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showed that the constraint set H can be viewed as the solution set of the minimization
problem

min
x∈X̂

{
∥Ax− a∥2 + ∥max

{
0, g(x)

}
∥2
}

with the max is taken coordinate-wise. In [21], the authors showed that the problem (S)
can also be viewed as a hierarchical equilibrium problem and variational inequality problem.

Let us summarize some interesting works on problem (S). In [9], Cabot gave a proximal
point algorithm to solve (S). Under appropriate assumptions, he showed that the algorithm
generates a sequence that converges to a solution of (S). In [10], for problem (S), Dempe et
al. gave necessary and sufficient optimality conditions under convexity and differentiability
assumptions and some qualification conditions. These qualification conditions use conjugacy
and limiting normal cones. In [17], for problem (S) Solodov presented an explicit gradient
descent method. Under convexity and regularity assumptions on the functions involved
and some boundedness properties, he proved the convergence of an algorithm associated
to this method. In [18], the same author provided an explicit bundle algorithm where the
convergence is obtained under appropriate assumptions.

It is not difficult to see that under our data, the problem (S) admits at least one solution
(the set M is compact and F is continuous on Rn as a finite convex function). Our aim
in this paper is to give a new approach for problem (S) based on a regularization and the
Fenchel-Lagrange duality. Via this approach, we obtain approximation results for (S), and
optimality conditions for (S) and its regularized problem. The regularization is based on the
use of ϵ-approximate solutions of the lower level problem (P). It was principally used in the
literature of two level optimization for pessimistic (or weak in the sense of [8]) bilevel pro-
gramming problems. For papers using such a regularization see for example [1], [2], [12], [14]).
On the other hand, we note that the Fenchel-Lagrange duality has been first introduced by
Wanka and Boţ in [19] for ordinary convex programming problems. As an application of
such a duality in two level optimization, it has been used in [3] to derive necessary and suffi-
cient optimality conditions for a bilevel programming problem with extremal-value function.
Furthermore, the corresponding Fenchel-Lagrange dual problem has been transformed to a
one-level optimization problem. In this paper, for our investigation, as in [10], we will replace
(S) by the following equivalent problem

min
x∈X

f(x)≤v

F (x) (1.1)

where v denotes the infimal value of (P), i.e., v = infx∈X f(x). Unfortunately, such a prob-
lem does not satisfy the Slater’s condition. Consequently, we cannot directly apply our
duality to (S) under the formulation in (1.1). To avoid this situation, we will consider a reg-
ularized problem (Sϵ) of (S) whose constraints are represented by the set of ϵ-approximate
solutions of the lower level problem (P), ϵ > 0. Such a regularization for optimistic bilevel
problems has been first investigated in [13]. Since the set of strict ϵ-approximate solutions
is always nonempty, then, contrary to (S), this regularized problem will satisfy the Slater’s
condition. Moreover, such a regularized problem admits solutions under the assumptions
quoted above. As approximation results, in [13] the authors have obtained that inf Sϵ

converges to inf S when the parameter of regularization ϵ goes to zero, and that any accu-
mulation point of a sequence of regularized solutions solves the original problem (S). Then,
we provide necessary and sufficient optimality conditions for (Sϵ) via the Fenchel-Lagrange
duality. Under a qualification condition, necessary optimality conditions are established for
some particular solutions of (S). These solutions are accumulation points of sequences of
regularized solutions. Finally, sufficient optimality conditions are established for (S). The
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obtained optimality conditions are different from those given in the literature, and are ex-
pressed in terms of subdifferentials, normal cones (in the sense of convex analysis) and the
conjugates of the functions involved.

The paper is organized as follows. Section 2 is devoted to the Fenchel-Lagrange duality
for the regularized problem of (S). In Section 3, we provide necessary and sufficient opti-
mality conditions for the regularized problem and its Fenchel-Lagrange dual. Then, we give
necessary optimality conditions for a class of solutions of the original problem (S). Finally,
sufficient optimality conditions are established for (S).

We recall that throughout the paper, we assume that F and f are convex functions and
X is a nonempty convex compact subset of Rn.

2 The Fenchel-Lagrange Duality Approach

Our aim in this section is to give a duality approach for problem (S). To begin our procedure,
we consider its equivalent formulation

(S) min
x∈X

f(x)≤v

F (x)

where v is the infimal value of the lower level problem (P). Such a formulation was first
introduced in [10]. Unfortunately, the problem (S) under this formulation does not satisfy
the Slater’s constraint qualification which we will require for our procedure. To avoid this
situation, we will replace (S) by a regularized problem which satisfies this condition. Then,
for ϵ > 0, we consider the following regularized problem of (S)

(Sϵ) min
x∈X

f(x)≤v+ϵ

F (x).

That is the constraint set of (Sϵ) is the set of ϵ-approximate solutions of the lower level prob-
lem (P) which we denote by Mϵ. Obviously, such a problem always satisfies the Slater’s
condition. This follows from the characterization of the infimal value v. Note that the regu-
larization using ϵ-approximate solutions of the lower level problem has been first introduced
by Loridan and Morgan (see [14] and [15]). As stability results, from [13], one obtains that
inf Sϵ converges to inf S when the parameter of regularization ϵ goes to zero, and that any
accumulation point of a sequence of regularized solutions is a solution of problem (S) (see
Theorem 2.1 below).

More precisely, in this section, we will consider the Fenchel-Lagrange dual problem of
(Sϵ), which we denote by (D∗

ϵ ). Under the hypotheses quoted in the introduction, we will
show that the problems (Sϵ) and (D∗

ϵ ) are in strong duality. Such a duality will be used in
the next section to establish optimality conditions.

In the sequel, for ϵk ↘ 0+, we denote Mϵk and (Sϵk) by Mk and (Sk) respectively.
Then, under the hypotheses quoted in the introduction we have the following fundamental
results that we need in the sequel.

Theorem 2.1. i) For every ϵ > 0, the problem (Sϵ) admits at least one solution,

ii) lim
ϵ→0

(inf Sϵ) = inf S,

iii) Let ϵk ↘ 0+ and (xk) be a sequence of solutions of the regularized problems (Sk).
Then, any accumulation point of the sequence (xk) solves the original problem (S).

Proof. See Theorem 3.2 in [13].
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Before starting the procedure of duality, let us recall the following definitions that we
need in the sequel.

Let g : Rn → R be a function and A be a nonempty subset of Rn.
- The effective domain of g denoted by domg is the set defined by

domg =
{
x ∈ Rn/ g(x) < +∞

}
.

We say that g is proper if g(x) > −∞, for all x ∈ Rn, and domg ̸= ∅.
- The conjugate function of g relative to the set A denoted by g∗A is defined on Rn by

(see [7])
g∗A(p) = sup

x∈A

{
⟨p, x⟩ − g(x)

}
.

When A = Rn, we get the usual Legendre-Fenchel conjugate function of g, denoted by g∗.
Note that we always have

g∗A(p) + g(x) ≥ ⟨p, x⟩ ∀x ∈ A.

- The relative interior of A, denoted by riA, is the interior of A relative to the smallest
affine set containing A, equipped with the induced topology of Rn.

Now, we can start our duality approach. For ϵ > 0, we consider the Fenchel-Lagrange
dual problem (see [19])

(D∗
ϵ ) sup

α∈R+
p∈Rn

{
− F ∗(p)− (αf)∗X(−p)− α(v + ϵ)

}
of the primal regularized problem (Sϵ). Not that in [20], for a primal optimization problem
with general constraints, other interesting dual problems using conjugacy are considered.
Then, under appropriate assumptions, the authors have established equalities between the
optimal values of these dual problems.

The following theorem establishes strong Fenchel-Lagrange duality for the pair (Sϵ)-(D∗
ϵ ).

Theorem 2.2. Let ϵ > 0. Then, the problems (Sϵ) and (D∗
ϵ ) are in strong Fenchel-Lagrange

duality.

Proof. See [7, Theorem 3.2.12].

3 Optimality Conditions

In this section, we first provide necessary and sufficient optimality conditions for the dual pair
(Sϵ)-(D∗

ϵ ), ϵ > 0. As a consequence, a solution of the original problem can be deduced from
the optimality conditions obtained for the dual-pair (Sϵk)-(D∗

ϵk
), with ϵk ↘ 0+ (Theorem

3.5). Then, we give necessary optimality conditions for such a solution (Theorem 3.7).
Finally, sufficient optimality conditions are provided for (S).

Before going further, let us recall the following definitions related to convex analysis that
we need in the sequel.

- Let g : Rn → R ∪ {+∞} be a convex function. Let x̄ ∈ domg. The subdifferential of g
at x̄ denoted by ∂g(x̄) is the set defined by

∂g(x̄) =
{
x∗ ∈ Rn/ g(x) ≥ g(x̄) + ⟨x∗, x− x̄⟩, ∀x ∈ Rn

}
.
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- Let A be a nonempty convex subset of Rn and x̄ ∈ A. The normal cone to A at x̄ denoted
by NA(x̄) is the set defined by

NA(x̄) =
{
x∗ ∈ Rn/ ⟨x∗, x− x̄⟩ ≤ 0, ∀x ∈ A

}
.

It is not difficult to see that ∂ψA(x̄) = NA(x̄).
The proofs of the following two theorems (Theorems 3.1 and 3.3) can be found in [7,

Theorem 3.3.22] in a more general case. So that, they are omitted.

Theorem 3.1 (Necessary optimality conditions). Let ϵ > 0. Let xϵ be a solution of problem
(Sϵ). Then, there exists (αϵ, pϵ) ∈ R+ × Rn, solution of (D∗

ϵ ), such that the following
optimality conditions are satisfied

i) F (xϵ) + F ∗(pϵ) = ⟨pϵ, xϵ⟩,

ii) (αϵf)
∗
X(−pϵ) + αϵf(xϵ) = ⟨−pϵ, xϵ⟩,

iii) αϵ(−f(xϵ) + v + ϵ) = 0.

Proof. See [7,Theorem 3.3.22].

Remark 3.2. 1) It is not difficult to see that the property ii) in Theorem 3.1 is equivalent
to say that xϵ solves the problem

min
x∈X

(αϵf(x) + ⟨pϵ, x⟩).

2) In terms of subdifferentials and normal cones, the properties i) and ii) in Theorem 3.1
are respectively equivalent to

iv) pϵ ∈ ∂F (xϵ),

v) −pϵ ∈ ∂(αϵf)(xϵ) +NX(xϵ).

Then, iv) and v) imply that

0 ∈ ∂F (xϵ) + ∂(αϵf)(xϵ) +NX(xϵ).

That is xϵ solves the problem

min
x∈X

(F + αϵf)(x).

Theorem 3.3 (Sufficient optimality conditions). Let ϵ > 0. Let xϵ and (αϵ, pϵ) ∈ R+×Rn be
feasible points of problems (Sϵ) and (D∗

ϵ ) respectively. Assume that they satisfy the conditions
i) to iii) in Theorem 3.1. Then, xϵ and (αϵ, pϵ) solve respectively the problems (Sϵ) and (D∗

ϵ ).
Moreover, the problems (Sϵ) and (D∗

ϵ ) are in strong duality.

Proof. See [7,Theorem 3.3.22].

As a consequence, we obtain the following necessary and sufficient optimality conditions
for the dual pair (Sϵ)-(D∗

ϵ ).
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Corollary 3.4. (necessary and sufficient optimality conditions) Let ϵ > 0. Let xϵ and
(αϵ, pϵ) ∈ R+ × Rn be feasible points of problems (Sϵ) and (D∗

ϵ ) respectively. Then, xϵ and
(αϵ, pϵ) ∈ R+ ×Rn solve (Sϵ) and (D∗

ϵ ) respectively if and only if they satisfy the conditions
i) to iii) in Theorem 3.1.

Proof. Apply Theorems 3.1 and 3.3.

For ϵk ↘ 0+, denote (D∗
ϵk
) by (D∗

k). The following result shows that we can obtain
a solution of the original problem (S) from the optimality conditions given for the pair
(Sk)-(D∗

k), k ∈ N.

Theorem 3.5. Let ϵk ↘ 0+. Let xk be a feasible point of problem (Sk) that satisfies
together with a certain feasible point (αk, pk) of the dual problem (D∗

k) the conditions i) to
iii) in Theorem 3.1. Let x̄ be an accumulation point of the sequence (xk). Then, x̄ solves
the problem (S).

Proof. Apply Theorems 3.3 and 2.1.

In order to give necessary optimality conditions for a class of solutions of problem (S),
we need the following additional assumptions:

(1)


inf

x∈Rn
F (x) < inf

x∈X
F (x),

inf
x∈Rn

f(x) < inf
x∈X

f(x),

(2) For any ϵ > 0 sufficiently small, there exists xϵ ∈ intX such that f(xϵ) ≤ v + ϵ.

Remark 3.6. Assumption (1) implies that for any x ∈ X, we have 0 ̸∈ ∂F (x) ∪ ∂f(x).

The following result gives necessary optimality conditions for the class of solutions of (S)
which are accumulation points of sequences of regularized solutions.

Theorem 3.7. Let ϵk ↘ 0+. Assume that assumptions (1) and (2) are satisfied. For ϵk, let
xk be the feasible point of problem (Sk) given by assumption (2). Moreover, assume that xk
satisfies together with a certain feasible point (αk, pk), αk > 0, of the dual problem (D∗

k) the
conditions i) to iii) in Theorem 3.1. Let x̄ be an accumulation point of the sequence (xk).
Then, x̄ solves the problem (S) and there exists (ᾱ, p̄) ∈ R∗

+ × Rn such that

a) 0 ∈ ∂f(x̄) +NX(x̄),

b) p̄ ∈ ∂F (x̄),

c) −p̄ ∈ ᾱ∂f(x̄).

Furthermore, x̄ solves the unconstrained minimization problem

min
x∈Rn

(F + ᾱf)(x).

Proof. Let N be an infinite subset of N such that xk → x̄, as k → +∞, k ∈ N . From
Theorem 3.5, the accumulation point x̄ solves the original problem (S). Moreover, for every
k ∈ N , we have
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i) F (xk) + F ∗(pk) = ⟨pk, xk⟩

ii) (αkf)
∗
X(−pk) + αkf(xk) = ⟨−pk, xk⟩

iii) αk(−f(xk) + v + ϵk) = 0.

Since αk ̸= 0, then after simplification, the third equation iii) gives

−f(xk) + v + ϵk = 0.

Letting k → +∞, k ∈ N , we get f(x̄) = v, which is equivalent to

0 ∈ ∂f(x̄) +NX(x̄).

Furthermore, the first equation i) is equivalent to pk ∈ ∂F (xk). We have ∂F (xk) ⊂∪
x∈X ∂F (x). Since X is compact, it follows that the set (see [16,Theorem 24.7])

∂F (X) =
∪
x∈X

∂F (x)

is compact. Then, there exists an infinite subset N ′
of N such that the sequence (pk)k∈N ′

converges to p̄. Since, for any k ∈ N ′
, we have

F (y) ≥ F (xk) + ⟨pk, y − xk⟩ ∀ y ∈ Rn

then, passing to the limit as k → +∞, k ∈ N ′
, we get

F (y) ≥ F (x̄) + ⟨p̄, y − x̄⟩ ∀ y ∈ Rn.

That is
p̄ ∈ ∂F (x̄). (3.1)

On the other hand, for every k ∈ N ′
, the equation ii) gives

⟨−pk, xk⟩ − αkf(xk) ≥ ⟨−pk, x⟩ − αkf(x) ∀x ∈ X.

So that
αkf(x) + ⟨pk, x⟩ ≥ αkf(xk) + ⟨pk, xk⟩ ∀x ∈ X.

That is for all k ∈ N ′
, xk is a solution of the problem

min
x∈X

(αkf(x) + ⟨pk, x⟩).

Therefore
0 ∈ αk∂f(xk) + pk +NX(xk).

Since xk ∈ intX (assumption (2)), it follows that (see for example [11])

NX(xk) =
{
0
}
.

We deduce that
− pk
αk

∈ ∂f(xk) ∀ k ∈ N .

Using the fact that

∂f(xk) ⊂
∪
x∈X

∂f(x)
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and that
∪

x∈X ∂f(x) is compact, we deduce that there exists an infinite subset N ′′
of N ′

such that − pk

αk
→ q̄, as k → +∞, k ∈ N ′′

. On the other hand, for k ∈ N ′′
, we have

f(y) ≥ f(xk) +

⟨
− pk
αk
, y − xk

⟩
∀ y ∈ Rn.

Then, passing to the limit as k → +∞, k ∈ N ′′
, we get

f(y) ≥ f(x̄) + ⟨q̄, y − x̄⟩ ∀ y ∈ Rn.

That is
q̄ ∈ ∂f(x̄).

Assumption (1) implies that q̄ ̸= 0 and p̄ ̸= 0 (see Remark 3.6). Set qk = − pk

αk
, k ∈ N ′′

.
Since

∥qk∥ → ∥q̄∥ > 0 as k → +∞, k ∈ N
′′

it follows that there exists k0 ∈ N ′′
such that

∥qk∥ > 0 ∀k ≥ k0, k ∈ N
′′
.

Then, for k ∈ N ′′
, k ≥ k0, we have αk = ∥pk∥

∥qk∥ . So that, the sequence (αk)k∈N ′′ converges

to ᾱ = ∥p̄∥
∥q̄∥ , and ᾱ ̸= 0. Furthermore, the sequence

(
pk

αk

)
k∈N ′′

converges to
p̄

ᾱ
= −q̄. Hence

−p̄ ∈ ᾱ∂f(x̄). (3.2)

Finally, using (3.1) and (3.2), we deduce that 0 ∈ ∂(F+ᾱf)(x̄). That is x̄ solves the problem

min
x∈Rn

(F + ᾱf)(x).

The following result gives sufficient optimality conditions for problem (S).

Theorem 3.8 (Sufficient optimality conditions). Let x̄ ∈ Rn. Assume that there exists
(ᾱ, p̄) ∈ R∗

+ × Rn such that

i) 0 ∈ ∂f(x̄) +NX(x̄),

ii) p̄ ∈ ∂F (x̄),

iii) −p̄ ∈ ᾱ∂f(x̄).

Then, x̄ solves the problem (S).

Proof. Feasibility: The property i) implies that x̄ solves the problem (P). That is x̄ ∈ M.
Optimality: Let x be a feasible point of (S), i.e., x ∈ M. The property ii) implies that

F (y) ≥ F (x̄) + ⟨p̄, y − x̄⟩ ∀ y ∈ Rn. (3.3)

On the other hand, property iii) says that

ᾱf(y) ≥ ᾱf(x̄) + ⟨−p̄, y − x̄⟩ ∀ y ∈ Rn. (3.4)
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In particular, for y = x in (3.4), we obtain

⟨p̄, x− x̄⟩ ≥ ᾱ(f(x̄)− f(x)) = 0

where the equality follows from the fact that x, x̄ ∈ M. Then, in (3.3) we obtain

F (x) ≥ F (x̄).

Therefore, x̄ solves (S).

For illustration of our method, we give the following example. Then, in order to see the
advantages of this method, we will give a comparison with other classical ones.

Example 3.9. Let F and f be the functions defined on R2 by

F (x1, x2) = x21 + x22 f(x1, x2) = −x1 − x2

and X =
{
(x1, x2) ∈ R2/g(x1, x2) ≤ 0}, with g = (g1, ..., g4)

t,{
g1(x1, x2) = −x1 g2(x1, x2) = −x2
g3(x1, x2) = x1 + x2 − 1 g4(x1, x2) = (x1 − 1

2 )
2 − x2.

Then, the functions F and f are convex and X is a convex compact set. It is not difficult
to check that

inf P = v = −1 and M = conv
{
(0, 1)t,

(√3

2
,
2−

√
3

2

)t}
where ”conv” stands for the convex hull.

Let ϵ > 0 sufficiently small. We have

Mϵ =
{
(x1, x2) ∈ X/− x1 − x2 ≤ −1 + ϵ

}
, (Sϵ) : min

(x1,x2)∈Mϵ

(x21 + x22).

Remark that (Sϵ) has a strict convex objective function constrained by a nonempty
convex compact set. So that, it admits a unique solution.

1) Resolution via the Fenchel-Lagrange duality

Let xϵ = (xϵ1, x
ϵ
2)

t and (αϵ, pϵ) be feasible points of problems (Sϵ) and (D∗
ϵ ) respectively,

which are in strong Fenchel-Lagrange duality (Theorem 2.2). According to Corollary
3.4, xϵ and (αϵ, pϵ) solve (Sϵ) and (D∗

ϵ ) respectively if and only if they satisfy the
following conditions [see 2) of Remark 3.2]

i) pϵ ∈ ∂F (xϵ), pϵ = (pϵ1, p
ϵ
2)

t,

ii) −pϵ ∈ ∂(αϵf)(xϵ) +NX(xϵ),

iii) αϵ(x
ϵ
1 + xϵ2 − 1 + ϵ) = 0 (complementary slackness).

Assume that αϵ > 0. The complementary slackness condition gives

xϵ1 + xϵ2 − 1 + ϵ = 0. (3.5)
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It follows that g3(x
ϵ
1, x

ϵ
2) = xϵ1 + xϵ2 − 1 < 0. Moreover, since ϵ is sufficiently small,

we also deduce from (3.5) that (xϵ1, x
ϵ
2) ̸= (0, 0). Assume that the constraint g4 is not

active at (xϵ1, x
ϵ
2), i.e., (x

ϵ
1 − 1

2 )
2 − xϵ2 < 0. Adding i) to ii) we obtain

0 ∈ ∂F (xϵ) + ∂(αϵf)(xϵ) +NX(xϵ). (3.6)

Then, by using (3.6), it is not difficult to verify that xϵ1 ̸= 0 and xϵ2 ̸= 0. Hence, xϵ ∈
intX. It follows thatNX(xϵ) =

{
0
}
and property (3.6) becomes 0 ∈ ∂F (xϵ)+αϵ∂f(xϵ).

So that
(−αϵ+2xϵ

1
−αϵ+2xϵ

2

)
=

(
0
0

)
. Using (3.5), we obtain xϵ =

1
2 (1− ϵ, 1− ϵ)

t
and αϵ = 1− ϵ.

Moreover, from i) we obtain pϵ =
(
2xϵ

1
2xϵ

2

)
=

(
1−ϵ
1−ϵ

)
. We have xϵ → x̄ =

(
1
2 ,

1
2

)t
, as ϵ→ 0+.

Then, according to Theorem 2.1, the point x̄ solves the original bilevel problem (S).
Note that x̄ is in the boundary of X, since the constraint g3 is active at x̄.

2) Resolution via the classical Lagrangian duality

Let (Dϵ) denote the Lagrangian dual problem of (Sϵ), i.e.

(Dϵ) sup
α∈R+

inf
x∈X

{
F (x) + α(f(x)− v − ϵ)

}
.

In the following, we summarize the main steps of the procedure. From Theorem 2.1,
we have inf Sϵ > −∞. Moreover, (Sϵ) satisfies the Slater’s constraint qualification.
So that, under the data, strong Lagrangian duality holds between (Sϵ) and its dual
(Dϵ) (see for example [5]). Therefore, inf Sϵ = supDϵ, and the problem (Dϵ) admits
a solution ᾱϵ. Let x̄ϵ = (x̄ϵ1, x̄

ϵ
2)

t denote the unique solution of problem (Sϵ) (the
objective function F is strictly convex). Denote by θϵ the Lagrangian dual function,
i.e.,

θϵ(α) = inf
(x1,x2)∈X

Lϵ((x1, x2), α)

where Lϵ((x1, x2), α) = x21 + x22 + α(−x1 − x2 + 1 − ϵ) is the Lagrangian function
associated to (Sϵ). Then, we have first to determine the explicit expression of the
function θϵ by solving the problem

(Dϵ) min
(x1,x2)∈X

Lϵ((x1, x2), α). (3.7)

The second step is to find ᾱϵ solution of the dual problem

max
α∈R+

θϵ(α). (3.8)

Finally, the solution x̄ϵ is given by the resolution of the problem

min
(x1,x2)∈X

Lϵ((x1, x2), ᾱϵ). (3.9)

Therefore, the determination of the solution x̄ϵ of problem (Sϵ) needs the resolution
of problems (3.7)-(3.9). Then, via optimality conditions applied to these problems, we
find the unique solution x̄ϵ =

1
2 (1− ϵ, 1− ϵ)

t
of problem (Sϵ). Letting ϵ→ 0+, we get

the solution
(
1
2 ,

1
2

)t
of problem (S) (Theorem 2.1).

3) Resolution via the conditions of Kuhn-Tucker

Let (x̃ϵ1, x̃
ϵ
2) be a feasible point of the convex problem (Sϵ). Under the data, the point

(x̃ϵ1, x̃
ϵ
2) solves (Sϵ) if and only if there exists λϵ = (λϵ1, ..., λ

ϵ
4) ∈ R4

+ such that the
following conditions are satisfied :
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a) ∇F (x̃ϵ1, x̃ϵ2) +
∑4

i=1 λ
ϵ
i∇gi((x̃ϵ1, x̃ϵ2) = 0R2

b) λϵigi(x̃
ϵ
1, x̃

ϵ
2) = 0, i = 1, ..., 4.

So that, we are led to solve a system of six nonlinear real equations. Then, after

a laborious calculation, we find the unique solution (x̃ϵ1, x̃
ϵ
2) =

(
1−ϵ
2 , 1−ϵ

2

)t
. Letting

ϵ→ 0+ and using Theorem 2.1, we deduce the solution of problem (S).

Therefore, making a comparison, we see that by adopting the Fenchel-Lagrange du-
ality, we obtain directly the solution of (S) via the conditions i)-iii). However, the
resolution via the Lagrangian duality requires several steeps to get this solution, and
the resolution via the application of the Kuhn-Tucker conditions requires the resolution
of six nonlinear real equations. So that, the first method seems to be more adequate.
The reader can also verify that our method is more simple to use than other primal
methods as the descent methods.

Remark 3.10. Return to our Fenchel-Lagrange duality approach in Example 3.9 and re-
mark that assumptions (1) and (2) are also satisfied. In fact, we have xϵ ∈ Mϵ ∩ intX,

inf
(x1,x2)∈R2

F (x1, x2) = 0 < inf
(x1,x2)∈X

F (x1, x2)

(the strict inequality follows from the fact that 0 ̸∈ X) and

inf
(x1,x2)∈R2

f(x1, x2) = −∞ < inf
(x1,x2)∈X

f(x1, x2) = −1.

So that, we can also apply the result of Theorem 3.7.

4 Conclusions

In order to investigate the simple convex bilevel programming problem (S), we have consid-
ered a new duality approach using a regularization and the Fenchel-Lagrange duality. In a
first time, we have considered an equivalent problem of (S) whose constraints are expressed
in terms of the value of the lower level problem (P). Unfortunately, such a problem does
not satisfy the Slater’s constraint qualification. For this reason, we have introduced a reg-
ularized problem (Sϵ), ϵ > 0, which satisfies this condition. The regularization is based on
the use of ϵ-approximate solutions of the lower level problem (P). As approximation results,
from [13], one obtains under appropriate assumptions that any accumulation point of a se-
quence of regularized solutions solves the original problem (S), and that inf Sϵ converges to
inf S when the parameter of regularization ϵ goes to zero. Via the Fenchel-Lagrange duality,
we have established necessary and sufficient optimality conditions for (Sϵ) and its dual. Fur-
thermore, we have shown that a solution of the original problem (S) can be obtained from
the optimality conditions established for the regularized problems (Sϵk), ϵk ↘ 0+. Then,
necessary optimality conditions are given for the solutions of (S) which are accumulation
points of regularized solutions. Finally, sufficient optimality conditions are provided for (S).
These optimality conditions are different from those existing in the literature. Therefore,
they possibly generate new algorithms for the resolution of problem (S).

As quoted in the introduction the same composed duality was used in [3] for another
class of bilevel programming problems, the so-called bilevel programming problems with
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extremal-value function. But in [3], no regularization was required since under appropri-
ate assumptions, the original bilevel programming problem satisfies the Slater’s constraint
qualification. Then, similar optimality conditions are obtained in [3]. The composed dual-
ity which is the combination of the Fenchel duality to the Lagrangian duality allows us to
express optimality conditions in terms of subdifferentials, normal cones and conjugate func-
tions. Hence, the differentiability of the functions involved is not necessary. Note that other
dualities can also be applied to problem (S), as Fenchel and Fenchel-Rockafellar dualities.
We refer to [20] where relationships between the optimal values of the Lagrange dual, the
Fenchel dual and the Fenchel-Lagrange dual problems are investigated in a general case.
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