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where F : R+ × H → 2H is a set-valued mapping with nonempty weakly compact convex
values in H. For example, to study the planning procedures in mathematical economy, C.
Henry [10] introduced and proved the existence of solutions in finite dimension of the system

ẋ(t) ∈ P
TC

(
x(t)

)(F (x(t))
)
a.e. t ∈ [0, T ],

x(0) = x0 ∈ C,

(1.3)

where F : Rn → 2R
n

is upper semi-continuous with nonempty, convex, compact values and
C is a closed, convex set in Rn. Here T, P denote the tangent cone and projection operators,
respectively. Later B. Cornet [6] extended the system (1.3) for the case C ⊂ Rn is Clarke
tangentially regular and reduced to ẋ(t) ∈ F

(
x(t)

)
−NC

(
x(t)

)
a.e. t ∈ [0, T ],

x(0) = x0 ∈ C.
(1.4)

There are numerous results for various variants of sweeping processes in literature but most
of them are about the existence of solutions (see, e.g., [4, 7, 8, 22]). In this paper, we are
interested in properties of solutions of the differential inclusion ẋ(t) ∈ f

(
x(t)

)
−NC

(
x(t)

)
a.e. t ∈ [0,+∞),

x(0) = x0 ∈ C,
(1.5)

where f : H → H is Lipschitz continuous and C is closed, uniformly prox-regular subset of
a Hilbet space H. It is known that (1.5) has a unique locally absolutely continuous solution
x(·) on [0,+∞) (see [7] for example). However, it is also important to know more regularity
properties of solutions, even the asymptotic behaviour, to understand better the systems.
In [9], the authors considered this direction for the same problem. The main properties
are the right differentiable of the solution and ẋ+(·) is right continuous at each t ≥ 0,
which later play an important role in studying Lyapunov functions as well as asymptotic
behaviour of solutions. However, these properties are obtained in [9] under the tangential
condition: f(x) ∈ T (C, x) for all x ∈ C. The condition is unnecessary since if C is closed,
convex then NC(·) is maximal monotone operator and thus we do not need such kind of
condition [2]. It motivates us to establish the same properties but without the additional
tangential condition.

The paper is organized as follow. In section 2, we recall some basic notations, definitions
and results which are used throughout the paper. Some regularities properties of solutions
are established without tangential condition in section 3. Some conclusions and perspectives
end the paper in section 4.

2 Notations and Mathematical Background

Let us begin with some notations used in the paper. Let H be a Hilbert space. Denote by
⟨·, ·⟩ , ∥ · ∥ the scalar product and the corresponding norm in H. Denote by I the identity
operator, by B the unit ball in H and Br = rB, Br(x) = x+ rB. The distance from a point
s to a closed set C is denoted by d(s, C) or dC(s) and

d(s, C) = inf
x∈C

∥s− x∥.
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Denote by C0 the set of minimal norm elements of C, i.e.

C0 = {c ∈ C : ∥c∥ = inf
c′∈C

∥c′∥}.

It is know that if C is closed and convex then C0 contains exactly one element. The set of
all points in C that are nearest to s is denoted by

Proj(C, s) = {x ∈ C : ∥s− x∥ = d(s, C)}.

When Proj(C, s) = {x}, we can write x = proj(C, s) to emphasize the single-valued property.
Let x ∈ Proj(C, s) and t ≥ 0, then the vector t(s− x) is called proximal normal to C at x.
The set of all such vectors is a cone, called proximal normal cone of C at x and denoted
by NP (C, x). It is a known result [5, 20] that ξ ∈ NP (C, x) if and only if there exist some
σ > 0, δ > 0 such that

⟨ξ, y − x⟩ ≤ δ∥y − x∥2 for all y ∈ C ∩ Bσ(x).

The Fréchet normal cone NF (·), the limiting normal cone NL(·) and the Clarke normal cone
NC(·) are defined respectively as follows:

NF (C, x) = {ξ ∈ H : ∀δ > 0,∃σ > 0 s. t. ⟨ξ, y − x⟩ ≤ δ∥y − x∥ for all y ∈ C ∩ Bσ(x)}.

NL(C, x) = {ξ ∈ H : ∃ ξn → ξ weakly and ξn ∈ NP (C, xn), xn → x in C}
= {ξ ∈ H : ∃ ξn → ξ weakly and ξn ∈ NF (C, xn), xn → x in C}.

NC(C, x) = coNL(C, x).

If x /∈ C, one has NP (C, x) = NF (C, x) = NL(C, x) = NC(C, x) = ∅ and for all x ∈ C:

NP (C, x) ⊂ NF (C, x) ⊂ NL(C, x) ⊂ NC(C, x).

If C is convex then these normal cones are coincide. It is in fact still true for prox-regular
sets, which are defined as follows. Then we can write only N(C, x) for simplicity.

Definition 2.1. The closed set C is called r − prox − regular iff each point s in the r-
enlargement of C

Ur(C) = {w ∈ H : d(w,C) < r},

has a unique nearest point proj(C, s) and the mapping proj(C, ·) is continuous in Ur(C).

Proposition 2.2 ([19,22]). Let C be a closed set in H. The followings are equivalent:

1) C is r − prox− regular.

2) For all x ∈ C and ξ ∈ NL(C, x) such that ∥ξ∥ ≤ r, we have

x = proj(C, x+ ξ). (2.1)

3) For all x ∈ C and ξ ∈ NL(C, x), we have

⟨ξ, y − x⟩ ≤ ∥ξ∥
2r

∥y − x∥2 ∀ y ∈ C.
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4) (Hypo-monotonicity) For all x, x′ ∈ C, ξ ∈ NL(C, x), ξ′ ∈ NL(C, x′) and ξ, ξ′ ∈ Br

we have
⟨ξ − ξ′, x− x′⟩ ≥ −∥x− x′∥2.

If r = +∞, then C is convex. Some examples of prox-regular sets [4]:

1. The finite union of disjoint intervals is non-convex but uniformly r-prox-regular and r
depends on the distances between the intervals.

2. More generally, any finite union of disjoint convex subsets in H is non-convex but
uniformly r-prox-regular and r depends on the distances between the sets.

We finish the section with a version of Gronwall’s inequality (see, e.g., Lemma 4.1 in [21]).

Lemma 2.3. Let T > 0 be given and a(·), b(·) ∈ L1([t0, t0 + T ];R) with b(t) ≥ 0 for almost
all t ∈ [t0, t0 + T ]. Let the absolutely continuous function w : [t0, t0 + T ] → R+ satisfy:

(1− α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [t0, t0 + T ], (2.2)

where 0 ≤ α < 1. Then for all t ∈ [t0, t0 + T ]:

w1−α(t) ≤ w1−α(t0)exp
(∫ t

t0

a(τ)dτ
)
+

∫ t

t0

exp
(∫ t

s

a(τ)dτ
)
b(s)ds. (2.3)

3 Main Results

Let us first recall the existence and uniqueness result of (1.5) (see, e.g., [7]).

Theorem 3.1. Let H be a Hilbert space and C be a closed, r-prox-regular set. Let f : H → H
be a k-Lipschitz continuous function. Then for each x0 ∈ C, the following differential
inclusion  ẋ(t) ∈ f

(
x(t)

)
−NC

(
x(t)

)
a.e. t ∈ [0,+∞),

x(0) = x0 ∈ C,
(3.1)

has a unique locally absolutely continuous solution x(·). In addition, we have

∥ẋ(t)− f
(
x(t)

)
∥ ≤ ∥f

(
x(t)

)
∥ for a.e. t ≥ 0. (3.2)

Let x(·) be the unique solution of (1.5) satisfying x(0) = x0. Define v : R+ → H by

v(t) :=
(
f
(
x(t)

)
− N

(
C, x(t)

))0

and v0 := v(0) =
(
f(x0) − N(C, x0)

)0
. By using similar

arguments as in Lemma 1.8 [11], we have the following lemma.

Lemma 3.2. We have
∥v0∥ ≤ lim inf

t→0+
∥v(t)∥. (3.3)

Proof. If lim inft→0+ ∥v(t)∥ = +∞ then the conclusion holds. If lim inft→0+ ∥v(t)∥ = γ <
+∞, then there exists a sequence (tn)n≥1 such that tn → 0+ and limn→+∞ ∥v(tn)∥ = γ. In
particular, the sequence

(
v(tn)

)
n≥1

is bounded hence there exist a subsequence
(
v(tnk

)
)
k≥1

and ξ ∈ H such that
(
v(tnk

)
)
k≥1

converges weakly to ξ. Recall that

v(tnk
) =

(
f
(
x(tnk

)
)
−N

(
C;x(tnk

)
))0

∈ f
(
x(tnk

)
)
−N

(
C;x(tnk

)
)
.
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Hence f
(
x(tnk

)
)
− v(tnk

) ∈ N
(
C;x(tnk

)
)
. We can find some β > 0 such that ∥f

(
x(tnk

)
)
−

v(tnk
)∥ ≤ β for all k ≥ 1. Using the prox-regularity of C, one has

⟨f(x
(
tnk

)
)
− v(tnk

), c− x(tnk
)⟩ ≤ β

2r
∥c− x(tnk

)∥2 for all c ∈ C, k ≥ 1. (3.4)

Let k → +∞, we get

⟨f(x0)− ξ, c− x0⟩ ≤
β

2r
∥c− x0∥2 for all c ∈ C. (3.5)

Thus f(x0)− ξ ∈ N(C;x0) or equivalently ξ ∈ f(x0)−N(C;x0). Then

∥ξ∥ ≤ lim inf
k→+∞

∥v(tnk
)∥ = lim inf

n→+∞
∥v(tn)∥ = γ, (3.6)

due to the weak lower semicontinuity of the norm and the conclusion follows.

Lemma 3.3. Let x(·) be the unique solution of (1.5) satisfying x(0) = x0. Then one has

lim sup
t→0+

∥x(t)− x0

t
∥ ≤ ∥v0∥, (3.7)

where v0 =
(
f(x0)−N(C, x0)

)0
= f(x0)− proj

(
f(x0), NC(x0)

)
.

Proof. We have  ẋ(t)− f
(
x(t)

)
∈ −NC

(
x(t)

)
a.e. t ∈ [0,+∞),

v0 − f(x0) ∈ −NC(x0),
(3.8)

and ∥ẋ(t)− f
(
x(t)

)
∥ ≤ ∥f

(
x(t)

)
∥ for a.e. t ≥ 0. Using the prox-regularity of C and Propo-

sition 2.2, one has

⟨ẋ(t)− f
(
x(t)

)
− v0 + f(x0), x(t)− x0⟩ ≤

1

r

(
∥f

(
x(t)

)
∥+ ∥v0 − f(x0)∥

)
∥x(t)− x0∥2. (3.9)

Combining with the k-Lipschitz continuity of f(·), one deduces that

1

2

d

dt
∥x(t)− x0∥2 ≤ ∥v0∥∥x(t)− x0∥+ a(t)∥x(t)− x0∥2, (3.10)

where a(t) = k + 1
r

(
∥f

(
x(t)

)
∥ + ∥v0 − f(x0)∥

)
. Using Gronwall’s inequality (Lemma 2.3),

one obtains for all t ≥ 0 that

∥x(t)− x0∥ ≤ ∥v0∥
∫ t

0

exp
(∫ t

s

a(τ)dτ
)
ds. (3.11)

Hence

lim sup
t→0+

∥x(t)− x0

t
∥ ≤ ∥v0∥ lim sup

t→0+

1

t

∫ t

0

exp
(∫ t

s

a(τ)dτ
)
ds = ∥v0∥. (3.12)
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Lemma 3.4. Let x(·), y(·) be the unique solution of (1.5) satisfying initial conditions x(0) =
x0, y(0) = y0 respectively. Then for all t ≥ 0 :

∥x(t)− y(t)∥ ≤ ∥x(0)− y(0)∥exp
(∫ t

0

b(s)ds
)

t ≥ 0, (3.13)

where b(t) = k + 1
r (∥f(x(t))∥+ ∥f(y(t))∥). In particular, for a.e. t ≥ 0, one has

∥ẋ(t)∥ ≤ ∥v0∥exp
(∫ t

0

(
k +

2∥f(x(s))∥
r

)
ds
)
, (3.14)

where v0 is defined in Lemma 3.3.

Proof. Using the prox-regularity of C and Lipschitz continuity of f(·) similarly as above, we
have

1

2

d

dt
∥x(t)− y(t)∥2 ≤ b(t)∥x(t)− y(t)∥2 a.e. t ≥ 0, (3.15)

where b(t) = k + 1
r

(
∥f

(
x(t)

)
∥ + ∥f

(
y(t)

)
∥
)
. Then the Gronwall’s inequality (Lemma 2.3)

implies (3.13). Given some h > 0, and we take y(0) = x(h) then y(t) = x(t+h) for all t ≥ 0.
From (3.13), we deduce that∥∥∥x(t+ h)− x(t)

h

∥∥∥ ≤
∥∥∥x(h)− x(0)

h

∥∥∥exp(∫ t

0

(
k+

∥f(x(s))∥+ ∥f(x(s+ h))∥
r

)
ds
)
for all t ≥ 0.

(3.16)
Fixed some t0 ≥ 0 such that ẋ(t0) exists. Taking the limsup of both sides of (3.16) as
h → 0+ and using Lemma 3.3, one gets

∥ẋ(t0)∥ ≤ ∥v0∥exp
(∫ t0

0

(
k +

2∥f(x(s))∥
r

)
ds
)
.

Thus (3.14) follows.

Now, we are ready for the main result which states that the solution is right differentiable
and ẋ+(·) is right continuous at each t ≥ 0. We also recall an important property (Theorem
3.5-i) acquired in Proposition 2.6 [9] by using a different approach.

Theorem 3.5. Let x(·) be the unique solution of the system satisfying x(0) = x0. Then we
have:

(i) ẋ(t) = v(t) =
(
f
(
x(t)

)
−N

(
C, x(t)

))0

for almost every t ∈ [0,+∞).

(ii) For all t∗ ∈ [0,+∞), the right derivative ẋ+(t∗) exists and

ẋ+(t∗) =
(
f
(
x(t∗)

)
−NC

(
x(t∗)

))0

.

Furthermore ẋ+(·) is continuous on the right.

Proof. Let E = {t ∈ [0,+∞) : ẋ(t) exists}. It is clear that the Lebesgue measure of
[0,+∞) \ E is zero.
(i) Fixed t0 ∈ E. Let y(·) be the unique solution of the system with initial condition
y(0) = x(t0). Then y(t) = x(t+ t0) for all t ≥ 0. Applying Lemma 3.3, we get

lim sup
t→0+

∥∥∥y(t)− y(0)

t

∥∥∥ ≤
∥∥∥(f(y(0))−N

(
C, y(0)

))0∥∥∥, (3.17)
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or equivalently

lim sup
t→0+

∥∥∥x(t+ t0)− x(t0)

t

∥∥∥ ≤
∥∥∥(f(x(t0))−N

(
C, x(t0)

))0∥∥∥. (3.18)

Hence

∥ẋ(t0)∥ ≤ ∥
(
f
(
x(t0))−N(C, x(t0)

))0

∥. (3.19)

On the other hand ẋ(t0) ∈ f
(
x(t0)

)
−N

(
C, x(t0)

)
, thus ẋ(t0) =

(
f
(
x(t0)

)
−N

(
C, x(t0)

))0

.

(ii) Due to the property of semi-group, it is sufficient to prove for t∗ = 0. Using (i) and
(3.14) of Lemma 3.4, for all t ∈ E, we have

∥v(t)∥ ≤ ∥v0∥exp
(∫ t

0

(
k +

2∥f(x(s))∥
r

)
ds
)
, (3.20)

where v(t) =
(
f
(
x(t)

)
−N

(
C, x(t)

))0

. It implies that

lim sup
t→0+,t∈E

∥v(t)∥ ≤ ∥v0∥. (3.21)

On the other hand, Lemma 3.2 deduces that

∥v0∥ ≤ lim inf
t→0+

∥v(t)∥ ≤ lim inf
t→0+,t∈E

∥v(t)∥. (3.22)

From (3.21) and (3.22), we obtain

lim
t→0+,t∈E

∥v(t)∥ = ∥v0∥. (3.23)

Thus for any sequence (tn)n≥1 ⊂ E and tn → 0, we have

∥v(tn)∥ → ∥v0∥ as n → +∞. (3.24)

Then
(
v(tn)

)
n≥1

is bounded and therefore there exists some v∗ ∈ H such that a subsequence

(v(tnk
))k≥1 converges weakly to v∗ when k → +∞. Similarly as in Lemma 3.2, we can prove

that v∗ ∈ f(x0)−N(C;x0). On the other hand

∥v∗∥ ≤ lim inf
k→+∞

∥v(tnk
)∥ = lim

k→+∞
∥v(tn)∥ = ∥v0∥, (3.25)

due to (3.24). Thus, we must have v∗ = v0 and the set of weak cluster point of
(
v(tn)

)
n≥1

contains only v0. It implies that v(tn) converges weakly to v0. Combining with (3.24), one
deduces that v(tn) converges strongly to v0. In conclusion

lim
t→0+,t∈E

v(t) = v0. (3.26)

Due to the absolute continuity of x(·) and (i), for all h > 0, we have

x(h)− x0 =

∫ h

0

ẋ(s)ds =

∫ h

0

v(s)ds, (3.27)
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where v(·) is locally integrable and satisfying (3.26). Now we prove that

lim
h→0+

1

h

∫ h

0

v(s)ds = v0. (3.28)

Indeed, given ϵ > 0. From (3.26), there exists δ > 0 such that for all s ∈ E, s ≤ δ then
∥v(s)− v0∥ ≤ ϵ. Hence for all h ≤ δ:

∥∥∥ 1
h

∫ h

0

v(s)ds− v0

∥∥∥ ≤ 1

h

∫ h

0

∥v(s)− v0∥ds =
1

h

∫
[0,h]∩E

∥v(s)− v0∥ds ≤
ϵ

h

∫
[0,h]∩E

ds = ϵ.

So we have (3.28) and thus from (3.27), the right derivative ẋ+(0) exists and

ẋ+(0) = v0 =
(
f(x0)−N(C, x0)

)0
. (3.29)

It implies for all t ≥ 0 that

ẋ+(t) = v(t) =
(
f
(
x(t)

)
−N

(
C, x(t)

))0

. (3.30)

Then taking the limit both sides of (3.16), we deduce for all t ≥ 0 that

∥ẋ+(t)∥ ≤ ∥ẋ+(0)∥exp
(∫ t

0

(
k +

2∥f(x(s))∥
r

)
ds
)
,

or equivalently

∥v(t)∥ ≤ ∥v0∥exp
(∫ t

0

(
k +

2∥f(x(s))∥
r

)
ds
)
.

Therefore

lim sup
t→0+

∥v(t)∥ ≤ ∥v0∥.

Combining with (3.22), we obtain limt→0+ ∥v(t)∥ = ∥v0∥. Similar as (3.26), we can prove
that limt→0+ v(t) = v0. It means that ẋ+(·) is right continuous at 0 and due to the property
of semi-group, it is right continuous at any t ≥ 0.

Now we consider the case f(·) = −∇V (·) where V is C1,+ function (i.e., V is differentiable
and ∇V is Lipschitz continuous) and study some asymptotic properties of the solutions. The
system then can be considered as an extension of “gradient equation” [1].

Proposition 3.6. Let V : H → R be a C1,+ function. Let x(·) be the solution of the system ẋ(t) ∈ −∇V
(
x(t)

)
−N

(
C, x(t)

)
a.e. t ∈ [0,+∞),

x(0) = x0 ∈ C.
(3.31)

Then we have

d

dt
V
(
x(t)

)
+ ∥ẋ(t)∥2 = 0, for a.e. t ≥ 0. (3.32)

In particular, V is a Lyapunov function of the system. Furthermore
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(i) if V is coercive, i.e.,
V (x) → +∞ as ∥x∥ → +∞,

then x(·) is bounded on R+.

(ii) if V is bounded from below on C then limt→+∞ V
(
x(t)

)
= V∞ exists and

ẋ ∈ L2([0,+∞);H) with
∫ +∞
0

∥ẋ(s)∥2ds = V (x0)− V∞.

(iii) If V is convex and bounded from below on C then V∞ = inf
y∈C

V (y).

Proof. Fixed some t ≥ 0 such that (i) of Theorem 3.5 holds, i.e., ẋ(t) =
(
− ∇V

(
x(t)

)
−

NC

(
x(t)

))0
= −∇V

(
x(t)

)
− proj

(
N
(
C, x(t)

)
;−∇V

(
x(t)

))
. Then⟨

ẋ(t) +∇V
(
x(t)

)
, ẋ(t)

⟩
=

⟨
− proj

(
N
(
C, x(t)

)
;−∇V

(
x(t)

))
,∇V (x(t))− proj

(
N
(
C, x(t)

)
;−∇V

(
x(t)

))⟩
= 0.

Note that d
dtV

(
x(t)

)
=

⟨
∇V

(
x(t)

)
, ẋ(t)

⟩
and (3.32) follows. In particular, we have

d
dtV

(
x(t)

)
≤ 0 for a.e. t ≥ 0. It means that V is a Lyapunov function of the system.

Then (i) and (ii) follow classically.
(iii) Fix some y ∈ C and consider the function φ(t) = 1

2∥x(t) − y∥2. Due to the r-prox-
regularity of C and the fact that ẋ(t) + ∇V

(
x(t)

)
∈ −N

(
C, x(t)

)
a.e. t ∈ [0,+∞), one

has

⟨ẋ(t) +∇V
(
x(t)

)
, x(t)− y⟩ ≤

∥∇V
(
x(t)

)
∥

r
∥x(t)− y∥2.

Thus

φ̇(t) = ⟨ẋ(t), x(t)− y⟩ ≤
2∥∇V

(
x(t)

)
∥

r
φ(t) + ⟨∇V

(
x(t)

)
, y − x(t)⟩

≤
2∥∇V

(
x(t)

)
∥

r
φ(t) + V (y)− V

(
x(t)

)
,

due to the convexity of V . Using Gronwall’s inequality (Lemma 2.3), for all t ≥ 0 one
obtains

0 ≤ φ(t) ≤ φ(0)exp
(∫ t

0

2∥∇V (x(τ))∥
r

dτ
)

+

∫ t

0

exp
(∫ t

s

2∥∇V
(
x(τ)

)
∥

r
dτ

)
[V (y)− V

(
x(s)

)
]ds

≤ exp
(∫ t

0

2∥∇V (x(τ))∥
r

dτ
)[

φ(0) + t
(
V (y)− V

(
x(t)

))]
,

since V
(
x(s)

)
≥ V

(
x(t))

)
for all s ∈ [0, t]. It implies that

V
(
x(t)

)
≤ V (y) +

φ(0)

t
.

Let t → +∞, one gets V∞ ≤ V (y). Since y is arbitrary in C, it deduces that V∞ ≤ inf
y∈C

V (y).

On the other hand V
(
x(t)

)
≥ inf

y∈C
V (y) since x(t) ∈ C for all t ≥ 0. Hence V∞ ≥ inf

y∈C
V (y).

Therefore V∞ = inf
y∈C

V (y), it means the trajectory is minimizing for V on C.
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4 Conclusion

In this paper, we have established some important regularity properties for a class of dif-
ferential inclusions involving normal cone operator of prox-regular sets without tangential
assumption. Some asymptotic behaviours of the solutions are also studied. It is interest-
ing to consider properties of solutions of sweeping process with prox-regular sets, where C
can depend on time and even the state. It is out of scope of the current work and will be
considered in the future.
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[16] J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space,
J. Differential Equations 26 (1977) 347–374.
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