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Abstract: In this paper, we give a necessary and sufficient condition for the equality between the worst
value of an uncertain conical convex optimization problem and the value of its robust counterpart. We derive
a sufficient condition for robust strong duality to hold.
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Introduction
In this work we deal with the uncertain conical convex optimization problem:
(P) inf f(z) st gu(z) €S,

where u belongs to the set of uncertain parameters U, X and Y are two locally convex
Hausdorff topological vector spaces, f : X — R U {400} a proper convex lower semi-
continuous function, S C Y a nonempty closed convex cone, and for each u € U, the
mapping g, : dom g, C X — Y is S-level-closed convex or S-epi-closed convex.
To the uncertain problem (P) is associated its robust counterpart ([3],[4],[5]) which is the
problem:

(RP) ir;ff(x) st.  gulx)e =S, Yuel.

We call robust value, the value inf(RP) of the problem (RP).
Given u € U, (P,) is the corresponding instance of (P), namely:

(P.) inf f(z) st gu(s) €.
Let us consider the problem of maximizing over U, the value of each problem (P,):

(@) sgp ugf{f(w) :ogu(z) € =S}t st wel,

and call worst value of the uncertain conical convex problem (P) the value of (Q) that is
sup(Q). We note that sup(Q) < inf(RP) and give an example in which this inequality is
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strict (Proposition 3.1, Example 3.2). The purpose of this paper is to establish a necessary
and sufficient condition for the equality between the worst value and the robust value of
the uncertain problem (P), with attainment of the worst value. The outline of the paper
is as follows: Section 2 presents elements of convex analysis needed in the sequel. Section
3 formulates a necessary and sufficient condition to obtain the equality between the worst
value and the robust value with attainment for the worst value (Theorem 3.4, Corollary
3.5, Corollary 3.6, Corollary 3.7). Section 4 is concerned with the so-called optimistic
dual problem (ODP) of (P). We note that sup(ODP) < sup(Q) (Proposition 4.1) and
give condition to obtain sup(ODP) = sup(Q) (Proposition 4.6 ). In the case that robust
strong duality holds, we get inf(RP) = max(Q) (Proposition 4.3). Conversely, we establish
robust strong duality (Theorem 4.8) from our previous results using a convex composite
duality principle. Finally, we compare our Corollary 4.9 to [16] Corollary 3.1 (Remark 4.10,
Proposition 4.11).

Preliminaries

Let X be a locally convex Hausdorff topological vector space with topological dual X*
and (,) the standard bilinear coupling function between X and X*. Given a function
h:X — R=RU/{-00,+c}, we note by dom h := {x € X | h(z) < +oo} the effective
domain of h. One says that h is proper if dom h is non-empty and —oo ¢ h(X). The
epigraph of function h is the set epih := {(z,t) € X xR | h(x) < t}. Recall that h is convex
if and only if epih is convex, h is lower semi-continuous if and only if epih is closed. The
set of all proper convex lower semi-continuous extended real-valued functions defined on X
is denoted by T'(X).

The Legendre-Fenchel conjugate of h : X — R is the function

R*: X* =R | h*2*):=sup{(z,2*) — h(x)},
zeX

which is convex and weak™ lower semi-continuous. The Legendre-Fenchel biconjugate of h

is defined on X by
h*(x) := sup {(x,z*) — h*(z")}.

rreX*

It holds that A > h**, h** being convex and lower semi-continuous.

Property 2.1. For each family of extended real-valued functions (h;);e; C RX, one has:

(inf hi> = suph}.
i€l icl

Given a subset A of X, we note by iy the indicator function of A defined on X by
ia(x) = 0if z € A and ig(x) = 400 otherwise, 04 := 7% the support function of A4 ,
co(A) its convex hull, A its closure, co(A) its closed convex hull. On the dual space X*
we only consider the weak* topology, and for any subset B of X* we simply denote by B
the weak™ closure of B. Given A, B two subsets of X, we say that A is closed regarding
Bif ANB = AN B ([7]). Analogously, A is said to be closed convex regarding B if
c(A)NB=AnNDB ([12)).

Given E C R, we write min E (respectively max E) instead of inf E' (respectively sup E)
when the infimum (respectively supremum) of F is attained.

We recall below two classical properties.
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Lemma 2.1 ([6] Theorem 2.1). For all hy, he € I'(X) such that dom hy () dom hy # 0, one
has:

epi (hy + ha)* = (epi B + epi h;). (2.1)

Lemma 2.2 ([7]). Let (h;)ier C I'(X), where I is an arbitrary nonempty index set. Assume
that there exists & € X such that sup;c; hi(Z) < +00. Then,

epi (sup hi)* :%(Uepih;‘). (2.2)
el i€l

The closure in (2.1) and (2.2) is taken with respect to the product of the weak* topology
on X* and the natural topology on R. Moreover, if h; is finite and continuous at some point
of dom hs then, by Moreau-Rockafellar Theorem ([19] Theorem 3), the closure is unnecessary
in (2.1).

Let Y be another locally convex Hausdorff topological vector space and S C Y a
nonempty closed convex cone. The S-epigraph of a mapping g : domg C X — Y, is
the set

epigg = {(z,y) Edomg xY : y—g(x) € S},
and the S-level set of g at level y € Y is defined as

{redomyg : g(x) ey— S}

There are several notions about lower semi-continuity of mappings like g ([1],[10],[15],
[17], [18]). Here, we only use the ones depending on the S-epigraph or the S-level sets of
g. We shall say that g is S-epi-closed convex if epi gg is closed and convex, and that g is
S-level-closed convex if its S-level set at level y is closed and convex for each y € Y. Of
course any S-epi-closed convex function is also S-level-closed convex.

We denote by
ST:={AeY* : (y,\) >0, Vy €S},

the positive polar cone of S.
Given X € ST, we denote by Ag the function defined on X by
(9(x),A) if ze€domg
Ag(x) =
+00 otherwise.
If g is defined on the whole space X then Ag is the standard composition of A by g usually

denoted by Ao g.
The level set of g at level y = Oy is

g (=8):={xcdomg : g(xr)c —S}.

Let us consider the set
Ky:= | epi(Ng),
AeS+

which can be viewed as the characteristic cone associated to the system of inequalities ([13]):

{xedomg 2 Ag(x) <0, V/\ES+}.
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Let us quote that, without any convexity assumption on g, K, is always a convex cone.
More precisely, one has:

Property 2.2. For each mapping g : dom g C X — Y such that g=(—S) # 0, it holds:

i) ig—1(—5) = SUP)e5+ (Ag) 5

ii) K, is a convex cone.

Proof. i). Let x € X. If z € g~ 1(—S) then (g(x),\) < 0 for each A € ST, thus

sup (Ag)(z) = 0.
AesSt

If + ¢ g7'(—S) then g(z) ¢ —S which is closed convex. By Hahn-Banach separation
Theorem, there exists (y*,7) € Y* x R such that (y,y*) < r < (g(x),y*) for all y € =S.
Since Oy € S, it then follows that » > 0 and thus y* € S*. Therefore supycg+ (A\g)(z) >
(9(z),ny*) > 0 for all n > 1. Letting n — +o0, one gets sup,cg+(Ag)(z) = +o0, and i)
holds.

ii). We first prove that K is a cone. Let (z*,r) € K, and ¢ > 0. There exists A € ST such
that (Ag)*(z*) < r, and we have

(tAg)*(tz") = zg@({(x, tr*) —thg(x)} = t;gg{@c’ z*) = Ag(z)} = t(Ag)"(2") < tr.

Therefore, t(x*,r) € epi (tAg)* C K.
We now prove that K, is convex. Let (z},r;) € K, for ¢ = 1,2. One has to check that
(xy + a5 , r1+r2) € Ky There exists A\; € ST such that (z},7;) € epi(\ig)*. For all
z € dom g, we have
(z,27 + 23) — (9(x), M + A2) =(z,27) — (9(2), \1) + (2, 25) — (9(2), A2)
<(Mg)* (@) + (ag)" (w3)
S T1 + To.

Taking the supremum over x € dom g we get:

(2] + a5, r1+72) €epi((A1 + A2)g)" C K.

In the presence of convexity, we have:

Proposition 2.3. For any S-epi-closed convexr mapping g : dom g C X — Y, such that
g (=S) #0, we have: o
epi Og—1(-8) = Kg. (23)

Proof. Let us defined the function H : X x Y — R U {+oc} by:
H(.’IJ, y) = iepisg(x7 _y)
It is easy to check that
(Ag)*(z*) ifre ST
H*(z*,\) =
+o0 else.
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Since g is S-epi-closed convex and g~!(—S) # 0, we have H € I'(X x Y). In particular for

each x € X, one has:

H(z,0y) =H""(z,0y)
= sup {(z,2") = (Oy,A) — H"(z", A)}

rreX”
AEY™

= sup {(2,5%) - (39)° (@)}
z*eX
xes™t

= sup { s (o) 00

rest Lz ex™
= sup (Ag)™(z).

AeS+

On the other hand, for each x € X, one has:
H(l’,()y) = icpisg(x,()y) = ig—l(,s)(ﬁ).
Therefore iy-1(_g)y = supyeg+ (Ag)** and since g~*(—S) # 0, Lemma 2.2 says that
epi Og—1(—5) ZCO< U epi (/\g)***> :co( U epi (Ag)*) :E,
AeSt AEST

where the last equality is due to Property 2.2.ii) and the definition of K.

Remark 2.4. Despite the fact that

Z.9*1(7S) = sup ()‘g)a
res+

one cannot directly apply Lemma 2.2 to function i,-1(_g) to reach (2.3). The reason is that
g is not necessary lower semi-continuous for each A € ST even if g is S-epi-closed convex.
In fact, if g is a S-epi-closed convex function whose domain is not closed, then for A = Oy~

we have \g = i4om ¢, Which is not lower semi-continuous.

Worst Value Versus Robust Value

In this section, we give a necessary and sufficient condition for the equality between the
worst value and the robust value of the uncertain problem (P) with attainment of the worst

value:

inf(RP) = max inf(P,).
For each u € U, let F,, be the feasible set of (P,) that is
F,={zedomg, : gu(x)e€ —S}.
We denote by F the feasible set of the problem (RP) :

Fi={reX :zedomg,, g(r)e -5, VueU}= (] F,
uclU

(3.1)
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and define the function p : X — R U {400} by

p=sup(f+ip,) = f+supip, = f+ip.
uelU uelU

We have dom p = F Ndom f, and infx p = inf(RP).

Proposition 3.1. It holds that
sup(Q) < inf(RP). (3.2)
Proof.

sup(Q) = sup inf(P,) = sup inf (f +ip,)(x) < inf sup(f +ip,)(x) = inf(RP).
uel uelU v€X T€X yeU

O

We present an example to show that the inequality (3.2) may be strict even if f is linear,
the set of uncertain parameters U is finite and inf(RP) is reached.

Example 3.2. Consider the following uncertain conical convex programming problem:

1
(P) min x1 +x2 8.t 5[(2 —uy)x? 4+ (14 up)a3] <1,

where (ug,us) = (1,2) or (uj,ug) = (%, 1). In this example, one has:

1
X:R27 f(xla'rQ):xl + x2, Y:R7 S:R-i-v U:{(1a2)5<2a1>}7

1
gu(l’l,l'g) = 5 [(2 — ul)x% + (]. +U2)l’g] — 1.

For each u € U, the Slater qualification condition holds for (P,). By solving the correspond-
ing Karush-Kuhn-Tucker system, one gets
-3 ifu=(1,2)

1 1
min(P,) \/(2u1+1+u2> - a
— /& fu=(5,1).
29

7

max(Q) = — 3

On the other hand, the robust counterpart of (P) is given by:

Therefore

7?4+ 373 <2
(RP) min z, + o s.t.
323 +4a3 < 4.

Slater qualification condition holds for (RP). By solving the corresponding Karush-Kuhn-
Tucker system, one gets

. 2442 7
min(RP) = — 7 > —\/; = max(Q).
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Let us consider the opposite of the problem (Q) namely:

(-Q) if&f sup{—f(z) : gu(z) € -S} st. wel.

35

The perturbation of the objective function of (—@Q) by adding a linear continuous form leads

to define the value function ¢ : X* — R by:

a(@") i= inf sup {(z,2") = f(2)} = fnf (f +ir.)" (27),

From Property 2.1 we have

¢ =sup (f+ip,)" <sup (f+ip,)=p.
uelU uelU

Therefore

Let us introduce the condition

fel(X)
() FNdom f # 0 (that is inf(RP) < +00)
gu is S-level-closed convex, Vu € U.

Lemma 3.3. Assume () holds. Then

epip” :co<U epi(f—i—ip,u)*) .

uelU

Proof. If (#¢) holds then f + i, € I'(X) for each u € U, and one has:

q" =sup(f +ir,)"" =sup(f +ir,) = p.
uelU uelU

Therefore, ¢** = p* and dom ¢* = FNdom f # (). Applying Lemma 2.2 to the function

p =sup,cy(f +iFp,) one gets (3.4).

O

Theorem 3.4. Assume () holds. For each z* € X*, the following statements are equiv-

alent:
i) p*(z*) = minyey sup,ep, {(z,2*) — f(x)};

i) Upep epi (f +ir,)" is weak*-closed convex regarding {z*} x R.

Proof. Since dom p # (), the conjugate function p* does not take the value —oo.

Let 2* € X*. We first consider the case where p*(z*) = +o0o. Since p* < ¢, we have

q(z*) = 400 and i) holds. On the other hand, by Lemma 3.3, we have:

co<U epi (f+ipu)*) N ({2"} xR) =epip* () ({2"} xR) = 0.

uelU
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Consequently, if p*(2*) = 400 then i) and ii) are both satisfied.
Assume now that p*(z*) € R. We first prove that ii) = i). By Lemma 3.3 it holds that

(x*,p*(z*)) € epip” ﬂ ({x*} X R) =70 < U epi (f +ipu)*> ﬂ ({x*} X IR).
uel

By ii) it follows that

(a,p"(2)) € (U epi (f +z'Fﬂ,>*> N ({='} xR).

uelU
Consequently, there exists 4 € U such that:
Inf (f +ip,)7(27) = q(2”) < (f +ir)"(@7) < p7(2).
Since p*(z*) < g(x*), we get i).
Conversely, let us prove i) = ii). Let (z*,r) € @ (U, epi (f +ir,)") . By Lemma 3.3 we
have p*(z*) < r. By i) there exists @ € U such that
p (%) = (f +ir,)"(27)

and finally (z*,r) € epi (f +ip,)". O

Corollary 3.5. Assume (J€) holds. Then the following statements are equivalent:

1) —oo < max,ey inf(P,) = inf(RP) < 400 ;

ii) the set J,cpepi (f +ir,)" is weak* — closed convex regarding {0x-} x R.

Proof. Since —p*(0x+) = inf(RP), the result follows from Theorem 3.4 applied with x* =
Ox. O

Corollary 3.6. Assume () holds. Then the following statements are equivalent:
i) —oo < p*(2*) = mingey(f +ir,)* (%) < 00, Va* € X*;

ii) the set A :=,cpepi (f +ir,)" is weak*-closed conver .

Proof. Note that the set A is weak*-closed convex if and only if A is weak*-closed convex
regarding {z*} x R for all z* € X*. Then the result follows from Theorem 3.4.
O

Let us reinforce condition () by assuming that for each u € U, the mapping g, is
S-epi-closed convex, and consider the new condition (') given by:

feTl(X)
(") Fndom f#0

gy 18 S-epi-closed convex, Vu € U.
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Corollary 3.7. Assume (') holds. Then the following statements are equivalent:

i) inf(RP) = max(Q);

ii) Uyeu (epi f* + Ky, ) is weak*-closed convex regarding {Ox-} x R.

Proof. Since F # (), one has F,, = g;*(—S) # 0 for each u € U. Applying Proposition 2.3
to the mapping g,, one has:
epiip, = Ky, , YueU.

By Lemma 2.1 we have, for each u € U,

epi (f +ir,)* :(epif* + epii}u)

Consequently,
U epi(f+in)" = {J (epif* + K,
ueclU uclU
and the conclusion follows from Corollary 3.5. O

Link with Robust Strong Duality Property
For each parameter u € U, we associate to (P,) the classical Lagrangian dual defined as:

(Dy) sup inf {f(z) 4+ Agu(z)} st. A€ ST,
A z€EX

The optimistic dual of the uncertain problem (P) is given by ([2],[8],[14],[16])

(ODP) sup 1g)f< {f(x)+ Agu(2)} st (u,\) €U x ST.

Proposition 4.1. It holds that:
sup(ODP) < sup(Q). (4.1)
Proof. By Lagrangian weak duality between (P,) and (D, ), one has, for each u € U:

sup inf {f(z) + Agu(@)} < inf(P,).

Taking the supremum over U, one gets

sup(ODP) = sup inf {f(z)+ Agu(z)} < supinf(P,) = sup(Q).
uel. weX uel
AeS
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Remark 4.2. It is worth noticing that, even in the certainty case, say U = {a}, it may
happen that (see Lemma 4.5 below):

sup inf {f(z) + Aga(x)} = sup(ODP) < sup(Q) = inf(Py).
Aes+ reX

One says that robust strong duality holds for the uncertain conical convex problem (P)
whenever the values of the robust counterpart and the optimistic dual coincide with dual
attainment, i.e.

inf(RP) = max(ODP). (4.2)

The terminology robust strong duality was introduced in [16]. This property can be found
in [2] and [14] under the name ”primal worst equals dual best”.

Proposition 4.3. If robust strong duality holds then
inf(RP) = max(Q).

Proof. Assume that robust strong duality holds. By Juxtaposing Proposition 3.1 and Propo-
sition 4.1, we have
max(ODP) = sup(Q) = inf(RP).

Consequently, there exists (i, A\) € U x St such that

inf {£(2) + Aga(e)} = mf(RP) = sup(@) = inf(Py) > inf {f(z) + Agu(2)},

where the last inequality results from the weak duality between (P;) and (Dg). Thus
inf(RP) = inf(Py) and we are done. O

In order to obtain robust strong duality from the previous results, we recall a convex
composite duality principle.

Lemma 4.4 ([7] Theorem 8.3). Assume that f € T'(X), g:dom g C X — Y is S-epi-closed
conver and g~*(—S)(dom f # (. Then the following statements are equivalent:

i) infg(z)efs{f(x) - <.’E7l‘*>} = MaX)eg+ infg(m)efs{f(x) - <!L‘7$*> —&-Ag(m)}, f07“ any NS
X*;

7

ii) Uxegt epi(f + Ag)*is weak® — closed.

Lemma 4.5 ([11] Corollary 5). Assume that f € T(X), g :dom g C X — Y is S-epi-closed
convex and g~1(—=S)(dom f # 0. Then the following statements are equivalent:

i) infy(e_s /() = maxyess infrex {f(2) + Ag(x)}:

ii) Uxegt epi(f + Ag)*is weak™-closed regarding {Ox-} x R.

Concerning the problems (ODP) and (Q), we have:
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Proposition 4.6. Assume that (') holds and for eachu € U, the set | Jyc g+ epi (f +Agu)”*
is weak*-closed regarding {Ox+} X R . Then,

sup(ODP) = sup(Q). (4.3)
Proof. Applying Lemma 4.5, we obtain

inf f(z) = max inf {f(z) + Agu(x)}, YueU.

zEF, XESt zEX
Taking the supremum over U, one obtains
sup(Q) = sup(ODP).
O

Remark 4.7. Consider the Example 3.2. Due to Slater qualification condition, it holds
that the set (J,epi (f + Agy)* is closed for all u € U ( see for instence [9], Remark 4.3),
and we have by Proposition 4.6:

sup(Q) = sup(ODP) < inf(RP). (4.4)

We now consider robust strong duality property. Let us denote by Sol(Q) the set of
optimal solutions of (Q):

Sol(Q) ={ueU : inf(P,) =sup(Q)}.
Theorem 4.8. Assume () holds and

U epi (f +ip,)"is weak™ — closed convex regarding {0x-} x R, (4.5)
uelU

gais S-epi-closed convexr and

Ju € Sol :
u e Sol(@) {U)\€S+ epi (f + Aga)*is weak™* — closed regarding {Ox~} x R.

Then, robust strong duality property holds.
Proof. We have:

inf(RP) =max(Q) (follows from Corollary 3.5 and (4.5) )
=inf(P;) (for some optimal solution @of (Q) )
=max(Dz) (by (4.6) and Lemma 4.5 )
<sup(ODP) (by the definition of the optimistic dual problem).

Applying Proposition 4.1 we get:
sup(ODP) < sup(Q) = inf(RP) = max(Dz) < sup(ODP).
Consequently, there exists (%, A) € U x S+ such that

Sup(ODP) = inf {f(z) + Agage} = inf(RP),

and we are done. O
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One says that robust strong duality holds at a given z* € X* if

inf {(2) = (2.2%)} = max inf {f(2) — (r.2") + Aga (21} (4.7)
uclU

If z* = 0x~ we go back to robust strong duality property. If robust strong duality holds at
each x* € X*, one says that robust stable strong duality holds for (P).

Corollary 4.9. Assume (') holds and

U epi f* + K,, is weak™-closed convex, (4.8)
uelU
YuelU, U epi (f + Agu)” is weak™-closed. (4.9)
Aes+

Then, robust stable strong duality holds.

Proof. By Lemma 2.1 and Proposition 2.3, one has:

A= U epi(f +ip,)" = U epi f* + Kg,.

uelU uelU

By (4.8) A is weak*-closed convex . Therefore, for each z* € X*, one has:

inf (£(@) — (2, ")} =mas inf {f(2) ~ (2,2")) (by Corollary 3.6)
:rléllgz{f(x) — (z,z")} (for some u € U)
= max ;g’({f(x) —(z,2") + Aga(z)} (by Lemma 4.4 and (4.9))
zl}g({f(m) — (%) + Aga(x)} (for some A € ST)
< sup it {£(z) — (2,27) + Agu(2)}.
)\ueésg e

Now, by weak duality (apply Proposition 3.1 and Proposition 4.1 to f — x*), it holds

Aseu% nf {f(z) = (z,2") + Agu(2)} < inf {f(2) - (z,27)},

and we are done. O

Remark 4.10. Let us assume that for each v € U, the maping g, : X — Y is continuous
and S-epi-convex. For each A € ST the function \g, = Ao g, is convex and continuous, and
by Moreau-Rockafellar Theorem one has

epi (f + Agu)* = epi f* + epi(Agu)”.
In such a case condition (4.9) turns into

Vue U, epif"+ Ky, is weak™closed . (4.10)
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Robust strong duality property was established in [16] (Corollary 3.1) for continuous
S-epi-convex mappings g, : X — Y under the condition

epi f* + U K, is weak™-closed convex (4.11)
uelU

without assuming (4.9) (that is (4.10)) as we did in Corollary 4.9. However, let us observe
that:

Proposition 4.11. The condition (4.8) is weaker than the condition (4.11).
Proof. We have

epi f* + UKguC U (epif*+ K,,) C <epif*—|—UKgu> C(zo<epif*+ UKu>

uelU uelU uelU uelU

Thus, if (4.11) holds, then all the above inclusions are equalities, and we have in particular
U i+ K, = (epif* + UK ) |
uelU uelU

which is weak*- closed convex. O
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