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cones, were proposed in [8] and combined with the second-order contingent derivatives to
get better optimality conditions. The second-order asymptotic derivatives were also used
in [9] to establish optimality conditions in optimization problems. In [28], by combining
the asymptotic notions and the variational sets, proposed in [10], we present second-order
asymptotic variational sets and apply them to obtain some necessary optimality conditions.

For other theories of optimality conditions, an important point for a necessary optimality
condition of this type is that the larger the separated sets, the stronger the result. In [10],
variational sets were introduced to replace derivatives so that they are bigger than the sets
defined by known derivatives and can be used in the mentioned separation to get stronger
necessary optimality condition. Motivated by [4, 20, 10] and the above observations, we
propose the second-order radial-asymptotic derivatives. The second-order radial-asymptotic
derivatives contain both the second-order asymptotic derivatives and the second-order con-
tingent derivatives. So, the stronger necessary optimality conditions are obtained when
using the second-order radial-asymptotic derivatives. Moreover, the second-order radial-
asymptotic derivatives also have similar properties of the TP-derivatives (see [22]). Hence,
they can be used as a constraint qualification in sensitivity analysis in parameterized opti-
mization problems.

The paper is organized as follows. In Section 2, some basic concepts and preliminary
facts are recalled for our use in the sequel. We define the second-order radial-asymptotic
derivatives, establish some calculus rules in Section 3. Section 4 consists of the optimality
conditions for various kinds of solutions to some particular vector optimization problems
by applying the second-order radial-asymptotic derivatives and their calculus rules. In Sec-
tion 5, we discuss relations between the second-order contingent derivatives of a set-valued
map and its profile map and relations between the second-order contingent derivatives of
the proper perturbation map and the feasible-set map in the parameterized optimization
problem.

2 Preliminaries

In the sequel, let X,Y and Z be normed spaces, C ⊆ Y be a closed convex cone. BX , BY

stand for the closed unit balls in X,Y , respectively. U(x0) is used to denote the set of
all neighborhoods of x0 ∈ X. For A ⊆ X, intA, clA, ∂A denote its interior, closure and
boundary, respectively. Furthermore, coneA = {λa | λ ≥ 0, a ∈ A}. A set B ⊂ Y is called
a base for C if 0 ̸∈ clB and C = {tb : t ∈ R+, b ∈ B}. If B is compact we say that C has
a compact base B. The cone C has a compact base if and only if C ∩ ∂B is compact (see
[22]). If Y is a finite dimensional space, then C has a compact base. For the set-valued map
H : X ⇒ Y , the domain, graph and epigraph of H are defined respectively by

domH = {x ∈ X : H(x) ̸= ∅}, grH = {(x, y) ∈ X × Y : y ∈ H(x)},
epiH = {(x, y) ∈ X × Y : y ∈ H(x) + C}.

The so-called profile mapping of H is H+C defined by (H+C)(x) = H(x)+C. Throughout
the rest of this section, let A be a nonempty subset of Y and a0 ∈ A. One of the main
concept in vector optimization is Pareto efficiency. Recall that a0 is a local Pareto minimal
point of A with respect to C (a0 ∈ MinCA)) if there exists U ∈ U(a0) such that

(A ∩ U − a0) ∩ (−C \ C) = ∅.

In this paper, we are concerned also with the following other concepts of efficiency.

(i) Supposing that intC ̸= ∅, a0 is a local weakly efficient point of A (a0 ∈ WMinCA) if
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there exists U ∈ U(a0) such that

(A ∩ U − a0) ∩ (−intC) = ∅

(ii) Assuming that C is pointed, a0 is termed a properly efficient point (Henig efficient
point) of A, denoted by a0 ∈ PrMinCA, if there exist a convex cone K ⫋ Y with
C \ {0} ⊆ intK and U ∈ U(a0) such that

(A ∩ U − a0) ∩ (−K) = {0}.

(iii) Let Q ⊆ Y be an arbitrary nonempty open cone, different from Y . The point a0 is
called a local Q-minimal point (see [14]) of A (a0 ∈ QMinCA) if there exists U ∈ U(a0)
such that

(A ∩ U − a0) ∩ (−Q) = ∅.

If U = Y the word “local” is omitted.

Definition 2.1. Let F : X ⇒ Y be a set-valued map,

(i) The contingent derivative (see [3]) of F at (x0, y0) ∈ grF is

DF (x0, y0)(u) = {v ∈ Y : ∃tn → 0+, ∃(un, vn) → (u, v), ∀n,
y0 + tnvn ∈ F (x0 + tnun)}.

(ii) The second-order contingent derivative (see [3]) of F at (x0, y0) ∈ grF in the direction
(u, v) ∈ X × Y is

D2F (x0, y0, u, v)(u) =
{
v ∈ Y : ∃tn → 0+, ∃(un, vn) → (u, v), ∀n,

y0 + tnv +
1

2
t2nvn ∈ F

(
x0 + tnu+

1

2
t2nun

)}
.

(iii) The TP-derivative (see [22]) of F at (x0, y0) ∈ grF is

DSF (x0, y0)(u) = {v ∈ Y : ∃tn > 0, ∃(un, vn) → (u, v), ∀n,
y0 + tnvn ∈ F (x0 + tnxn), tnun → 0}.

(iv) The second-order asymptotic derivative (see [8]) of F at (x0, y0) ∈ grF in the direction
(u, v) ∈ X × Y is

D2
AF (x0, y0, u, v)(u) =

{
v ∈ Y : ∃(tn, rn) → 0+,

tn
rn

→ 0,

∃(un, vn) → (u, v), ∀n, y0 + tnv

+
1

2
tnrnvn ∈ F

(
x0 + tnu+

1

2
tnrnun

)}
.

Definition 2.2 (see [30]). Let F : X ⇒ Y , (x0, y0) ∈ grF and (u, v) ∈ X × Y . The
mapping F is said to be second-order directionally compact at (x0, y0) with respect to (u, v)
in the direction u ∈ X if for all sequences tn → 0+ and un → u, every sequences vn with
y0 + tnv +

1
2 t

2
nvn ∈ F (x0 + tnu+ 1

2 t
2
nun) has a convergent subsequence.
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3 Second-Order Radial-Asymptotic Derivatives

In this section, we propose the notion of second-order radial-asymptotic derivatives and
establish some simple calculus rules.

Definition 3.1. Let F : X ⇒ Y be a set-valued map, the second-order radial-asymptotic
derivative of F at (x0, y0) ∈ grF in the direction (u, v) ∈ X × Y is

D2
SF (x0, y0, u, v)(u) =

{
v ∈ Y : ∃tn → 0+ , ∃rn > 0, ∃(un, vn) → (u, v), ∀n,

y0 + tnv +
1

2
tnrnvn ∈ F

(
x0 + tnu+

1

2
tnrnun

)
, tnrnun → 0

}
.

Remark 3.2. For all (x0, y0) ∈ grF and for any (u, v) ∈ X × Y ,

(i) D2
SF (x0, y0, u, v)(u) is a cone for all u ∈ X,

(ii) 0 ∈ D2
SF (x0, y0, u, v)(0).

Remark 3.3. For all u ∈ X,

(i) D2
SF (x0, y0, 0, 0)(u) = DSF (x0, y0)(u),

(ii) D2F (x0, y0, u, v)(u) ⊆ D2
SF (x0, y0, u, v)(u),

(iii) D2
AF (x0, y0, u, v)(u) ⊆ D2

SF (x0, y0, u, v)(u).

The inclusion may be strict as in the following example.

Example 3.4. Let X = Y = R, F : X ⇒ Y be defined by

F (x) = {y ∈ R | y ≥ x2 or y = −x2}.

Then, for (x0, y0) = (0, 0) ∈ grF , (u, v) = (1, 0), one gets, for any u ∈ R,

D2F (x0, y0, u, v)(u) = {v ∈ R | v ≥ 2 or v = −2},

D2
AF (x0, y0, u, v)(u) = {v ∈ R | v ≥ 0}, D2

SF (x0, y0, u, v)(u) = R.
Moreover, our derivative is different from the second-order contingent-radial derivative

(see [4]) of F at (x0, y0) ∈ grF , defined by

D2
SF (x0, y0)(u) = {v ∈ Y : ∃tn > 0, ∃(un, vn) → (u, v), ∀n,

y0 + t2nvn ∈ F (x0 + tnun), tnun → 0}.

The following example highlights detailed differences between the above-mentioned two
derivatives.

Example 3.5. Let X = Y = R, F : X ⇒ Y be defined by

F (x) =

{
{0}, if x = 0
{1,−x2}, if x ̸= 0.

Then, for (x0, y0) = (0, 0) ∈ grF , (u, v) = (1, 0), we have

D2
SF (x0, y0)(u) =

{
R+, if u = 0,
{−u2}, if u ̸= 0,

D2
SF (x0, y0, u, v)(u) =

{
R, if u = 0,
R−, if u ̸= 0.
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For some calculus rule of second order radial-asymptotic derivatives, we need the follow-
ing notion.

Definition 3.6. Let F : X ⇒ Y be a set-valued map, (x0, y0) ∈ grF , u ∈ X and vector
(u, v) ∈ X × Y . If

D2
SF (x0, y0, u, v)(u) =

{
v ∈ Y : ∀tn → 0+ , ∀rn > 0, ∀un → u : tnrnun → 0,

∃vn → v, y0 + tnv +
1

2
tnrnvn ∈ F

(
x0 + tnu+

1

2
tnrnun

)}
,

and the set on the right side is nonempty, then D2
SF (x0, y0, u, v) is called a second-order

radial-semi-derivative of F at (x0, y0) with respect to (u, v) in direction u.

Note further that this property clearly holds if the left side of the equality in Definition
3.6 is a singleton.

Proposition 3.7. Let F1, F2 : X ⇒ Y , x0 ∈ int(domF1) ∩ domF2, (x0, yi) ∈ grFi, u ∈ X
and (u, vi) ∈ X × Y for i = 1, 2. Suppose that F1 has a second-order radial-semi-derivative
at (x0, y1) with respect to (u, v1) in direction u. Then,

D2
SF1(x0, y1, u, v1)(u) +D2

SF2(x0, y2, u, v2)(u) ⊆ D2
S(F1 + F2)(x0, y1 + y2, u, v1 + v2)(u).

Proof. Let vi ∈ D2
SFi(x0, yi, u, vi)(u) for i = 1, 2. Because v2 ∈ D2

SF2(x0, y2, u, v2)(u), there
exist tn → 0+, rn > 0, un → u, v2n → v2 such that tnrnun → 0 and

y2 + tnv2 +
1

2
tnrnv

2
n ∈ F2(x0 + tnu+

1

2
tnrnun), ∀n.

SinceD2
SF1(x0, y1, u, v1) is a second-order radial-semi-derivative of F at (x0, y1) with respect

to (u, v1) in direction u, with tn, rn and un above, there exists v1n → v1 such that tnrnun → 0
and

y1 + tnv1 +
1

2
tnrnv

1
n ∈ F1

(
x0 + tnu+

1

2
tnrnun

)
.

Thus,

y1 + y2 + tn(v1 + v2) +
1

2
tnrn(v

1
n + v2n) ∈ (F1 + F2)

(
x0 + tnu+

1

2
tnrnun

)
.

The conclusion is obtained.

The following example shows that the assumption about the existence of the second-order
radial-semi-derivative of F1 in Proposition 3.7 cannot be dropped.

Example 3.8. Let X = Y = R and F1, F2 : X ⇒ Y be given by

F1(x) =

{
{1}, if x = 1

n , n ∈ N,
{0}, if x = 0,

F2(x) =

{
{0}, if x = 1

n , n ∈ N,
{1}, if x = 0.

Let (x0, y1) = (0, 0) ∈ grF1, (x0, y2) = (0, 1) ∈ grF2, (u, v1) = (1, 0), (u, v2) = (1, 0) and
u = 0. It is easy to see that for i = 1, 2, Fi has not a second-order radial-semi-derivative at
(x0, yi) with respect to (u, vi) in direction u. We have

D2
SF1(0, 0, 1, 0)(0) = R+, D

2
SF2(0, 1, 1, 0)(0) = R−.



142 L.T. TUNG

On the other hand,

(F1 + F2)(x) =

{
{1}, if x = 1

n , n ∈ N,
{1}, if x = 0.

Direct calculations yield
D2

S(F1 + F2)(0, 1, 1, 0)(0) = {0}.
Hence,

D2
SF1(0, 0, 1, 0)(0) +D2

SF2(0, 1, 1, 0)(0) ⊈ D2
S(F1 + F2)(0, 1, 1, 0)(0).

Proposition 3.9. Let F : X ⇒ Y,G : Y ⇒ Z with ImF ⊆ domG, (x0, y0) ∈ grF ,
(y0, z0) ∈ grG, (u, v, w) ∈ X × Y × Z. Suppose that G has a second-order radial-semi-
derivative at (y0, z0) with respect (v, w) in any direction in D2

SF (x0, y0, u, v)(u). Then, for
all u ∈ X,

D2
SG(y0, z0, v, w)[D

2
SF (x0, y0, u, v)(u)] ⊆ D2

S(G ◦ F )(x0, z0, u, w)(u).

Proof. Let w ∈ D2
SG(y0, z0, v, w)[D

2
SF (x0, y0, u, v)(u)]. It follows that there exists v ∈

D2
SF (x0, y0, u, v)(u) such that w ∈ D2

SG(y0, z0, v, w)(v). Therefore, there exist tn → 0+,
rn > 0 and un → u such that y0 + tnv+

1
2 tnrnvn ∈ F (x0 + tnu+

1
2 tnrnun) and tnrnun → 0.

Since G has a second-order radial-semi-derivative at (y0, z0) with respect to (v, w), with
tn, rn and un above, there exists wn → w such that

z0 + tnw +
1

2
tnrnwn ∈ G

(
y0 + tnv +

1

2
tnrnvn

)
⊆ G

[
F
(
x0 + tnu+

1

2
tnrnun

)]
= (G ◦ F )

(
x0 + tnu+

1

2
tnrnun

)
.

Hence, w ∈ D2
S(G ◦ F )(x0, z0, u, w)(u).

The following properties are immediate from the definition.

Proposition 3.10. Let F : X ⇒ Y , u ∈ X, (x0, y0) ∈ grF and (u, v) ∈ X × Y . Then for
all u ∈ X,

(i) D2
S(λF )(x0, λy0, u, λv)(u) = λD2

SF (x0, y0, u, v)(u), for all λ ∈ R,

(ii) D2
SF (x0, y0, λu, λv)(λu) = λD2

SF (x0, y0, u, v)(u), for all λ > 0.

4 Second-Order Optimality Conditions

In this section, we apply the second-order asymptotic-contingent derivatives to establish the
necessary optimality conditions for Q-minimal solutions of some kinds of the unconstrained
set-valued vector optimization problems.

Consider the following unconstrained set-valued vector optimization problem, for F :
X ⇒ Y ,

(P) F (x), x ∈ X.

For a set-valued vector optimization problem, from the concepts of efficiency recalled at the
Section 2, we define in the usual and natural way, the corresponding solution notions. For
instance, (x0, y0) ∈ grF is called a local Q-minimal solution of (P) if there exists U ∈ U(x0)
such that (F (U)− y0) ∩ (−Q) = ∅.
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Proposition 4.1. Let (x0, y0) ∈ grF be local Q-minimal solution of (P), the nonempty open
cone Q satisfy Q+ C ⊂ Q and (u, v) ∈ X × (−C). Then, for all u ∈ X,

D2
SF (x0, y0, u, v)(u) ∩ (−Q) = ∅.

Proof. Suppose there exist u ∈ X and v ∈ D2
SF (x0, y0, u, v)(u) ∩ (−Q). Then, there exist

sequences tn → 0+, rn > 0 and (un, vn) → (u, v) such that tnrnun → 0 and y0+tnv+
1
2 tnrnvn

∈ F (x0 + tnu + 1
2 tnrnun). Since the cone Q is open, tnrnvn ∈ −Q for large n. Hence, for

such n,

tnv +
1

2
tnrnvn ∈ −C −Q ⊂ −Q.

Therefore, tnv +
1
2 tnrnvn ∈ (F (x0 + tnu+ 1

2 tnrnun)− y0) ∩ (−Q), a contradiction.

Observe that y ̸∈ −Q = −intQ is equivalent to the existence of c∗ ∈ Q∗ with ⟨c∗, y⟩ ≥ 0.
Hence, we can formulate dual forms of the Proposition 4.1 as follows. The proofs are
straightforward.

Corollary 4.2. Let (x0, y0) ∈ grF be local Q-minimal solution of (P), the nonempty
open cone Q satisfy Q + C ⊂ Q and (u, v) ∈ X × (−C). Then, for all u ∈ X and
v ∈ D2

SF (x0, y0, u, v)(u), there exists c∗ ∈ Q∗ such that

⟨c∗, v⟩ ≥ 0.

Next two examples explain advantages of Proposition 4.1 over recent existing results.

Example 4.3. Let X = Y = R, C = R+, Q = intC, F : X ⇒ Y be defined by

F (x) = {y ∈ R | y ≥ x2 or y = −x2}.

Then, for (x0, y0) = (0, 0) ∈ grF , one gets, for any u ∈ R,

DF (x0, y0)(u) = DSF (x0, y0)(u) = R+.

Since DF (x0, y0)(u) ∩ −intC = DSF (x0, y0)(u) ∩ −intC = ∅, for all u ∈ X, we cannot use
Theorem 2.1 in [20] and Theorem 3.1 in [25] to reject (x0, y0) for a local weakly efficient
solution. But with (u, v) = (1, 0), ∀u ∈ X,

D2
SF (x0, y0, u, v)(u) = R,

i.e. D2
SF (x0, y0, u, v)(u) ∩ −intC ̸= ∅, ∀u ∈ X. So, Proposition 4.1 rejects (x0, y0).

Example 4.4. Let X = Y = R, C = R+, Q = intC, F : X ⇒ Y be defined by

F (x) = {y ∈ R | y ≥ −x3}.

Then, for all x ∈ X, F+(x) = F (x) + C = F (x). For (x0, y0) = (0, 0) ∈ grF , one gets

DF+(x0, y0)(u) = R+, ∀u ∈ X.

Hence DF+(x0, y0)(u) ∩ −∂C = {0} and S0 := domDF+(x0, y0) = R. Therefore, for every
v ∈ DF+(x0, y0)(u) ∩ −∂C, i.e. v = 0, and for any u ∈ S0, one gets

D2F+(x0, y0, u, v)(u) = D2
AF+(x0, y0, u, v)(u) = R+,
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domD2F+(x0, y0, u, v) = domD2
AF+(x0, y0, u, v) = R.

Consequently, for all u ∈ R and u ∈ S0,

D2F+(x0, y0, u, v)(u) ∩ (−intC − {v}) = ∅,

D2
AF+(x0, y0, u, v)(u) ∩ (−intC − {v}) = ∅.

Therefore, Theorem 3.1 in [7] and Theorem 3.1 in [8] cannot be used to reject (x0, y0) for a
local weakly solution. Moreover, for any u ∈ domDF (x0, y0) = R, v ∈ DF (x0, y0)(u) ∩ −C,
i.e. v = 0, one has

IT(−C, v) = intcone(−C − v) = intcone(−C) = int(−C) = −intC,

and epi(F ) is asymptotically derivable at (x0, y0, u, v). Hence,

D2F+(x0, y0, u, v)[IT(−C, v)]− = {u ∈ X|D2F+(x0, y0, u, v)(u) ∩ (IT(−C, v)) ̸= ∅} = ∅,

D2
AF+(x0, y0, u, v)[IT(−C, v)]− = {u ∈ X|D2

AF+(x0, y0, u, v)(u) ∩ (IT(−C, v)) ̸= ∅} = ∅.

Hence, Theorem 4.2 in [9] cannot also be used to reject (x0, y0) for a local weakly solution.

But with (u, v) = (1, 0), ∀u ∈ X,

D2
SF (x0, y0, u, v)(u) = R,

i.e. D2
SF (x0, y0, u, v)(u) ∩ −intC ̸= ∅, ∀u ∈ X. So, Proposition 4.1 can be used to reject

(x0, y0).

Proposition 4.5. Assume that X is a finite dimensional space, C has a compact base B,
F : X ⇒ Y , (x0, y0) ∈ grF . If for any (u, v) ∈ X × (−C),

(i) D2
SF (x0, y0, u, v)(0) ∩ (−C) = {0};

(ii) D2
SF (x0, y0, u, v)(u) ∩ (−C) = ∅ for all nonzero u ∈ X,

then (x0, y0) is a local Pareto minimal solution of (P).

Proof. Note that (i) and (ii) are required to be satisfied also (u, v) = (0, 0). So, from the
Remark 3.2, (i) and (ii) imply

(i’) DSF (x0, y0)(0) ∩ (−C) = {0};

(ii’) DSF (x0, y0)(u) ∩ (−C) = ∅ for all nonzero u ∈ X.

Applying Theorem 4.1 in [25], one gets conclusion.

Now, we apply calculus rules to obtain necessary conditions for weakly efficient solutions
of several particular optimization problems. Firstly, applying the above chain rule, we
easily establish necessary optimality condition for local Q-minimal solutions of the following
problem

(P1) minF (x′) subject to x′ ∈ G(x) and x ∈ X,

where F : X ⇒ Y and G : X ⇒ X. This problem can be restated as the unconstrained
problem min(F ◦G)(x) s.t. x ∈ X.
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Proposition 4.6. Let ImG ⊆ domF , (x0, z0) ∈ grG, (z0, y0) ∈ grF , u ∈ X, and (u, v, w) ∈
X × X × Y . Assume that (x0, y0) is a local Q-minimal solution of (P1). If F has a
second-order radial-semi-derivative at (z0, y0) with respect to (w, v) for any direction in
D2

SG(x0, z0, u, w)(u), then

D2
SF (z0, y0, w, v)[D

2
SG(x0, z0, u, w)(u)] ∩ (−Q) = ∅.

Proof. By Proposition 4.1, for u ∈ X we have D2
S(F ◦ G)(x0, y0, u, v)(u) ∩ (−Q) = ∅.

Proposition 3.9 implies that D2
SF (z0, y0, w, v)[D

2
SG(x0, z0, u, w)(u)] ∩ (−Q) = ∅.

To compare Proposition 4.5 with a result in [6], we recall the definition of contingent
epiderivative. A single-valued map EDF : X → Y satisfying epi(EDF (x0, y0))
= TepiF (x0, y0) is said to be the contingent epiderivative of F at (x0, y0) ∈ grF .

Example 4.7. Let X = Y = R, Q = intR+, C = R+, G(x) = {−|x|}, and

F (x) =

{
R−, if x ≤ 0,
∅, if x > 0.

Since G is single-valued, we try to make use of Proposition 5.2 of [6]. We can check that
DG(0, G(0))(u) = {−|u|} for all u ∈ X, and TepiF (G(0), 0) = R− × R. Hence, the con-
tingent epiderivative EDF (G(0), 0)(u) does not exist for any u ∈ X and the mentioned
Proposition 5.2 of [6] cannot be applied. However, F has a second-order radial-semi-
derivative at (G(0), 0) with respect to (−1, 0) in all directions in D2

SG(0, G(0), 0, 0)(0) = {0},
D2

SF (G(0), 0,−1, 0)[D2
SG(0, G(0), 0, 0)(0)] = R−, which meets −intC. Therefore, Proposi-

tion 4.6 above rejects the candidate (0, 0).

To illustrate the sum rule, we consider the following problem

(P2) minF (x) subject to g(x) ∈ −C,

where g : X → Y . Define M := {x ∈ X | g(x) ∈ −C} (the feasible set) and G : X ⇒ Y by

G(x) =

{
{0}, if x ∈ M,
{g(x)}, otherwise.

Consider the following unconstrained optimization problem, for an arbitrary positive s,

(PC) min(F + sG)(x).

In the particular case, where Y = R and F is single-valued, (PC) is used to approximate
(P2) in penalty methods (see [21]). Then, usually s is large or tends to infinity. Think of a
simple one dimensional case: f(x) = x and g(x) = −x + 2. Then, x∗ = 2 is a solution of
(P2) and also of (PC) for large s, e.g., s = 1000. But, for s = 1/2, the solution of (PC) is not
close to 2. (PC) has also been studied independently from (P2). Optimality conditions for
this general problem (PC) were obtained in [6] by using sum rules and scalar product rules
for contingent epiderivatives. Now, we apply Propositions 4.1, 3.7, and 3.10 for second-order
radial-asymptotic derivatives to get the following necessary condition for local Q-minimal
solutions of (PC). Here, s can be any positive number.

Proposition 4.8. Let domF ⊆ domG, x0 ∈ M,y0 ∈ F (x0), (u, v) ∈ X × Y , u ∈ X,
and either F has a second-order radial-semi-derivative at (x0, y0) with respect to (u, v) in
direction u or G has a second-order radial-semi-derivative at (x0, 0) with respect to (u, 0) in
direction u. If (x0, y0) is a local Q-minimal solution of (PC), then,

(D2
SF (x0, y0, u, v)(u) + sD2

SG(x0, 0, u, 0)(u)) ∩ (−Q) = ∅.
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Proof. By Proposition 4.1, one gets D2
S(F + sG)(x0, y0, u, v)(u) ∩ (−Q) = ∅. According

to Proposition 3.10, sD2
SG(x0, 0, u, 0)(u) = D2

S(sG)(x0, 0, v, 0)(u). Then, Proposition 3.7
completes the proof:

D2
SF (x0, y0, u, v)(u) + sD2

SG(x0, 0, u, 0)(u) ⊆ D2
S(F + sG)(x0, y0, u, v)(u).

Next example illustrates a case, where Proposition 4.8 is more advantageous than the
earlier existing results.

Example 4.9. Let X = Y = R, Q = intR+, C = R+, g(x) = x4 − 2x3, and

F (x) =

{
R−, if x ≤ 0,
∅, if x > 0.

Then, M = [0, 2] and G(x) = {max{0, x4 − 2x3}}. Since TepiF (0, 0) = R− × R and
TepiG(0, 0) = {(x, y)| y ≥ 0}, the contingent epiderivative EDF (0, 0)(u) does not ex-
ist for any u ∈ X. Hence, Proposition 5.1 in [6] cannot be employed. But, F has a
second-order radial-semi-derivative of at (0,0) with respect to (−1, 0) in any direction and
we can check that D2

SF (0, 0,−1, 0)(0) = R−, and D2
SG(0, 0, 0, 0)(0) = {0}. Therefore,

(D2
SF (0, 0,−1, 0)(0)+sD2

SG(0, 0, 0, 0)(0))∩(−intC) ̸= ∅. In view of Proposition 4.8, (x0, y0)
is not a local weakly solution of (PC). This fact can be checked directly too.

Remark 4.10. As the remark of an Anonymous Referee, the results in the Sect. 4, shown
for Q-minimal solutions of (P), can be developed analogously to the set-valued optimization
problems. Much more interesting is the well-known solution concept by Kuroiwa for set-
valued optimization problems (see [13]). The author thinks that second-order necessary
optimality conditions for solutions given by Kuroiwa’s concept can be derived by using the
second-order derivatives based on the set of continuous selections of set-valued map as the
approach of Alonso and Rodriguez-Marin in [1,2].

5 Sensitivity Analysis in Nonconvex Set-Valued Optimization

The first-order sensitivity analysis using the first-order contingent derivative was investigated
by Tanino in [26, 27]. See also [11, 12, 22] and references therein. In this section, we discuss
the relations between the second-order contingent-type derivatives of a set-valued map and
those of its profile map. Such relations for proper efficient points of these derivatives are
also investigated. We first give a simple sufficient condition ensuring the compactness in
Definition ?? in the following.

Proposition 5.1. Let F : X ⇒ Y , (x0, y0) ∈ grF , (u, v) ∈ X × Y and Y be finite di-
mensional. If D2

SF (x0, y0, u, v)(0) = {0}, then F is second-order directionally compact at
(x0, y0) with respect to (u, v) in all directions u ∈ X.

Proof. Let tn → 0+ and un → u, and vn with y0 + tnv+
1
2 t

2
nvn ∈ F (x0 + tnu+

1
2 t

2
nun). It is

sufficient to show the boundedness of {vn}. Indeed, suppose to contrary that lim
n→∞

∥vn∥ =

+∞. Setting ṽn := vn/∥vn∥, ũn := un/∥vn∥ and rn := tn∥vn∥. Then, rn > 0 and ũn → 0.
Hence, there exist tn → 0+, rn > 0 and (ũn, ṽn) → (0, ṽ) with ∥ṽ∥ = 1 such that y0 + tnv +
1
2 tnrnṽn ∈ F (x0 + tnu + 1

2 tnrnũn) and tnrnũn → 0. This leads ṽ ∈ D2
SF (x0, y0, u, v)(0), a

contradiction.
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In the following, the relation between the second-order contingent-type derivatives of a
set-valued map and those of its profile map is investigated.

Proposition 5.2. Let F : X ⇒ Y , (x0, y0) ∈ grF , (u, v) ∈ X × Y .

(i) Suppose that C has a compact base and D2
SF (x0, y0, u, v)(0) ∩ (−C) = {0}. Then, for

all u ∈ X,

D2F (x0, y0, u, v)(u) + C = D2(F + C)(x0, y0, u, v)(u). (5.1)

(ii) If F is second-order directionally compact at (x0, y0) with respect to (u, v) in any
direction u ∈ X then (5.1) holds.

Proof. (i) Let v ∈ D2F (x0, y0, u, v)(u) and c ∈ C. Then, there exist tn → 0+, (un, vn) →
(u, v) such that y0 + tnv+

1
2 t

2
nvn ∈ F (x0 + tnu+ 1

2 t
2
nun), for all n. Setting ṽn := vn + c, for

all n. Then, ṽn → v + c and

y0 + tnv +
1

2
t2nṽn = y0 + tnv +

1

2
t2nvn +

1

2
t2nc ∈ F (x0 + tnu+

1

2
t2nun) + C, ∀n.

Hence, v + c ∈ D2(F + C)(x0, y0, u, v)(u). Therefore,

D2F (x0, y0, u, v)(u) + C ⊆ D2(F + C)(x0, y0, u, v)(u).

For the reverse inclusion, let u ∈ X and v ∈ D2(F + C)(x0, y0, u, v)(u) be arbitrary. Then,
there exist tn → 0+, (un, vn) → (u, v), and cn ∈ C such that

y0 + tnv +
1

2
t2n(vn − cn) ∈ F (x0 + tnu+

1

2
t2nun),∀n.

If there exists n0 such that cn = 0, ∀n ≥ n0, then

v ∈ D2F (x0, y0, u, v)(u) + 0 ⊆ D2F (x0, y0, u, v)(u) + C.

Now assume that cn ̸= 0 and cn/∥cn∥ → c for some c ∈ C with norm one. Setting rn :=
tn∥cn∥. There is two cases for ∥cn∥.
Case 1: ∥cn∥ → +∞. Then, ũn := un/∥cn∥ → 0. Since

y0 + tnv +
1

2
tnrn(vn/∥cn∥ − cn/∥cn∥) ∈ F (x0 + tnu+

1

2
tnrnũn),

vn/∥cn∥ − cn/∥cn∥ → −c and tnrnũn → 0, one has −c ∈ D2
SF (x0, y0, u, v)(0) ∩ (−C), an

impossibility.

Case 2: ∥cn∥ is bounded and assume ∥cn∥ → α ≥ 0. Hence, cn = ∥cn∥(cn/∥cn∥) → αc.
Then, since

y0 + tnv +
1

2
t2n(vn − cn) ∈ F (x0 + tnu+

1

2
t2nun),

vn − cn → v − αc and un → u, one has v − αc ∈ D2F (x0, y0, u, v)(u). Therefore, v ∈
D2F (x0, y0, u, v)(u) + C.

(ii) See Proposition 5.1 in [16].

The following example shows that the conditions in Proposition ?? are essential.
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Example 5.3. Let X = R2, Y = R, C = R+ and F : X ⇒ Y be defined by

F (x) =

{
{x2

1 + x1,−1}, if x2 = 0, x1 ≥ 0,
∅, otherwise,

where x = (x1, x2) ∈ R2. Let (x0, y0) = ((0, 0), 0) ∈ grF and (u, v) = ((1, 0), 1). Since
D2

SF (x0, y0, u, v)(0, 0) = R ̸= {0}, the condition in (i) in Proposition ?? is not satisfied.
Moreover, for the direction u = (1, 0), for every tn → 0+, for un = (u1

n, 0) → u, the sequence
{vn} ⊆ R with

y0 + tnv +
1

2
t2nvn = −1 ∈ F (x0 + tnu+

1

2
t2nun),

i.e. vn = − 2
tn
− 2

t2n
, has no convergent subsequence. Hence, the condition in (ii) in Proposition

5.2 is not also satisfied. We have, for all u = (u1, u2) ∈ X,

D2F (x0, y0, u, v)(u) = {2 + u1}, D2F+(x0, y0, u, v)(u) = R,

domD2F (x0, y0, u, v) = domD2F+(x0, y0, u, v) = R× {0}.

Thus, for all u ∈ X,

D2F (x0, y0, u, v)(u) + C ̸= D2F+(x0, y0, u, v)(u).

Proposition 5.4. Let F : X ⇒ Y , (x0, y0) ∈ grF , (u, v) ∈ X × Y .

(i) Assume that C has a compact base and D2
SF (x0, y0, u, v)(0) ∩ (−C) = {0}. Then, for

all u ∈ X,

PrMinCD
2F (x0, y0, u, v)(u) = PrMinCD

2(F + C)(x0, y0, u, v)(u). (5.2)

(ii) If F is second-order directionally compact at (x0, y0) with respect to (u, v) in any
direction u ∈ X then (5.2) holds.

Proof. Since the similarity, only (i) is proven. We first prove the inclusion

PrMinCD
2F (x0, y0, u, v)(u) ⊆ PrMinCD

2(F + C)(x0, y0, u, v)(u). (5.3)

Let an arbitrary v ∈ PrMinCD
2F (x0, y0, u, v)(u). Then, there exists a convex cone K with

C \ {0} ⊆ intK such that v ∈ MinKD2
CF (x0, y0, u, v)(u). We show that v belongs to the

right-hand side of (5.3) relative to the same cone K. Suppose to contrary that there exists
w ∈ D2(F + C)(x0, y0, u, v)(u) with v − w := k ∈ K \ (−K). By Proposition 5.2 (i), there
exists w′ ∈ D2F (x0, y0, u, v)(u) such that w − w′ := c′ ∈ C. This leads a contradiction:

v − w′ = k + c′ ∈ K \ (−K) + C ⊆ K \ (−K).

To prove the inclusion reverse to (5.3), let v ∈ PrMinCD
2(F + C)(x0, y0, u, v)(u) relative

to K. Then, v ∈ D2(F + C)(x0, y0, u, v)(u). According to Proposition 5.2 (i), there exists
v′ ∈ D2F (x0, y0, u, v)(u) ⊆ D2(F + C)(x0, y0, u, v)(u) such that v − v′ := c′ ∈ C. If
c′ ∈ C \ {0} ⊆ intK, then v ̸∈ PrMinCD

2(F + C)(x0, y0, u, v)(u). Hence, c′ = 0 and
v ∈ D2F (x0, y0, u, v)(u). Therefore,

v ∈ PrMinCD
2(F + C)(x0, y0, u, v)(u) ∩D2F (x0, y0, u, v)(u).

So, with the same cone K, one gets v ∈ PrMinCD
2F (x0, y0, u, v)(u).
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Now, we consider the following parameterized vector optimization problem:

minKf(x, u) = (f1(x, u), f2(x, u), ..., fq(x, u)), s.t. x ∈ X(u) ⊆ Rl,

where x is a l-dimensional decision variable, u is a p-dimensional parameter, fi is a real
valued objective function on Rl ×Rp for i = 1, 2, ..., q, X is a set-valued map from Rp to Rl,
which defines a feasible decision set, and K is a nonempty pointed closed convex ordering
cone in Rq. Let F (u) be the value at u of the feasible set map in the objective space, i.e.,

F (u) := {y ∈ Rq | y = f(x, u) for some x ∈ X(u)}.

We consider the proper perturbation map of the considered problem

P (u) := PrMinKF (u).

Definition 5.5. For u0 ∈ Rp, F is said to be K-dominated by P near u0 if for all u in some
U ∈ U(u0),

F (u) ⊆ P (u) +K.

Remark 5.6. Since P (u) ⊆ F (u), the K-dominatedness of F by P near u0 (relative to U)
implies that, for all u ∈ U , F (u) + K = P (u) + K. Hence, for any y0 ∈ P (u0), u0 ∈ U ,
(u, v) ∈ Rp × Rq, and u ∈ Rp,

D2(P +K)(u0, y0, u, v)(u) = D2(F +K)(u0, y0, u, v)(u).

Proposition 5.7. Let (u, v) ∈ Rp × Rq, u0 ∈ Rp and u near u0. Suppose that F is K-
dominated by P near u0.

(i) If D2
SF (u0, y0, u, v)(0) ∩ (−K) = {0}, then

PrMinKD2F (u0, y0, u, v)(u) ⊆ D2P (u0, y0, u, v)(u). (5.4)

(ii) Assume that F is second-order directionally compact at (u0, y0) with respect to (u, v)
in direction u. Then, assertions (5.4) holds.

Proof. We prove only (i). The other can be proved similarly. Observe that, being a pointed
closed convex cone in Rq, K clearly has a compact base. Furthermore, since P (u) ⊆ F (u),
for any u ∈ Rp, D2

SP (u0, y0, u, v)(0) ∩ (−K) = {0} and P is second-order directionally
compact at (u0, y0) with respect to (u, v) in direction u. Therefore, we have

PrMinKD2F (u0, y0, u, v)(u) = PrMinKD2(F +K)(u0, y0, u, v)(u)

= PrMinKD2(P +K)(u0, y0, u, v)(u)

= PrMinKD2P (u0, y0, u, v)(u)

⊆ D2P (u0, y0, u, v)(u).

Here the first and third equalities are due to Proposition 5.4, and the second one follows
from Remark 5.6.

The essentialness of the K-dominatedness by P near u0 is justified as follows.
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Example 5.8. Let p = 1, q = 2, K = R2
+ and F : R → R2 be given by

F (x) =
{
(y1, y2) ∈ R2 :

1

2
x2 ≤ y1 ≤ x2, 0 ≤ y2 ≤ 1

2
x2, (y1 − x2)2 +

(
y2 −

1

2
x2

)2

≤ 1

4
x4

}
∪
{
(y1, y2) ∈ R2 : 0 < y1 ≤ 1

2
x2, y2 =

1

2
x2

}
.

Then, for any x ∈ X,

P (x) =


{(y1, y2) ∈ R2 : 1

2x
2 < y1 < x2, 0 < y2 < 1

2x
2,

(y1 − x2)2 + (y2 − 1
2x

2)2 = 1
4x

4}, if x ̸= 0
{(0, 0)}, if x = 0.

Hence F is not K-dominated by P near u0 = 0. Let (u0, y0) = (0, (0, 0)) ∈ grP and
(u, v) = (1, (0, 0)). For any u ∈ R,

D2F (u0, y0, u, v)(u) = {(y1, y2) : 1 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1, (y1 − 2)2 + (y2 − 1)2 ≤ 1}

∪{(y1, y2) : 0 ≤ y1 ≤ 1, y2 = 1},

D2P (u0, y0, u, v)(u) = {(y1, y2) : 1 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1, (y1 − 2)2 + (y2 − 1)2 = 1},

D2
SF (x0, y0, u, v)(0) = R2

+.

Therefore, the condition D2
SF (u0, y0, u, v)(0) ∩ (−K) = {(0, 0)} is satisfied. Moreover, F is

obviously second-order directionally compact at (u0, y0) with respect to (u, v) in direction
u ∈ R. Hence, the condition (ii) in Proposition ?? is also satisfied. We can check that for
all u ∈ R,

PrMinD2F (u0, y0, u, v)(u)

= {(y1, y2) : 1 < y1 < 2, 0 < y2 < 1, (y1 − 2)2 + (y2 − 1)2 = 1} ∪ {(0, 1)}.

So, ∀u ∈ R,
PrMinD2F (u0, y0, u, v)(u) ⊈ D2P (u0, y0, u, v)(u).

The similar result of Proposition ?? has been obtained in Theorem 5.2 in [29]. But our
conditions are different from that of [29]. The following example indicates that our result
has advantage in some cases.

Example 5.9. Let p = 1, q = 2, K = R2
+ and F : R → R2 be given by

F (x) =

{
{(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}, if x = 0,
{(y1, y2) ∈ R2 : (y1)

2/3 + (y2)
2/3 ≥ x4/3, y1 ≥ 0, y2 ≥ 0}, if x ̸= 0.

Then,

P (x) =

{
{(0, 0)}, if x = 0,
{(y1, y2) ∈ R2 : (y1)

2/3 + (y2)
2/3 = x4/3, y1 > 0, y2 > 0}, if x ̸= 0.

Let (u0, y0) = (0, (0, 0)) ∈ grP and (u, v) = (1, (0, 0)). Then, for all u ∈ R,

D2F (u0, y0, u, v)(u) = {(y1, y2) ∈ R2 : (y1)
2/3 + (y2)

2/3 ≥ 22/3, y1 ≥ 0, y2 ≥ 0},

D2P (u0, y0, u, v)(u) = {(y1, y2) ∈ R2 : (y1)
2/3 + (y2)

2/3 = 22/3, y1 ≥ 0, y2 ≥ 0}.
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Hence,

PrMinKD2F (u0, y0, u, v)(u) = {(y1, y2) ∈ R2 : (y1)
2/3 + (y2)

2/3 = 22/3, y1 > 0, y2 > 0}.

Since for all x ∈ X, F+(x) = F (x), we have D2F+(u0, y0, u, v)(u) = D2F (u0, y0, u, v)(u),
∀u ∈ R and PrMinKD2F+(u0, y0, u, v)(u) = PrMinKD2F (u0, y0, u, v)(u) for all u ∈ R. It
implies that

D2F+(u0, y0, u, v)(u) ⊈ PrMinKD2F+(u0, y0, u, v)(u) +K,

i.e. the condition P (x) := D2F+(u0, y0, u, v)(u) satisfying the proper K-domination prop-
erty in Theorem 5.2 in [29] is not fulfilled.
However, since D2

SF (u0, y0, u, v)(0) = R2
+, D

2
SF (u0, y0, u, v)(0)∩ (−K) = {(0, 0)}. It follows

that our condition is fulfilled. It is clear that

PrMinKD2F (u0, y0, u, v)(u) ⊆ D2P (u0, y0, u, v)(u).
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