the last section, using
some test problems proposed in [15] and we compare these results with those obtained by
solving the same problems with the algorithm type Newton proposed in [11]. Finally, Section
5 contains some remarks on what we have done in this paper and present possibilities for
future works.
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2 Preliminaries

In this section, we present some definitions and theoretical results that have been previously
demonstrated by some authors which will be useful in the development of our proposal.

From (1.1), a solution x∗ of NCP is characterized by x∗ ≥ 0, F (x∗) ≥ 0 and F (x∗)Tx∗ =
0. Associated with x∗ , we have the sets of indices α = {i ∈ I : x∗i > 0, Fi(x

∗) = 0}, β =
{i ∈ I : x∗i = 0 = Fi(x

∗)} and γ = {i ∈ I : , x∗i = 0, Fi(x
∗) > 0}.

Since the function Φλ defined by (1.4) is nondifferentiable and Lipschitz continuous, its
generalized jacobian exists and it is defined by

∂Φλ(x) = conv

{
lim
k→∞

Φ′
λ(xk) ∈ Rn×n : lim

k→∞
xk = x, xk ∈ DΦλ

}
= conv {∂BΦλ(x)}

(2.1)
where DΦλ

is the set of all points where Φλ is differentiable and conv denotes the convex
hull of a set.

In [1], the author builds matrices H ∈ ∂Φλ(x) whose i th row is given by

[H]i =

{
(χ(xi, Fi(x ))− 1) eTi + (ψ(xi, Fi(x ))− 1)∇Fi(x )

T , i /∈ β(
χ(zi,∇Fi(x )

T z )− 1
)
eTi +

(
ψ(zi,∇Fi(x )

T z )− 1
)
∇Fi(x )

T , i ∈ β.
(2.2)

where z is a vector such that zi ̸= 0 when i ∈ β, {e1, . . . , en} is a canonical basis of Rn

and the functions χ and ψ are the the partial derivatives of the function

Gλ(a, b) =
√
(a− b)2 + λab , (2.3)

that is,

χ(a, b) =
2(a− b) + λb

2Gλ(a, b)
and ψ(a, b) =

−2(a− b) + λa

2Gλ(a, b)
· (2.4)

For any nonzero vector (a, b ), the partial derivatives (2.4) are bounded as follows [1] [11]:

|χ(a, b)| ≤ 1 and |ψ(a, b)| ≤
√
2. (2.5)

Also, using the structure of H ∈ ∂Φλ(x) given by (2.2), the author in [1] proposed quasi-
Newton approximations B to these matrices given by

[B]i =

{
(χ(xi, Fi(x))− 1)eTi + (ψ(xi, Fi(x))− 1)[A]i, i ̸∈ β

(χ(zi, [A]iz)− 1)eTi + (ψ(zi, [A]iz) − 1)[A]i, i ∈ β
(2.6)

where {e1, . . . , en} is a canonical basis of Rn, and the matrix A is an approximation of
the Jacobian matrix of F at x.

With the above information, in [1], the author proposes a local quasi-Newton algorithm
for solving NCP based on its reformulation as the nonsmooth system of equations. The
generic form of this algorithm is as follows.

Algorithm 2.1 (quasi-Newton for Φλ(x) = 0). Given x0 and λ ∈ (0, 4), for k =
1, 2, . . . , xk+1 compute

xk+1 = xk −B−1
k Φλ(xk)

where Bk is given by (2.6).
Moreover, in [1], it is shown that the distance between a matrix H and its approximation

B is bounded by a constant value, and under certain conditions, the matrix B given by
(2.6) is nonsingular. We recall this results.
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Theorem 2.2 ([1]). Let F : Rn −→ Rn, F ∈ C1, such that its Jacobian matrix is Lipschitz
continuous; x∗ a solution of NCP; H and B defined by (2.2) and (2.6), respectively, and
given positive constants ϵ and δ. Then, for each x ∈ B(x∗, ϵ) and A ∈ B(F ′(x∗), δ), there
exists a positive constant θ such that

∥H −B∥∞ ≤ θ.

Theorem 2.3 ([1]). Let x∗ be a solution of NCP and B defined by (2.6). There exists
positive constants ϵ0 and δ0, such that if ∥x− x∗∥∞ ≤ ϵ0 and ∥A− F ′(x∗)∥∞ ≤ δ0 then
the function Q defined by

Q(x, A) = x−B−1Φλ(x)

is well defined.

In particular, this theorem guarantees that, if a sequence {xk} converges to x ∗, then
there exists a positive integer k such that, for all k > k, the matrix B−1

k exists.
For the development of convergence results for algorithms that solve the NCP, it is im-

portant to establish sufficient conditions for the nonsingularity of matrices in the generalized
Jacobian at a solution of the problem. For the this, we recalling the concept of BD regularity.

Definition 2.4. Let x∗ be a solution of NCP.

1. If all matrices H ∈ ∂BΦλ(x
∗) are nonsingular, then x∗ is a BD regular solution.

2. If the submatrix F ′(x∗)αα is nonsingular and the Schur-complement

F ′(x∗)ββ − F ′(x∗)βαF
′(x∗)−1

ααF
′(x∗)αβ

is a P-matriz, x∗ is called a solution R-regular.

The following theorem gives a sufficient condition to ensure nonsingularity of the matrices
of generalized Jacobian ∂Φλ(x

∗) [11].

Theorem 2.5 ( [11]). Assume that x∗ ∈ Rn is a R-regular solution of NCP. Then all
elements in the generalized Jacobian ∂Φλ(x

∗) are nonsingular.

An immediate consequence of this result is given in the following corollary.

Corollary 2.6. If x∗ is a solution R-regular of NCP then x∗ is a BD-regular solution.

Proof. Let x∗ be a solution R-regular of NCP. by hypothesis and Theorem 2.5, all elements
in the generalized Jacobian ∂Φλ(x

∗) are nonsingular. Moreover, from (2.1)

∂Φλ(x
∗) = conv {∂BΦλ(x

∗)},

and ∂BΦλ(x
∗) ⊆ ∂Φλ(x

∗). Thus, if H ∈ ∂BΦλ(x
∗), then H ∈ ∂Φλ(x

∗) and therefore, is
nonsingular. Accordingly, x∗ is a BD-regular solution of NCP.

The following two definitions are useful for the presentation of Theorem 2.9 in [8].

Given a matrix A = (aij) ∈ Rn×n and index sets η y τ, the Aητ is a matrix where aij with i ∈ η
and j ∈ τ .

A matrix M ∈ Rn×n is a P-matrix, if for any vector nonzero y ∈ Rn, exists a index i0 = i0(y) ∈
{1, 2, . . . , n} , such that yi0 [My]i0 > 0.
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Definition 2.7 ([11]). Let G : Rn −→ Rm be locally Lipschitzian and directionally differ-
entiable at x ∈ Rn. We say that , G is semismooth at x, if for any H ∈ ∂G(x + d) and
for any d → 0,

Hd−G′(x ; d) = o(∥d∥).

Definition 2.8 ([7]). A function f : Rn −→ R is an SC1 function if f is continuously
differentiable and its gradient is semismooth.

For the statement of the following theorem, we suppose that x∗ is an accumulation point
of the {xk}.

Theorem 2.9 ([8]). Let f : Rn −→ R an SC1 function and δ > 0 . If Df(x ; d) is an
approximation to the directional derivative of f at x in the direction d, such that, for all
xk ∈ B(x∗; δ),

∇f(xk)Tdk = Df(xk;dk) + o(∥dk∥2),

then. for any σ ∈
(
0, 1

2

)
, there exists a k such that, for all k > k

f(xk + d) ≤ f(xk) + σDf(xk;dk).

The following result in [7] presents a particular feature of the merit function (1.5).

Theorem 2.10 ([7]). Let F : Rn −→ Rn, F (x) = (F1(x), F2(x), . . . , Fn(x)) be a nonlinear
and continuously differentiable function, Φλ given by (1.4) associated to F and Ψλ the
merit function given by (1.5) associated to Φλ . If for all i = 1, 2, . . . , n, the function Fi

is SC1 function, then Ψλ is also a SC1 function.

Finally, we recall that the merit function (1.5) is differentiable and its gradient can be
calculated using matrices H ∈ ∂Φλ(x) as follows [11].

Theorem 2.11 ([11]). For any matrix H ∈ ∂Φλ(x), the merit function Ψλ given by (1.5)
is continuously differentiable and

∇Ψλ(x) = HTΦλ(x). (2.7)

3 Algorithm and Convergence

In this section, we propose a global nonsmooth quasi Newton algorithm for solving NCP by
solving the minimization problem (1.6). In fact, for this algorithm, we prove global and
local convergence results.

The algorithm applies a nonsmooth quasi Newton method as introduced and investigated
by [1] for solving the nonlinear system of equations Φλ(x) = 0 and then, the method is
globalized used a merit function Ψλ. For this, we use a linear search strategy as used
in [11]. The following is a precise statement of our algorithm.

Algorithm 3.1 (Global quasi Newton method Φλ(x) = 0).

P.0. Initialization
Choose λ ∈ (0, 4), x0 ∈ Rn, ρ > 0, µ ∈ (0, 1), σ ∈ (0, 12 ), p > 2, ε ≥ 0, N > 0
and set k := 0 and A0 = F ′(x0).

P.1. Stopping criterion
If ∥BT

k Φλ(xk)∥ ≤ ε or k > N stop.
P.2. Search direction
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Calculate Bk as in (2.6) and find dk ∈ Rn such that

Bkdk = −Φλ(xk). (3.1)

If this system is not solvable or if Φλ(xk)
TBkdk > −ρ∥dk∥p set dk = −BT

k Φλ(xk).
P.3. Linear search

Compute tk := max{µl | l = 0, 1, 2, ...} such that

Ψλ(xk + tkdk) ≤ Ψλ(xk) + σtkB
T
k Φλ(xk)dk . (3.2)

P.4. Update
Set xk+1 = xk + tkdk, k = k + 1 , update Ak and go to P.1.

We observe that the approximation matrix Bk given by (2.6) depends on the approxi-
mation Ak to the jacobian matrix F ′(xk). Thus, a natural question is “how to update the
matrix Ak ” that is, “what is Ak+1” The way we update Ak results in a diverse range of
quasi-Newton methods, among which there are the so-called Least Change Secant Update
methods, in which the matrix Ak+1, must satisfy the secant equation [13]

Ak+1(xk+1 − xk) = F (xk+1)− F (xk) (3.3)

and its change, measured in some norm, respect to the Ak, must be minimum. Examples
of this type of updates are the “Good” Broyden update [5], “Bad” Broyden update [4] and
Schubert update [6]. We will use these three updates in the Section 4, when we analyze the
numerical performance of our algorithm. Moreover, in our code we chose the vector z in
(2.6) such that zi = 0 if i /∈ β and zi = 1 if i ∈ β.

Given that we do not want to calculate matrices Hk ∈ ∂Φλ(xk), we proposed some
variations in the classical search direction calculation and in the linear search (Armijo
condition [13]). By Theorem 2.11, to calculate the gradient of Ψλ, in each iteration, the
matrices Hk ∈ ∂ Φλ(xk) must be calculated. As an alternative, we propose the following
approximation to the ∇Ψλ(xk),

∇Ψλ(xk) = BT
k Φλ(xk). (3.4)

This approximation requires the matrices Bk defined by (2.6) and to evaluate Φλ in xk.
Under the following assumptions, we will prove global and local convergence properties

of Algorithm 3.1.

3.1 Hypothesis

A1. There is x∗ ∈ Rn such that Φλ(x
∗) = 0.

A2. The functions Fi are SC1 functions.
A3. There exist positive constants γ and ϵ, such that ∥F ′(x) − F ′(x∗)∥ ≤ γ∥x − x∗∥,

for all x ∈ B (x∗, ϵ).

3.2 Convergence

The following two lemmas will be useful in demonstrating the convergence theorems of
Algorithm 3.1. In the first one, we prove that under certain conditions, the norm of the
matrices that approximate the respective matrices in ∂Φλ (x) is bounded. In the second
lemma, we prove an equivalence between the gradient of the merit function Ψλ and the
approximation that we propose in (3.4).
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Lemma 3.2. Let B given by (2.6) and δ > 0. For any matrix A ∈ B(F ′(x∗); δ), there
exists a positive constant η such that

∥B∥ ≤ η. (3.5)

Proof. We consider the matrix B defined by (2.6). By definition of infinite matrix norm,
we have

∥B∥∞ = max
1≤i≤n

{∥[B]i∥1}. (3.6)

We assume that the maximum is reached in the row j. If j ̸∈ β, then xj ̸= 0 or Fj(x) ̸= 0,
from (2.5)

|χ(xj , Fj(x))| ≤ 1 and |ψ(xj , Fj(x))| ≤
√
2,

moreover, ∥B∥∞ = ∥(χ(xj , Fj(x))− 1)eTj + (ψ(xj , Fj(x))− 1)[A]j∥∞

≤ |χ(xj , Fj(x))− 1|+ |ψ(xj , Fj(x))− 1|∥[A]j∥∞

≤ 2 +
(
1 +

√
2
)
∥[A]j∥∞

≤ 2 +
(
1 +

√
2
)
(∥F ′(x∗)∥∞ + δ).

If j ∈ β, following the same procedure, we obtain the same upper bound for ∥B∥∞. There-
fore, exists

η = 2 +
(
1 +

√
2
)
(∥F ′(x∗)∥∞ + δ)

such that ∥B∥∞ ≤ η.

Lemma 3.3. If ∇Ψλ(xk) is the approximation to ∇Ψλ(xk) given by (3.4), then

∇Ψλ(xk)
Tdk = ∇Ψλ(xk)

Tdk + o(∥dk∥2∞). (3.7)

Proof. From (2.7) and (3.4),

|∇Ψλ(xk)
Tdk −∇Ψλ(xk)

Tdk| = |Φλ(xk)
T (Hk −Bk)dk|. (3.8)

Using the Cauchy-Schwarz inequality and the relation between the Euclidean and infinity
vector norms in (3.8), we obtain the inequality

|∇Ψλ(xk)
Tdk −∇Ψλ(xk)

Tdk| ≤ n ∥Φλ(xk)∥∞∥Hk −Bk∥∞∥dk∥∞.

By Theorem 2.2, for k sufficiently large, there exists a constant θ such that ∥Hk−Bk∥∞ ≤
θ , then

|∇Ψλ(xk)
Tdk −∇Ψλ(xk)

Tdk| ≤ n θ ∥Φλ(xk)∥∞∥dk∥∞
thus,

0 ≤ |∇Ψλ(xk)
Tdk −∇Ψλ(xk)

Tdk|
∥dk∥2∞

≤ n θ ∥Φλ(xk)∥∞
∥dk∥∞

,

therefore, given that with the Algorithm 3.1 we want to minimize the merit function Ψλ

and that dk is a decent direction, we conclude that although the sequence {∥dk∥} converges
to zero, the sequence {∥Φλ(xk)∥} will make it faster, thus

lim
k→∞

|∇Ψλ(xk)
Tdk −∇Ψλ(xk)

Tdk|
∥dk∥2∞

= 0

proving (3.7).
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The following convergence theorems are analogous to those presented in [11] for a semis-
mooth Newton-type method to solve the NCP.

Theorem 3.4. Every accumulation point of a sequence {xk} generated by Algorithm 3.1 is
a stationary point of Ψλ.

Proof. If, for an infinite set of indices J, the direction given by the second step of Algorithm
3.1 is always dk = −∇Ψλ(xk), then any limit point of subsequence {xk}J is a stationary
point of Ψλ [2]. Thus, we can assume, without loss of generality, that the direction is always
given by

Bkdk = −Φλ(xk). (3.9)

Suppose now, that x∗ is not an stationary point of Ψλ, that is, ∇Ψλ(x
∗) ̸= 0. We will

prove that there are positive constant m and M such that

m ≤ ∥dk∥ ≤M. (3.10)

Indeed, from (3.9)
∥Φλ(xk)∥ ≤ ∥Bk∥∥dk∥

then
∥Φλ(xk)∥
∥Bk∥

≤ ∥dk∥

thus, if the sequence {dk} converges to the zero vector, then the sequence {∥Φλ(xk)∥}
converges to cero since ∥Bk∥ is bounded for all k (Lemma 3.2), which implies that the
{Φλ(xk)} converges to the vector zero, whereby ∇Ψλ(xk) also converges to vector zero and
given that the function Φλ is continuous, then

∇Ψλ(x
∗) = 0,

contradicting our assumption. Thus, there exists a positive constant m such that m ≤ ∥dk∥.
On the other hand, if ∥dk∥ had no upper bound, but ∇Ψλ(xk) is bounded and p ≥ 2,

then

lim
k→∞

∥∇Ψλ(xk)∥ cos θ
∥dk∥p−1

= 0

where θ is the angle between ∇Ψλ(xk) and dk . equivalently,

lim
k→∞

∇Ψλ(xk)
Tdk

∥dk∥p
= 0

contradicting the fact
∇Ψλ(xk)

Tdk ≤ −ρ∥dk∥p. (3.11)

Thus, there exists a positive constant M such that ∥dk∥ ≤M .
Now, since the sequence {xk} converges to x∗ and the next iteration of Algorithm 3.1

is generated by xk+1 = xk + tkdk, then

tkdk → 0. (3.12)

By (3.10), we can assume that, if k → ∞, dk → d ̸= 0, then tk = µlk → 0. Moreover,
from (3.2)

Ψλ(xk + µlk−1dk)−Ψλ(xk)

µlk−1
> σ∇Ψλ(xk)

Tdk (3.13)
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Thus, from (3.13), if k → ∞

∇Ψλ(x
∗)T d ≥ σ∇Ψλ(x

∗)T d

then, by Lemma 3.3, we can conclude that

σ ≥ 1,

contradicting that σ ∈
(
0, 12

)
. Thus, from (3.12), we have that necessarily the sequence

{dk} converges to zero vector and therefore, {∥dk∥} converges to zero, contradicting the
fact ∇Ψλ(x

∗) ̸= 0. In conclusion, ∇Ψλ(x
∗) = 0.

In the Theorem 3.6, we refer to the apparently contradictory term, in order to avoid
ambiguity, we include de following definition.

Definition 3.5. Let Ω be the accumulation points set of the sequence {xk}. We say that
x∗ ∈ Ω is an isolated accumulation point, if x∗ is an isolated point in Ω, i.e., If there exist
δ > 0 such that

B(x∗; δ) ∩ Ω = {x∗}.

Theorem 3.6. Suppose that x∗ is isolated accumulation point of a sequence generated by
Algorithm 3.1. Then the entire sequence converges to x∗.

Proof. Let {xk} be the sequence generated by Algorithm 3.1 and x∗ an isolated accumula-
tion point of this sequence. As Ψ(x∗) = 0 and Ψ is a convex function, then x∗ is a global
minimizer of Ψ.

Let Ω be the accumulation points set of {xk}, then Ω ̸= ∅, since x∗ ∈ Ω . We define

δ =

{
dist(x∗; Ω\{x∗}) if Ω\{x∗} ̸= ∅

1 if Ω = {x∗}

where dist(a, A) = infx∈A ∥a− x∥ is the distance of point a to the set A .
Given that, locally, x∗ is unique, then δ > 0. If

Ω1 =

{
y ∈ Rn : dist(y; Ω) ≤ δ

4

}
,

then there exists k such that xk ∈ Ω1 for all k ≥ k.
Now, if

Λ =

{
k ∈ N : ∥xk − x∗∥ ≤ δ

4

}
,

then {xk}Λ ⊂ B
(
x∗; δ

4

)
. Since x∗ is the only accumulation point of {xk} in B

(
x∗; δ

4

)
, we

can conclude that {xk}Λ converges to x∗ and since Ψ(x∗) = 0, then {∥Ψ(xk)∥}Λ converges
to zero, which in turn, by (3.11) and (3.7) implies that the sequence {dk} converges to the

zero vector. Thus, there exists k̃ such that, if k ∈ Λ and k ≥ k̃ ≥ k, then

∥dk∥ ≤ δ

4
·

Let k̂ ∈ Λ be such that k̂ ≥ k̃ , we observe that

xk̂+1 = xk̂ + tk̂dk̂, (3.14)
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with tk̂ ∈ (0, 1]. Thus

∥xk̂+1 − xk̂∥ ≤ ∥dk̂∥ ≤ δ

4
,

therefore,

dist(x∗; Ω\{x∗}) ≤ dist(xk̂+1; Ω\{x
∗}) + ∥x∗ − xk̂+1∥

≤ dist(xk̂+1; Ω\{x
∗}) + ∥x∗ − xk̂∥+ ∥xk̂ − xk̂+1∥

≤ dist(xk̂+1; Ω\{x
∗}) + δ

4
+
δ

4

that is,

dist(xk̂+1; Ω\{x
∗}) ≥ dist(x∗; Ω\{x∗})− δ

2
≥ δ − δ

2
=
δ

2

thus, xk̂+1 ̸∈ Ω1\B
(
x∗; δ

4

)
and, since xk̂+1 ∈ Ω1, then xk̂+1 ∈ B

(
x∗; δ

4

)
, i.e., k̂ + 1 ∈ Λ

and given that k̂ + 1 > k̃, then, for induction, k̂ ∈ Λ for all k̂ > k̃, thus, xk ∈ B
(
x∗; δ

4

)
for all k ≥ k̃, i.e., {xk} converges tox∗.

The following theorem shows that there exist a positive integer k such that, for all k > k,
the local behavior of the Algorithm 3.1 is identical to the Algorithm 4.1 proposed in [1]
allowing us to guarantee convergence rate similar to that obtained for the latter algorithm.
It is important to observe that, if x∗ is R-regular, the assumption H3 in [1] is immediately
satisfied.

Theorem 3.7. Assume that x∗ is an accumulation point of a sequence {xk} generated by
Algorithm 3.1 such that x∗ is an R-regular solution of NCP. Then {xk} converges to x∗, the
search direction dk is eventually given by the solution of the linear system Bkdk = −Φλ(xk)
and the full stepsize tk = 1 is accepted for all k sufficiently large.

Proof. If x∗ is a R-regular solution of NCP, x∗ is also a BD-regular solution (Corollary
2.6), then, by Proposition 3 in [14], x∗ is an isolated accumulation point of the sequence
{xk} generated by the Algorithm 3.1 and, from the Theorem 3.6, we have that the sequence
{xk} converges to x∗.

On the other hand, by the Theorem 2.3, for some k sufficiently large, the matrix B−1
k

exists and therefore, the linear system of equations Bkdk = −Φλ(xk) has a solution. Thus,

dk = −B−1
k Φλ(xk), (3.15)

For any vector norm and its associated matricial norm, we have

∥dk∥ ≤ ∥Φλ(xk)∥∥B−1
k ∥. (3.16)

From (3.4), (3.15), (3.16)

∇Ψλ(xk)
Tdk = Φλ(xk)

TBkdk

= −Φλ(xk)
TBkB

−1
k Φλ(xk)

= −∥Φλ(xk)∥2

≤ − ∥dk∥2

∥B−1
k ∥2
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then, we can define the constant ρ = η2, where η is the upper bound of ∥Bk∥ given by
the Theorem 2.3. That is, since the sequence {∥dk∥} converges to zero then

∇Ψλ(xk)dk ≤ −ρ∥dk∥p

for all p ≥ 2. This proves that for a k sufficiently large, the search direction is always given
by (3.10).

Now, by the Lemma 3.3, the Theorem 2.9 and since Ψλ is aSC1 function, we have that,
for any σ ∈

(
0, 1

2

)
, there exist k such that, for all k > k

Ψλ(xk + dk) ≤ Ψλ(xk) + σBT
k Φλ(xk)dk

i.e., the stepsize tk = 1 is accepted for k sufficiently large.

4 Numerical Results

In this section, we analyzed numerically the global behavior of the algorithm proposed in
the last section (Algorithm 3.1). For this, we compare our algorithm with the semismooth
Newton-type method proposed in [11]. This latter algorithm uses at each iteration, a matrix
Hk ∈ ∂Φλ(x). This is basically the difference with our algorithm.

For the numerical tests, we consider four nonlinear complementarity problems associated
respectively with the functions: Kojima Shindo (Koj-Shi), Kojima Josephy (Koj-Jo), Modify
Mathiesen (Mathiesen), Billups (Billups) [3, 14]. The latter problem was constructed by
Billups [3] in order to make almost all state-of-the-art methods to fail on this problem [11].
We observe that, our method has not problem to solve this example.

We implemented the algorithms and tests functions in Matlab® and for each problem,
we use all the starting points used in [11] for their tests. Moreover, we use the following
values for the parameters required in the algorithm ρ = 10−8, σ = 10−4, p = 2.1, ε =
10−12, N = 200, µ = 0.5. Similarly, considering the results presented in [11], we use the
same dynamical choice of λ that they used; i.e., in each iteration, we update λ as follows

1. Set λ = 2 at the beginning of each iteration.

2. if Ψλ(xk) ≤ γ1, then set λ := Ψλ(xk), else set λ := min{c1Ψ(xk), λ}

3. if Ψ(xk) ≤ γ2, then set λ := min{c2, λ}

where γ1 = 10−2, γ2 = 10−4, c1 = 10, c2 = 10−8. With the dynamical choice of the
parameter λ, the algorithms perform their first iterations using Fisher function [10], which
gives the best global convergence properties, and completes its cycle with complementary
functions that tend to be multiples of the minimum function [16] [15], which usually results
in a faster local convergence [16].
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Table 1 presents the results of our numerical tests. Its columns contains the following
information: Problem means the problem name, x0 is the starting point, t is the runtime
(in seconds) of the algorithms, k is the number of iterations and x∗ is the solution ob-
tained. We also include a column with the algorithm and the secant update used. Thus,
GN means Generalized Newton; GB, BB and SC means Algorithm 3.1 with the “Good”
Broyden update, “Bad” Broyden update and the Schubert update, respectively. A - sign
means divergence.

Problem Algorithm x0 t (sec) k x∗

Koj-Jo GN (0 0 0 0)T 0.152 21 (1 0 3 0)T

Koj-Jo GB (0 0 0 0)T 0.141 21 (1 0 3 0)T

Koj-Jo BB (0 0 0 0)T - - -
Koj-Jo SC (0 0 0 0)T - - -
Koj-Jo GN (1 1 1 1)T 0.060 8 (1 0 3 0)T

Koj-Jo GB (1 1 1 1)T 0.086 13 (1 0 3 0)T

Koj-Jo BB (1 1 1 1)T 0.074 12 (1 0 3 0)T

Koj-Jo SC (1 1 1 1)T - - -
Koj-Jo NG (0 0 0 100)T - - -
Koj-Jo GB (0 0 0 100)T 0.167 24 (1 0 3 0)T

Koj-Jo BB (0 0 0 100)T - - -
Koj-Jo SC (0 0 0 100)T - - -
Koj-Jo GN (1 0 1 0)T 0.038 6 (1 0 3 0)T

Koj-Jo GB (1 0 1 0)T 0.051 8 (1 0 3 0)T

Koj-Jo BB (1 0 1 0)T 0.056 8 (1 0 3 0)T

Koj-Jo SC (1 0 1 0)T - - -
Koj-Jo GN (1 0 0 0)T 0.082 8 (1 0 3 0)T

Koj-Jo GB (1 0 0 0)T 0.067 10 (1 0 3 0)T

Koj-Jo BB (1 0 0 0)T 0.087 12 (1 0 3 0)T

Koj-Jo SC (1 0 0 0)T - - -
Koj-Jo GN (0 1 1 0)T 0.066 9 (1 0 3 0)T

Koj-Jo GB (0 1 1 0)T 0.089 14 (1 0 3 0)T

Koj-Jo BB (0 1 1 0)T 0.229 17 (1 0 3 0)T

Koj-Jo SC (0 1 1 0)T - - -
Koj-Shi GN (0 0 0 0)T 0.212 15 (1 0 3 0)T

Koj-Shi GB (0 0 0 0)T 0.131 21 (1 0 3 0)T

Koj-Shi BB (0 0 0 0)T - - -
Koj-Shi SC (0 0 0 0)T - - -
Koj-Shi GN (1 1 1 1)T 0.067 10 (1 0 3 0)T

Koj-Shi GB (1 1 1 1)T 0.141 16 (1 0 3 0)T

Koj-Shi BB (1 1 1 1)T 0.102 16 (1 0 3 0)T

Koj-Shi SC (1 1 1 1)T - - -
Koj-Shi GC (0 0 0 100)T 0.129 17 (1 0 3 0)T

Koj-Shi GB (0 0 0 100)T 0.168 22 (1 0 3 0)T

Koj-Shi BB (0 0 0 100)T - - -
Koj-Shi SC (0 0 0 100)T - - -
Koj-Shi GN (1 0 1 0)T 0.039 6 (1 0 3 0)T

Koj-Shi GB (1 0 1 0)T 0.046 7 (1 0 3 0)T
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Problem Algorithm x0 t (sec) k x∗

Koj-Shi BB (1 0 1 0)T 0.044 7 (1 0 3 0)T

Koj-Shi GN (1 0 0 0)T 0.051 8
(√

6
2 0 0 1

2

)T

Koj-Shi GB (1 0 0 0)T 0.060 9
(√

6
2 0 0 1

2

)T

Koj-Shi BB (1 0 0 0)T 0.057 9
(√

6
2 0 0 1

2

)T

Koj-Shi SC (1 0 0 0)T - - -
Koj-Shi GN (0 1 1 0)T 0.070 10 (1 0 3 0)T

Koj-Shi GB (0 1 1 0)T 0.093 15 (1 0 3 0)T

Koj-Shi BB (0 1 1 0)T 0.125 15 (1 0 3 0)T

Koj-Shi SC (0 1 1 0)T - - -
Mathiesen GN (1 1 1 1)T 0.186 11 (0.0302 0 0 0)T

Mathiesen GB (1 1 1 1)T 0.178 11 (0.0302 0 0 0)T

Mathiesen BB (1 1 1 1)T 0.091 11 (0.0302 0 0 0)T

Mathiesen SC (1 1 1 1)T 0.070 5 (1.497 0 0 0)T

Mathiesen GN (100 100 100 100)T 0.102 13 (2.999 0 0 0)T

Mathiesen GB (100 100 100 100)T 0.132 7 (3 0 0 0)T

Mathiesen BB (100 100 100 100)T 0.054 7 (3 0 0 0)T

Mathiesen SC (100 100 100 100)T 0.094 9 (2.320 0 0 0)T

Mathiesen GN (1 0 1 0)T 0.091 4 (0 0 0 0)T

Mathiesen GB (1 0 1 0)T 0.046 6 (0 0 0 0)T

Mathiesen BB (1 0 1 0)T 0.043 6 (0 0 0 0)T

Mathiesen SC (1 0 1 0)T 0.071 6 (0.018 0 0 0)T

Mathiesen GN (0 1 1 0)T 0.037 5 (0.752 0 0 0)T

Mathiesen GB (0 1 1 0)T 0.036 5 (0.608 0 0 0)T

Mathiesen BB (0 1 1 0)T 0.036 5 (0.647 0 0 0)T

Mathiesen SC (0 1 1 0)T 0.037 5 (0.778 0 0 0)T

Billups GN 0 - - -
Billups GB 0 2.843 16 2.0488
Billups BB 0 2.827 16 2.0488
Billups SC 0 - - -

Table 1: Numerical results for the algorithms.

These results show the importance of taking into account the running time of the al-
gorithms because, comparing only the number of iterations performed by each of them is
not enough because, although in general the number of iterations performed by the Algo-
rithm 3.1 is greater than those made by the Generalized Newton algorithm, the number of
operations performed at each iteration by the Algorithm 3.1 is generally smaller than the
number of operations performed by de Generalize Newton algorithm. In particular, for the
Mathiesen problem, the Algorithm 3.1 was faster than the other one.

The results show the good performance of Algorithm 3.1 when it uses the “Good” Broyden
update, it converges for a 93% of the problems and starting points. Moreover, the Billups
problem is solved with the Algorithm 3.1 while the other algorithm diverges.
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5 Final Remarks

In this paper, we propose a global nonsmooth quasi-Newton method for solving the NCP
solving alternatively the unconstrained minimization problem (1.6) associated with the re-
formulation of NCP as a nonlinear system of equations. Moreover, we established global
and local convergence results for the algorithm proposed.

Following the philosophy of quasi Newton methods, we were not interested in calculating
matrices of generalized Jacobian of Φλ, therefore we proposed an approximation to the
gradient of merit function (1.6) and we show how good it is when we compared it to the
exact gradient.

Preliminary numerical experiments shows a good performance of our algorithm, but it
is necessary more numerical tests. We believe that other dynamical choice of parameter λ
could improve the performance of our algorithm.
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