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for numerical solution of problems like MPEC and MPCC. Scheel and Scholtes [22] studied
mathematical program with complementarity constraints and introduced several stationary
concepts. Henrion and Surowiec [10] compared two different calmness conditions on MPEC
and derived first order necessary optimality conditions via tools of generalized differentia-
tion introduced by Mordukhovich. Henrion et al. [11] derived an inner approximation to the
Frechet normal cone to the graph of solution mapping and used this inner approximation to
check strong stationarity via the weaker concept of M-stationarity.

Ye [24] considered optimization problem with complementarity constraints and derived
necessary and sufficient optimality conditions involving the proximal coderivatives. Ye [25]
considered a mathematical program with variational inequality constraints and an abstract
constraint and established Fritz-John type and Kuhn-Tucker type necessary optimality con-
ditions involving Mordukhovich coderivatives. Further, Ye [25] introduced several con-
straint qualifications for the Kuhn-Tucker type necessary optimality conditions involving
Mordukhovich coderivative. Flegel and Kanzow [4] used a completely different approach
and obtained short and elementary proof of the optimality conditions for MPEC using
the standard Fritz-John conditions. Ye [26] considered MPEC and introduced various sta-
tionary conditions and established that it is sufficient for global or locally optimal under
some generalized convexity assumption and obtained new constraint qualifications. Further,
Flegel and Kanzow [5] introduced a new Abadie-type constraint qualification and a new
Slater-type constraint qualification for the MPEC and proved that new Slater-type CQ im-
plies new Abadie-type CQ. Moreover, Flegel and Kanzow [5] introduced a new optimality
condition which holds under new Abadie-type CQ. Flegel and Kanzow [6] established that
M-stationarity is a first order optimality condition under a very weak Abadie-type constraint
qualification and obtained very strong exact penalization result. Recently, Guo and Lin [8]
have investigated the weakest constraint qualifications for the Bouligand and Mordukhovich
stationary points and relation among the existing constraint qualifications for mathematical
programs with equilibrium constraints (MPEC). Chieu and Lee [3] have studied the rela-
tions among the system of constraint qualifications tailored for mathematical programs with
equilibrium constraints (MPEC) and their local preservation property.

MPEC form a relatively new and interesting subclass of nonlinear programming prob-
lems. Chemical process industries require the solution of nonlinear problems as part of
current process synthesis, design, optimization and control activities. The use of equilib-
rium constraints in modeling process engineering problems is a relatively new and exciting
field of research, see Raghunathan and Biegler [21]. Chemical processes involve systems
that are governed by chemical equilibrium. Raghunathan and Biegler [21] developed an al-
gorithmic framework to solve general mathematical programming problems with equilibrium
constraints using nonlinear programming algorithms.

Hydro-economic river basin models (HERBM) based on mathematical programming are
conventionally formulated as explicit aggregate optimization problems with a single, aggre-
gate objective function. This model implicitly assumes that decisions on water allocation are
made via central planning or functioning markets such as to maximize the social welfare.
However, in the absence of perfect water markets, individual optimal decisions by water
users differ from the social optimum. Britz et al. [1] proposed hydro-economic river basin
models based on multiple optimization problems with equilibrium constraints, that yield
more realistic results on comparing with water management institutions.

The concept of duality is of fundamental importance in nonlinear programming problems.
Wolfe [23] used the Kuhn-Tucker conditions to formulate a dual program for a nonlinear
programming problem with the aim of defining a problem whose objective value gives lower
bound on the optimal value of the primal problem and whose optimal solution yields an
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optimal solution for the primal problem under certain regularity conditions. Wolfe [23]
established the weak duality i. e. every feasible solution of the dual has an objective value
less then or equal to the objective value for every feasible solution of the primal problem,
under the same convexity assumptions as required for the sufficiency of the Kuhn-Tucker
conditions. Mond and Weir [16] proposed a new type of dual based on the Wolfe type of
dual and established usual duality theorems under weaker convexity assumptions on the
functions involved in the objective and constraints. Many authors have studied duality
results for nonlinear programming problems in last four decades, see Mishra et al. [15] and
references cited in these.

To the best of our knowledge, dual problem to a MPEC has not been given in the
literature as yet.

In this paper, motivated by Wolfe [23] and Mond and Weir [16], we introduce Wolfe
type and Mond-Weir type dual programs to the mathematical programming problem with
equilibrium constraints (MPEC). We have established weak and strong duality theorems
relating the MPEC and the two dual programs. The paper is organized as follows: in
Section 2, we give some preliminaries, definitions and results. In Section 3, we derive weak
and strong duality theorems relating to the MPEC and the two dual models under convexity
and generalized convexity assumptions.

2 Preliminaries

This section contains some preliminaries which will be used throughout the paper.

Theorem 2.1 ([14]). Let f be a differentiable real valued function defined on a nonempty
open convex set X ⊆ Rn. Then, f is convex at x̄ ∈ X iff

f(x) ≥ f(x̄) + ⟨∇f(x̄), x− x̄⟩ , ∀x ∈ X.

Definition 2.2 ([14]). Let f be a differentiable real valued function defined on a nonempty
open convex set X ⊆ Rn. Then, the function f is said to be pseudoconvex at x̄ ∈ X iff the
following implication holds:

x, x̄ ∈ X, ⟨∇f(x̄), x− x̄⟩ ≥ 0 ⇒ f(x) ≥ f(x̄).

Equivalently,

x, x̄ ∈ X, f(x) < f(x̄) ⇒ ⟨∇f(x̄), x− x̄⟩ < 0.

Remark 2.3 ([14]). Every convex function is pseudoconvex, but the converse is not true
in general. For example, f(x) = x + x3 is not convex on R, because ∇2f(x) = 6x < 0, for
x < 0. However, f is pseudocovex on R. Since, ∇f(x̄)(x− x̄) ≥ 0 ⇒ x− x̄ ≥ 0 ⇒ x+ x3 ≥
x̄+ x̄3 ⇒ f(x) ≥ f(x̄).

Definition 2.4 ([14]). Let f be a differentiable real valued function defined on a nonempty
open convex set X ⊆ Rn. Then, the function f is said to be quasiconvex at x̄ ∈ X iff the
following implication holds:

x, x̄ ∈ X, f(x) ≤ f(x̄) ⇒ ⟨∇f(x̄), x− x̄⟩ ≤ 0.

Remark 2.5 ([14]). Every pseudoconvex function is quasiconvex, but converse is not true.
For example f(x) = x3, x ∈ R is quasiconvex, but not pseudoconvex.
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Given a feasible vector z̄ for the MPEC, we define the following index sets:

Ig := {i : gi(z̄) = 0},
α := α(z̄) = {i : Gi(z̄) = 0,Hi(z̄) > 0},
β := β(z̄) = {i : Gi(z̄) = 0,Hi(z̄) = 0},
γ := γ(z̄) = {i : Gi(z̄) > 0,Hi(z̄) = 0},

where i ∈ {1, 2, ..., l}. The set β is known as degenerate set. If β is empty, the vector z̄ is
said to satisfy the strict complementarity condition. The standard nonlinear programming
which has only one dual stationary condition, i.e., the Karush-Kuhn-Tucker condition, but
for the MPEC, we have various stationarity concepts.

The following concept of M-stationary point was introduced by Outrata [19].

Definition 2.6 (M-stationary point). A feasible point z̄ of MPEC is called the Mor-
dukhovich stationary point if there exists λ = (λg, λh, λG, λH) ∈ Rk+p+2l, such that fol-
lowing conditions hold:

0 = ∇f(z̄) +
∑
i∈Ig

λg
i∇gi(z̄) +

p∑
i=1

λh
i ∇hi(z̄)−

l∑
i=1

[λG
i ∇Gi(z̄) + λH

i ∇Hi(z̄)], (2.1)

λg
Ig

≥ 0, λG
γ = 0, λH

α = 0, (2.2)

∀i ∈ β, either λG
i > 0, λH

i > 0 or λG
i λ

H
i = 0.

The following concept of Strong-stationary point was introduced in [20,22].

Definition 2.7 (S-stationary point). A feasible point z̄ of MPEC is called strong stationary
point if there exists λ = (λg, λh, λG, λH) ∈ Rk+p+2l, such that (2.1), (2.2) and the following
condition hold:

∀i ∈ β, λG
i ≥ 0, λH

i ≥ 0.

The following concept of C-stationary point was introduced by Scheel and Scholtes [22].

Definition 2.8 (C-stationary point). A feasible point z̄ of MPEC is called the Clarke
stationary point if there exists λ = (λg, λh, λG, λH) ∈ Rk+p+2l, such that (2.1), (2.2) and
the following condition hold:

∀i ∈ β, λG
i λ

H
i ≥ 0.

The following concept of A-stationary point was introduced by Flegel and Kanzow [4].

Definition 2.9 (A-stationary point). A feasible point z̄ of MPEC is called alternatively
stationary point if there exists λ = (λg, λh, λG, λH) ∈ Rk+p+2l, such that (2.1), (2.2) and
the following condition hold:

∀i ∈ β, λG
i ≥ 0, or λH

i ≥ 0.

Remark 2.10 ([6]). The M-stationarity is the second strongest stationary condition af-
ter the S-stationarity. Also, the intersection of A-stationarity and C-stationarity give M-
stationarity and strong stationarity implies M-, A- and C-stationarity.

The following definition of the no nonzero abnormal multiplier constraint qualification
for MPEC is taken from Definition 2.10 in Ye [26].
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Definition 2.11. Let z̄ be a feasible point of MPEC, where all functions are continuously
differentiable at z̄. We say that the No Nonzero Abnormal Multiplier Constraint Qualifica-
tion (NNAMCQ) is satisfied at z̄ if there is no nonzero vector λ = (λg, λh, λG, λH) ∈ Rk+p+2l,
such that

0 =
∑
i∈Ig

λg
i∇gi(z̄) +

p∑
i=1

λh
i ∇hi(z̄)−

l∑
i=1

[λG
i ∇Gi(z̄) + λH

i ∇Hi(z̄)],

λg
Ig

≥ 0, λG
γ = 0, λH

α = 0,

∀i ∈ β, either λG
i > 0, λH

i > 0 or λG
i λ

H
i = 0.

The following definition of the generalized Mangasarian-Fromovitz constraint qualifica-
tion for MPEC is taken from Definition 2.11 in Ye [26].

Definition 2.12. Let z̄ be a feasible point of MPEC where all functions are continuously
differentiable at z̄. We say that MPEC generalized Mangasarian-Fromovitz constraint qual-
ification (MPEC GMFCQ) is satisfied at z̄ if
(i) for every partition of β into sets P,Q,R with R ̸= ϕ, there exist d, such that

∇gi(z̄)
T d ≤ 0, ∀i ∈ Ig,

∇hi(z̄)
T d = 0, ∀i = 1, 2, ..., p,

∇Gi(z̄)
T d = 0, ∀i ∈ α ∪Q,

∇Hi(z̄)
T d = 0, ∀i ∈ γ ∪ P,

∇Gi(z̄)
T d ≥ 0, ∇Hi(z̄)

T d ≥ 0, i ∈ R,

and for some i ∈ R either ∇Gi(z̄)
T d > 0 or ∇Hi(z̄)

T d > 0;
(ii) for every partition of β into sets P,Q, the gradient vectors

∇hi(z̄), ∀i = 1, 2, ..., p,

∇Gi(z̄), ∀i ∈ α ∪Q,

∇Hi(z̄), ∀i ∈ γ ∪ P,

are linearly independent and there exists d ∈ Rn, such that

∇gi(z̄)
T d < 0, ∀i ∈ Ig,

∇hi(z̄)
T d = 0, ∀i = 1, 2, ..., p,

∇Gi(z̄)
T d = 0, ∀i ∈ α ∪Q,

∇Hi(z̄)
T d = 0, ∀i ∈ γ ∪ P.

The following proposition is Proposition 2.1 in [26], which proves that the NNAMCQ is
equivalent to MPEC GMFCQ.

Proposition 2.13. NNAMCQ is equivalent to MPEC GMFCQ.

The following theorem is Theorem 2.1 in [26], which gives the Fritz-John type M-
stationary condition for a feasible solution to be a local solution of the MPEC.
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Theorem 2.14 (Fritz-John type M-stationary condition). Let z̄ be a local solution of MPEC
where all functions are continuously differentiable at z̄. Then, there exists r ≥ 0,
λ = (λg, λh, λG, λH) ∈ Rk+p+2l, not all zero, such that

0 = r∇f(z̄) +
∑
i∈Ig

λg
i∇gi(z̄) +

p∑
i=1

λh
i ∇hi(z̄)−

l∑
i=1

[λG
i ∇Gi(z̄) + λH

i ∇Hi(z̄)],

λg
Ig

≥ 0, λG
γ = 0, λH

α = 0,

∀i ∈ β, either λG
i > 0, λH

i > 0 or λG
i λ

H
i = 0.

In the above Fritz-John type M-stationary condition if r is never zero, then, it can be
taken as 1 and the following KKT type M-stationary condition follows immediately. The
following theorem is Corollary 2.1 in [26].

Theorem 2.15 (Kuhn-Tucker type necessary M-stationary condition). Let z̄ be a locally op-
timal solution for MPEC where all the function are continuously differentiable at z̄. Suppose
NNAMCQ is satisfied at z̄, then, z̄ is M-stationary.

In the following theorem taken from Theorem 2.3 in [26], we see that M-stationary con-
dition turns into a sufficient optimality condition under certain MPEC generalized convexity
condition.

Theorem 2.16 (Sufficient M-stationary condition). Let z̄ be a feasible point of MPEC and
M-stationary condition holds at z̄, i.e., there exists λ = (λg, λh, λG, λH) ∈ Rk+p+2l, such
that

0 = ∇f(z̄) +
∑
i∈Ig

λg
i∇gi(z̄) +

p∑
i=1

λh
i ∇hi(z̄)−

l∑
i=1

[λG
i ∇Gi(z̄) + λH

i ∇Hi(z̄)],

λg
Ig

≥ 0, λG
γ = 0, λH

α = 0,

∀i ∈ β, either λG
i > 0, λH

i > 0 or λG
i λ

H
i = 0.

Let J+ := {i : λh
i > 0}, J− := {i : λh

i < 0},
β+ := {i ∈ β : λG

i > 0, λH
i > 0},

β+
G := {i ∈ β : λG

i = 0, λH
i > 0}, β−

G := {i ∈ β : λG
i = 0, λH

i < 0},
β+
H := {i ∈ β : λH

i = 0, λG
i > 0}, β−

H := {i ∈ β : λH
i = 0, λG

i < 0},
α+ := {i ∈ α : λG

i > 0}, α− := {i ∈ α : λG
i < 0},

γ+ := {i ∈ γ : λH
i > 0}, γ− := {i ∈ γ : λH

i < 0}.
Further, suppose that f is pseudoconvex at z̄, gi(i ∈ Ig), hi(i ∈ J+),−hi(i ∈ J−), Gi(i ∈
α− ∪ β−

H),−Gi(i ∈ α+ ∪ β+
H ∪ β+),Hi(i ∈ γ− ∪ β−

G),−Hi(i ∈ γ+ ∪ β+
G ∪ β+) are quasiconvex

at z̄. Then, in the case when α− ∪ γ− ∪ β−
G ∪ β−

H = ϕ, z̄ is a global optimal solution for
MPEC; and when β−

G ∪ β−
H = ϕ or when z̄ is an interior point relative to the set

S ∩ {z : Gi(z) = 0, Hi(z) = 0, i ∈ β−
G ∪ β+

H},

i.e., for every feasible point z which is close to z̄, it holds that

Gi(z) = 0, Hi(z) = 0, ∀i ∈ β−
G ∪ β−

H ,

then, z̄ is a locally optimal solution for MPEC, where S denotes the set of feasible solutions
of MPEC.
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3 Duality

In this section, we formulate a Wolfe type dual problem and a Mond-Weir type dual problem
for the MPEC under convexity and generalized convexity assumptions.

WDMPEC(z̄) max
u,λ

f(u) +
∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(u)−

l∑
i=1

[λG
i Gi(u) + λH

i Hi(u)]

subject to:

0 = ∇f(u) +
∑
i∈Ig

λg
i∇gi(u) +

p∑
i=1

λh
i ∇hi(u)−

l∑
i=1

[λG
i ∇Gi(u) + λH

i ∇Hi(u)], (3.1)

λg
Ig

≥ 0, λG
γ = 0, λH

α = 0,

∀i ∈ β, either λG
i > 0, λH

i > 0 or λG
i λ

H
i = 0,

where, λ = (λg, λh, λG, λH) ∈ Rk+p+2l.

Remark 3.1. If h(z) := 0, G(z) := 0,H(z) := 0, then, Wolfe type dual problem WDMPEC
(z̄) for MPEC coincides with the classical Wolfe type dual problem for nonlinear program-
ming given by Wolfe [23].

Theorem 3.2 (Weak Duality). Let z̄ be feasible for MPEC, (u, λ) feasible for WDMPEC (z̄)
and index sets Ig, α, β, γ defined accordingly. Suppose that f, gi(i ∈ Ig), hi(i ∈ J+),−hi(i ∈
J−), Gi(i ∈ α− ∪ β−

H),−Gi(i ∈ α+ ∪ β+
H ∪ β+),Hi(i ∈ γ− ∪ β−

G),−Hi(i ∈ γ+ ∪ β+
G ∪ β+) are

convex functions at u. If α− ∪ γ− ∪ β−
G ∪ β−

H = ϕ. Then, for any z feasible for the MPEC,
we have

f(z) ≥ f(u) +
∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(u)−

l∑
i=1

[λG
i Gi(u) + λH

i Hi(u)].

Proof. Let z be any feasible point for MPEC. Then, we have

gi(z) ≤ 0, ∀i ∈ Ig

and
hi(z) = 0, i = 1, 2..., p.

Since f is convex at u, then,

f(z)− f(u) ≥ ⟨∇f(u), z − u⟩ . (3.2)

Similarly, we have
gi(z)− gi(u) ≥ ⟨∇gi(u), z − u⟩ , ∀i ∈ Ig, (3.3)

hi(z)− hi(u) ≥ ⟨∇hi(u), z − u⟩ , ∀i ∈ J+, (3.4)

−hi(z) + hi(u) ≥ −⟨∇hi(u), z − u⟩ , ∀i ∈ J−, (3.5)

−Gi(z) +Gi(u) ≥ −⟨∇Gi(u), z − u⟩ , ∀i ∈ α+ ∪ β+
H ∪ β+, (3.6)

−Hi(z) +Hi(u) ≥ −⟨∇Hi(u), z − u⟩ , ∀i ∈ γ+ ∪ β+
G ∪ β+. (3.7)
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If α−∪γ−∪β−
G ∪β−

H = ϕ, multiplying (3.3)−(3.7) by λg
i ≥ 0(i ∈ Ig), λ

h
i > 0(i ∈ J+),−λh

i >
0(i ∈ J−), λG

i > 0(i ∈ α+ ∪ β+
H ∪ β+), λH

i > 0(i ∈ γ+ ∪ β+
G ∪ β+), respectively and adding

(3.2)− (3.7), we get

f(z)− f(u) +
∑
i∈Ig

λg
i gi(z)−

∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(z)−

p∑
i=1

λh
i hi(u)−

l∑
i=1

λG
i Gi(z)

+
l∑

i=1

λG
i Gi(u)−

l∑
i=1

λH
i Hi(z) +

l∑
i=1

λH
i Hi(u)

≥

⟨
∇f(u) +

∑
i∈Ig

λg
i∇gi(u) +

p∑
i=1

λh
i ∇hi(u)−

l∑
i=1

[λG
i ∇Gi(u) + λH

i ∇Hi(u)], z − u

⟩
.

Using condition (3.1), we have

f(z)− f(u) +
∑
i∈Ig

λg
i gi(z)−

∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(z)−

p∑
i=1

λh
i hi(u)

−
l∑

i=1

λG
i Gi(z) +

l∑
i=1

λG
i Gi(u)−

l∑
i=1

λH
i Hi(z) +

l∑
i=1

λH
i Hi(u) ≥ 0.

Now, using the feasibility of z for MPEC, that is, gi(z) ≤ 0, hi(z) = 0, Gi(z) ≥ 0,Hi(z) ≥ 0,
we get

f(z)− f(u)−
∑
i∈Ig

λg
i gi(u)−

p∑
i=1

λh
i hi(u) +

l∑
i=1

λG
i Gi(u) +

l∑
i=1

λH
i Hi(u) ≥ 0.

Hence,

f(z) ≥ f(u) +
∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(u)−

l∑
i=1

[λG
i Gi(u) +

l∑
i=1

λH
i Hi(u)].

This completes the proof.

Remark 3.3. If h(z) := 0, G(z) := 0,H(z) := 0, then, Theorem 3.2 coincides with Theorem
8.1.3 in [14].

The following corollary is a direct consequence of Theorem 3.2.

Corollary 3.4. Let z̄ be feasible for MPEC where all constraint functions gi, hi, Gi, Hi are
affine and index sets Ig, α, β, γ defined accordingly. Then, for any z feasible for the MPEC
and (u, λ) feasible for WDMPEC (z̄), we have

f(z) ≥ f(u) +
∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(u)−

l∑
i=1

[λG
i Gi(u) + λH

i Hi(u)].

Theorem 3.5 (Strong Duality). If z̄ is a global optimal solution of MPEC, such that
NNAMCQ is satisfied at z̄ and index sets Ig, α, β, γ defined accordingly. Let f, gi(i ∈
Ig), hi(i ∈ J+),−hi(i ∈ J−), Gi(i ∈ α− ∪ β−

H),−Gi(i ∈ α+ ∪ β+
H ∪ β+), Hi(i ∈ γ− ∪

β−
G),−Hi(i ∈ γ+ ∪ β+

G ∪ β+) satisfy the assumption of the Theorem 3.2. Then, there exists
λ̄, such that (z̄, λ̄) is a global optimal solution of WDMPEC (z̄) and respective objective
values are equal.
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Proof. Since, z̄ is a global optimal solution of MPEC and the NNAMCQ is satisfied at z̄,
hence, ∃ λ̄ = (λ̄g, λ̄h, λ̄G, λ̄H) ∈ Rk+p+2l, such that the M-stationarity conditions for MPEC
are satisfied, that is,

0 = ∇f(z̄) +
∑
i∈Ig

λ̄g
i∇gi(z̄) +

p∑
i=1

λ̄h
i ∇hi(z̄)−

l∑
i=1

[λ̄G
i ∇Gi(z̄) + λ̄H

i ∇Hi(z̄)], (3.8)

λ̄g
Ig

≥ 0, λ̄G
γ = 0, λ̄H

α = 0,

∀i ∈ β, either λ̄G
i > 0, λ̄H

i > 0 or λ̄G
i λ̄

H
i = 0.

Therefore, (z̄, λ̄) is feasible for WDMPEC (z̄). By Theorem 3.2, we have

f(z̄) ≥ f(u) +
∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(u)−

l∑
i=1

[λG
i Gi(u) + λH

i Hi(u)], (3.9)

for any feasible solution (u, λ) for WDMPEC (z̄). Also, from the feasibility condition of
MPEC and WDMPEC (z̄), that is, for i ∈ Ig(z̄), gi(z̄) = 0, also hi(z̄) = 0, Gi(z̄) = 0, ∀i ∈
α ∪ β and Hi(z̄) = 0,∀i ∈ β ∪ γ, then, we have

f(z̄) = f(z̄) +
∑
i∈Ig

λ̄g
i gi(z̄) +

p∑
i=1

λ̄h
i hi(z̄)−

l∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)]. (3.10)

Using (3.9) and (3.10), we have

f(z̄) +
∑
i∈Ig

λ̄g
i gi(z̄) +

p∑
i=1

λ̄h
i hi(z̄)−

l∑
i=1

[λ̄G
i Gi(z̄) + λ̄H

i Hi(z̄)]

≥ f(u) +
∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(u)−

l∑
i=1

[λG
i Gi(u) + λH

i Hi(u)].

Hence,(z̄, λ̄) is a global optimal solution for WDMPEC (z̄) and the respective objective
values are equal.

Remark 3.6. If h(z) := 0, G(z) := 0,H(z) := 0, then, Theorem 3.5 coincides with Theorem
8.1.4 in [14].

The following corollary is a consequence of Theorem 3.5.

Corollary 3.7. If z̄ is a optimal solution of MPEC, where all constraint functions
gi, hi, Gi,Hi are affine. Then, there exists λ̄, such that (z̄, λ̄) is a optimal solution of WDM-
PEC (z̄) and respective objective values are equal.

Proof. Let z̄ is a global optimal solution of MPEC. If all constraint functions gi, hi, Gi, Hi are
affine, then, from Theorem 3.6, Theorem 4.3 and Proposition 4.2 in [25], the M-stationary
condition holds for MPEC. The remaining part of the proof is same as in the proof of
Theorem 3.5.
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Example 3.8. Consider the following MPEC in R2 :

MPEC(1) min z21 + z22

subject to : z1 ≥ 0,

z2 ≥ 0,

z1z2 = 0.

Let Ξ := {(z1, z2) | z1 ≥ 0, z2 ≥ 0, z1z2 = 0} be feasible region of MPEC(1). Now, we for-
mulate Wolfe type dual problem WDMPEC (z̄) for MPEC(1):

max
u,λ

u2
1 + u2

2 − [λGu1 + λHu2]

subject to: (
0
0

)
=

(
2u1

2u2

)
− λG

(
1
0

)
− λH

(
0
1

)
.

If β is non-empty, then, either

λG > 0, λH > 0, or λGλH = 0.

If we take point z̄ = (0, 0) from feasible region Ξ, then, index sets α (0, 0) and γ (0, 0) are
empty sets, but β := β (0, 0) is non-empty. Also, from solving constraint equation in feasible
region of WDMPEC(0, 0), we get λG = 2u1 and λH = 2u2. Since β is non-empty, we consider
a β+, β+

G , β+
H to decide the feasible region of WDMPEC(0, 0) . It is clear that assumptions of

Theorem 3.2 are satisfied, so, Theorem 3.2 holds between MPEC(1) and WDMPEC(0, 0).
Also, if we put value of λG and λH in the objective function of dual problem, then,

u2
1 + u2

2 − [λGu1 + λHu2] = −u2
1 − u2

2. Further, it is clear that for any z ∈ Ξ, f (z1, z2) = 0
or z21 or z22 which is greater than equal to −u2

1 − u2
2, for any feasible u. Hence, Theorem 3.2

is verified.
If we take feasible point z̄ = (1, 0), then, index sets α (1, 0) and β (1, 0) are empty sets but

γ (1, 0) is non-empty set. Therefore, we find the feasible region of WDMPEC(1, 0) according
to these index sets, Theorem 3.2 holds between MPEC(1) and WDMPEC(1, 0). Similarly, if
we take feasible point z̄ = (0, 1), then, the only non-empty set is γ (0, 1) . Then, we find the
feasible region of WDMPEC(0, 1) according to this index set, Theorem 3.2. holds between
MPEC(1) and WDMPEC(0, 1).

It is clear that z̄ = (0, 0) is the optimal solution of MPEC(1). Also, ∇G(z̄) and ∇H(z̄)
are linearly independent, so, we say that MPEC linear independence constraint qualification
(MPEC LICQ) is satisfied at z̄. Then, by Definition 2.8, Theorem 3.2 in [26], NNAMCQ is
satisfied at z̄. Hence, the assumptions of the Theorem 3.5 are satisfied. Then, by Theorem
3.5, there exists λ̄ such that (z̄, λ̄) is an optimal solution of WDMPEC(0, 0) and respective
values are equal. Also, it is easy to see that

0 = f(z̄) = f(z̄)− [λ̄GG(z̄) + λ̄HH(z̄)].

We now prove that duality relation between the mathematical programming problem
with equilibrium constraints (MPEC) and the following Mond-Weir type dual problem

MWDMPEC(z̄) max
u,λ

f(u)
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subject to:

0 = ∇f(u) +
∑
i∈Ig

λg
i∇gi(u) +

p∑
i=1

λh
i ∇hi(u)−

l∑
i=1

[λG
i ∇Gi(u) + λH

i ∇Hi(u)], (3.11)

∑
i∈Ig

λg
i gi(u) ≥ 0,

p∑
i=1

λh
i hi(u) ≥ 0,

l∑
i=1

λG
i Gi(u) ≤ 0,

l∑
i=1

λH
i Hi(u) ≤ 0,

λg
Ig

≥ 0, λG
γ = 0, λH

α = 0,

∀i ∈ β, either λG
i > 0, λH

i > 0 or λG
i λ

H
i = 0,

where, λ = (λg, λh, λG, λH) ∈ Rk+p+2l.

Remark 3.9. If h(z) := 0, G(z) := 0,H(z) := 0, then, Mond-Weir type dual problem
MWDMPEC (z̄) for MPEC coincides with the Mond-Weir type dual problem for nonlinear
programming given in [16].

Theorem 3.10 (Weak Duality). Let z̄ be feasible for MPEC, (u, λ) be feasible for MWDM-
PEC (z̄) and the index sets Ig, α, β, γ defined accordingly. Suppose that f, gi(i ∈ Ig), hi(i ∈
J+),−hi(i ∈ J−), Gi(i ∈ α− ∪ β−

H),−Gi(i ∈ α+ ∪ β+
H ∪ β+), Hi(i ∈ γ− ∪ β−

G),−Hi(i ∈
γ+ ∪ β+

G ∪ β+) are convex functions at u. If α− ∪ γ− ∪ β−
G ∪ β−

H = ϕ, then, for any z feasible
for the MPEC, we have

f(z) ≥ f(u).

Proof. Let z be any feasible point for MPEC. Then, we have

gi(z) ≤ 0, ∀i ∈ Ig

and

hi(z) = 0, i = 1, 2..., p.

Since, f is convex at u, we have

f(z)− f(u) ≥ ⟨∇f(u), z − u⟩ . (3.12)

Similarly, we have

gi(z)− gi(u) ≥ ⟨∇gi(u), z − u⟩ , ∀i ∈ Ig, (3.13)

hi(z)− hi(u) ≥ ⟨∇hi(u), z − u⟩ , ∀i ∈ J+, (3.14)

−hi(z) + hi(u) ≥ −⟨∇hi(u), z − u⟩ , ∀i ∈ J−, (3.15)

−Gi(z) +Gi(u) ≥ −⟨∇Gi(u), z − u⟩ , ∀i ∈ α+ ∪ β+
H ∪ β+, (3.16)

−Hi(z) +Hi(u) ≥ −⟨∇Hi(u), z − u⟩ , ∀i ∈ γ+ ∪ β+
G ∪ β+. (3.17)
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If α− ∪ γ− ∪ β−
G ∪ β−

H = ϕ, multiplying (3.13) − (3.17) by λg
i ≥ 0(i ∈ Ig), λ

h
i > 0(i ∈

J+),−λh
i > 0(i ∈ J−), λG

i > 0(i ∈ α+ ∪ β+
H ∪ β+), λH

i > 0(i ∈ γ+ ∪ β+
G ∪ β+), respectively

and adding (3.12)− (3.17), we get

f(z)− f(u) +
∑
i∈Ig

λg
i gi(z)−

∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(z)−

p∑
i=1

λh
i hi(u)−

l∑
i=1

λG
i Gi(z)

+
l∑

i=1

λG
i Gi(u)−

l∑
i=1

λH
i Hi(z) +

l∑
i=1

λH
i Hi(u)

≥

⟨
∇f(u) +

∑
i∈Ig

λg
i∇gi(u) +

p∑
i=1

λh
i ∇hi(u)−

l∑
i=1

[λG
i ∇Gi(u) + λH

i ∇Hi(u)], z − u

⟩
.

Using condition (3.11), the above inequality gives

f(z)− f(u) +
∑
i∈Ig

λg
i gi(z)−

∑
i∈Ig

λg
i gi(u) +

p∑
i=1

λh
i hi(z)−

p∑
i=1

λh
i hi(u)

−
l∑

i=1

λG
i Gi(z) +

l∑
i=1

λG
i Gi(u)−

l∑
i=1

λH
i Hi(z) +

l∑
i=1

λH
i Hi(u) ≥ 0.

Now, using the feasibilty of z and u for MPEC and MWDMPEC(z̄), respectively, we get

f(z)− f(u) ≥ 0

or
f(z) ≥ f(u).

This completes the proof.

Remark 3.11. If h(z) := 0, G(z) := 0,H(z) := 0, then, weak duality Theorem 3.10 co-
incides with the weak duality theorem for Mond-Weir type dual for standard nonlinear
programming in [16].

The following corollary is a consequence of Theorem 3.10.

Corollary 3.12. Let z̄ be feasible for MPEC where all constraint functions gi, hi, Gi,Hi are
affine and index sets Ig, α, β, γ defined accordingly. Then, for any z feasible for the MPEC
and (u, λ) feasible for MWDMPEC (z̄), we have

f(z) ≥ f(u).

Theorem 3.13 (Strong Duality). If z̄ is a global optimal solution of MPEC, such that
the NNAMCQ is satisfied at z̄ and index sets Ig, α, β, γ defined accordingly. Let f, gi(i ∈
Ig), hi(i ∈ J+),−hi(i ∈ J−), Gi(i ∈ α− ∪ β−

H),−Gi(i ∈ α+ ∪ β+
H ∪ β+), Hi(i ∈ γ− ∪

β−
G),−Hi(i ∈ γ+∪β+

G ∪β+) satisfy the assumptions of the Theorem 3.10. Then, there exists
λ̄, such that (z̄, λ̄) is a global optimal solution of MWDMPEC(z̄) and respective objective
values are equal.

Proof. The proof follows the lines of the proof of Theorem 3.5 and invoking Theorem 3.10.
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Remark 3.14. If h(z) := 0, G(z) := 0,H(z) := 0, then, strong duality Theorem 3.13
coincides with the strong duality theorem for Mond-Weir type dual for standard nonlinear
programming in [16].

The following corollary is a consequence of Theorem 3.13.

Corollary 3.15. If z̄ is a optimal solution of MPEC where all constraint functions
gi, hi, Gi,Hi are affine. Then, there exists λ̄ such that (z̄, λ̄) is a optimal solution of MWDM-
PEC (z̄) and respective objective values are equal.

Proof. If z̄ is an optimal solution of MPEC where all constraint functions gi, hi, Gi,Hi are
affine. Then, by Theorems 3.6, 4.3 and Proposition 4.2 in [25], the M-stationary condition
holds for MPEC. Hence, by the proof of Theorem 3.13, there exists λ̄, such that (z̄, λ̄) is an
optimal solution of MWDMPEC(z̄) and respective objective values are equal.

Example 3.16. Consider the following MPEC problem in R2 :

MPEC(2) min z1 + z2

subject to : z1 + z2 ≥ 0,

z2 − z1 ≥ 0,

(z1 + z2)(z2 − z1) = 0.

The Mond-Weir type dual problem MWDMPEC(z̄) for the MPEC(2) is:

max
u,λ

u1 + u2

subject to: (
0
0

)
=

(
1
1

)
− λG

(
1
1

)
− λH

(
−1
1

)
, (3.18)

λG (u1 + u2) ≤ 0, (3.19)

λH (u2 − u1) ≤ 0, (3.20)

if β is non-empty, then, either

λG > 0, λH > 0, or λGλH = 0.

From (3.18), λG −λH = 1 and λG +λH = 1, then, we get λG = 1 and λH = 0. If z̄ = (0, 0) ,
then, index sets α (0, 0) and γ (0, 0) are empty sets, but β (0, 0) is non-empty. Also, by
definition of sets β+, β+

G , β+
H , we can see that only β+

H is non-empty. It is clear that the
assumptions of Theorem 3.10 are satisfied. So, Theorem 3.10 holds between MPEC(2) and
MWDMPEC(0, 0). Now, if we put λG = 1 in (3.19), we get u1 + u2 ≤ 0. But, for any
feasible z for MPEC(2), f(z) = 0 or 2z1, z1 > 0, so, f(z) ≥ f(u), for any feasible u for
MWDMPEC(0, 0).

Similarly, If z̄ = (1, 1) , then, index sets α (1, 1) and β (1, 1) are empty sets, but γ (1, 1) is
non-empty. On the other hand, if z̄ = (−1, 1) , then, the only non-empty set is α (−1, 1) . In
all the cases, assumptions of the Theorem 3.10 are satisfied, therefore, Theorem 3.10 holds
between MPEC(2) and its corresponding Mond-Weir dual problem MWDMPEC(z̄).



118 Y. PANDEY AND S.K. MISHRA

Again, z̄ = (0, 0) is the optimal solution of MPEC(2). Also, ∇G(z̄) =

(
1
1

)
and

∇H(z̄) =

(
1
−1

)
are linearly independent, so, MPEC linear independence constraint qual-

ification (MPEC LICQ) is satisfied at z̄. Then, by Definition 2.8 and Theorem 3.2 in [26],
NNAMCQ is satisfied at z̄. Then, by Theorem 3.13 there exists λ̄ such that (z̄, λ̄) is an
optimal solution of MWDMPEC(0, 0) and optimal values are equal.

Now, we establish weak and strong duality theorems for the MPEC and its Mond-Weir
type dual problem under generalized convexity assumptions.

Theorem 3.17 (Weak Duality). Let z̄ be feasible for the MPEC, (u, λ) be feasible for
MWDMPEC (z̄) and index sets Ig, α, β, γ defined accordingly. Also, suppose that f is pseu-
doconvex at u, and the functions ∑

i∈Ig

λg
i gi(.)(λ

g
i ≥ 0),

p∑
i=1

λh
i hi(.)(λ

h
i > 0, ∀i ∈ J+, λh

i < 0, ∀i ∈ J−),

∑
i∈α+∪β+

G∪β+

λH
i (−Hi)(.)(λ

H
i > 0)

and ∑
i∈α+∪β+

H∪β+

λG
i (−Gi)(.)(λ

G
i > 0)

are quasiconvex at u. If α−∪γ−∪β−
G ∪β−

H = ϕ, then, for any z feasible for MPEC, we have

f(z) ≥ f(u).

Proof. By feasibility conditions of MPEC, MWDMPEC(z̄) and quasiconvexity of∑
i∈Ig

λg
i gi(.), we have

∑
i∈Ig

λg
i gi(z)−

∑
i∈Ig

λg
i gi(u) ≤ 0 ⇒

⟨∑
i∈Ig

λg
i∇gi(u), z − u

⟩
≤ 0. (3.21)

Similarly, by quasiconvexity of
∑p

i=1 λ
h
i hi(.), we have

p∑
i=1

λh
i hi(z)−

p∑
i=1

λh
i hi(u) ≤ 0 ⇒

⟨
p∑

i=1

λh
i ∇hi(u), z − u

⟩
≤ 0. (3.22)

For i ∈ α+ ∪ β+
H ∪ β+, we get

∑
i

λG
i (−Gi)(z)−

∑
i

λG
i (−Gi)(u) ≤ 0 ⇒

⟨∑
i

λG
i (−∇Gi)(u), z − u

⟩
≤ 0. (3.23)

Similarly, for i ∈ α+ ∪ β+
G ∪ β+, we have

∑
i

λH
i (−Hi)(z)−

∑
i

λH
i (−Hi)(u) ≤ 0 ⇒

⟨∑
i

λH
i (−∇Hi)(u), z − u

⟩
≤ 0. (3.24)
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Adding (3.21), (3.22), (3.23) and (3.24), we get⟨∑
i∈Ig

λg
i∇gi(u) +

p∑
i=1

λh
i ∇hi(u)−

[
l∑
i

λG
i ∇Gi(u) +

l∑
i

λH
i ∇Hi(u)

]
, z − u

⟩
≤ 0.

From, (3.11) and pseudoconvexity of f, we have

⟨∇f(u), z − u⟩ ≥ 0 ⇒ f(z) ≥ f(u).

This completes the proof.

Remark 3.18. If h(z) := 0, G(z) := 0,H(z) := 0, then, weak duality Theorem 3.17 co-
incides with the weak duality theorem for Mond-Weir type dual for standard nonlinear
programming in [16].

Theorem 3.19 (Strong Duality). If z̄ is a global optimal solution of MPEC, such that
the NNAMCQ is satisfied at z̄ and index sets Ig, α, β, γ defined accordingly. Let f, gi(i ∈
Ig), hi(i ∈ J+),−hi(i ∈ J−), Gi(i ∈ α− ∪ β−

H),−Gi(i ∈ α+ ∪ β+
H ∪ β+),Hi(i ∈ γ− ∪ β−

G),
and −Hi(i ∈ γ+ ∪β+

G ∪β+) satisfy the assumptions of the Theorem 3.17. Then, there exists
λ̄, such that (z̄, λ̄) is a global optimal solution of MWDMPEC (z̄) and respective objective
values are equal.

Proof. As z̄ is a global optimal solution for MPEC and the NNAMCQ is satisfied at z̄, hence,
there exists λ̄ ∈ Rk+p+l such that the M-stationarity conditions for MPEC are satisfied, that
is

0 = ∇f(z̄) +
∑
i∈Ig

λ̄g
i∇gi(z̄) +

p∑
i=1

λ̄h
i ∇hi(z̄)−

l∑
i=1

[λ̄G
i ∇Gi(z̄) + λ̄H

i ∇Hi(z̄)],

λ̄g
Ig

≥ 0, λ̄G
γ = 0, λ̄H

α = 0,

∀i ∈ β, either λ̄G
i > 0, λ̄H

i > 0 or λ̄G
i λ̄

H
i = 0.

Since, z̄ is a optimal solution for MPEC, we have

∑
i∈Ig

λ̄g
i gi(z̄) = 0,

p∑
i=1

λ̄h
i hi(z̄) = 0,

l∑
i=1

λ̄G
i Gi(z̄) = 0,

l∑
i=1

λ̄H
i Hi(z̄) = 0.

Therefore, (z̄, λ̄) is feasible for MWDMPEC(z̄). Also, by Theorem 3.17, for any feasible
(u, λ), we have

f(z̄) ≥ f(u).

Thus, (z̄, λ̄) is an optimal solution for MWDMPEC (z̄) and the respective objective values
are equal. This completes the proof.

Remark 3.20. If h(z) := 0, G(z) := 0,H(z) := 0, then, strong duality Theorem 3.19
coincides with the strong duality theorem for Mond-Weir type dual for standard nonlinear
programming in [16].

Remark 3.21. The sum of quasiconvex functions is not in general quasiconvex. For ex-
ample, the functions f(x) = x3, g(x) = −3x are quasiconvex in R but their sum h(x) =
f(x)+ g(x) = x3−3x is not quasiconvex (see, e.g. [2]). So, the conditions taken in Theorem
3.17 and Theorem 3.19 are weaker than conditions in which gi(i ∈ Ig), hi(i ∈ J+),−hi(i ∈
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J−),−Gi(i ∈ α+∪β+
H ∪β+) and −Hi(i ∈ γ+∪β+

G∪β+) are quasiconvex functions. To check
the sum functions are quasiconvex at feasible point of dual problem MWDMPEC (z̄), first
we have to find feasible region according to given point z̄ as in Example 3.8 and Example
3.16 and then used the Definition 2.4 and various characterization of quasiconvexity at point
given in [2].

The following corollary is a consequence of Theorem 3.17 and 3.19.

Corollary 3.22. If z̄ is an optimal solution of MPEC where all constraint functions
gi, hi, Gi,Hi are affine. Then, there exists λ̄, such that (z̄, λ̄) is an optimal solution of
MWDMPEC(z̄).

4 Conclusions

We have studied mathematical programs with equilibrium constraints (MPECs) and intro-
duced the Wolfe type dual WDMPEC(z̄) and Mond-Weir type dual MWDMPEC(z̄) for
the MPEC. We have established weak and strong duality theorems relating the MPEC and
the two duals WDMPEC(z̄) and MWDMPEC(z̄). Moreover, we have discussed the cases
when all the constraint functions are affine. Suitable examples have been given to illus-
trate the significance of the results. The results presented in this paper can be extended
for more generalized convex functions as well as for nonsmooth functions on the lines of Ye
and Zhang [27]. Further, the results presented in this paper can be extended for the second
order duality for tighter lower bound on the primal problem, following the work of Guo et
al. [9].
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