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strict (Proposition 3.1, Example 3.2). The purpose of this paper is to establish a necessary
and sufficient condition for the equality between the worst value and the robust value of
the uncertain problem (P ), with attainment of the worst value. The outline of the paper
is as follows: Section 2 presents elements of convex analysis needed in the sequel. Section
3 formulates a necessary and sufficient condition to obtain the equality between the worst
value and the robust value with attainment for the worst value (Theorem 3.4, Corollary
3.5, Corollary 3.6, Corollary 3.7). Section 4 is concerned with the so-called optimistic
dual problem (ODP ) of (P ). We note that sup(ODP ) ≤ sup(Q) (Proposition 4.1) and
give condition to obtain sup(ODP ) = sup(Q) (Proposition 4.6 ). In the case that robust
strong duality holds, we get inf(RP ) = max(Q) (Proposition 4.3). Conversely, we establish
robust strong duality (Theorem 4.8) from our previous results using a convex composite
duality principle. Finally, we compare our Corollary 4.9 to [16] Corollary 3.1 (Remark 4.10,
Proposition 4.11).

2 Preliminaries

Let X be a locally convex Hausdorff topological vector space with topological dual X∗

and ⟨, ⟩ the standard bilinear coupling function between X and X∗. Given a function
h : X → R̄ = R ∪ {−∞,+∞}, we note by dom h := {x ∈ X | h(x) < +∞} the effective
domain of h. One says that h is proper if dom h is non-empty and −∞ /∈ h(X). The
epigraph of function h is the set epih := {(x, t) ∈ X×R | h(x) ≤ t}. Recall that h is convex
if and only if epih is convex, h is lower semi-continuous if and only if epih is closed. The
set of all proper convex lower semi-continuous extended real-valued functions defined on X
is denoted by Γ(X).

The Legendre-Fenchel conjugate of h : X → R̄ is the function

h∗ : X∗ → R̄ , h∗(x∗) := sup
x∈X

{⟨x, x∗⟩ − h(x)},

which is convex and weak∗ lower semi-continuous. The Legendre-Fenchel biconjugate of h
is defined on X by

h∗∗(x) := sup
x∗∈X∗

{⟨x, x∗⟩ − h∗(x∗)}.

It holds that h ≥ h∗∗, h∗∗ being convex and lower semi-continuous.

Property 2.1. For each family of extended real-valued functions (hi)i∈I ⊂ R̄X , one has:(
inf
i∈I

hi

)∗
= sup

i∈I
h∗
i .

Given a subset A of X, we note by iA the indicator function of A defined on X by
iA(x) = 0 if x ∈ A and iA(x) = +∞ otherwise, σA := i∗A the support function of A ,
co(A) its convex hull, Ā its closure, co(A) its closed convex hull. On the dual space X∗

we only consider the weak∗ topology, and for any subset B of X∗ we simply denote by B̄
the weak∗ closure of B. Given A, B two subsets of X, we say that A is closed regarding
B if Ā ∩ B = A ∩ B ([7]). Analogously, A is said to be closed convex regarding B if
co(A) ∩B = A ∩B ([12]).
Given E ⊂ R̄, we write minE (respectively maxE) instead of inf E (respectively supE)
when the infimum (respectively supremum) of E is attained.

We recall below two classical properties.
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Lemma 2.1 ([6] Theorem 2.1). For all h1, h2 ∈ Γ(X) such that dom h1

∩
dom h2 ̸= ∅, one

has:

epi (h1 + h2)
∗ =

(
epih∗

1 + epih∗
2

)
. (2.1)

Lemma 2.2 ([7]). Let (hi)i∈I ⊂ Γ(X), where I is an arbitrary nonempty index set. Assume
that there exists x̄ ∈ X such that supi∈I hi(x̄) < +∞. Then,

epi
(
sup
i∈I

hi

)∗
= co

(∪
i∈I

epih∗
i

)
. (2.2)

The closure in (2.1) and (2.2) is taken with respect to the product of the weak∗ topology
on X∗ and the natural topology on R. Moreover, if h1 is finite and continuous at some point
of dom h2 then, by Moreau-Rockafellar Theorem ([19] Theorem 3), the closure is unnecessary
in (2.1).

Let Y be another locally convex Hausdorff topological vector space and S ⊂ Y a
nonempty closed convex cone. The S-epigraph of a mapping g : dom g ⊂ X → Y , is
the set

epi Sg := {(x, y) ∈ dom g × Y : y − g(x) ∈ S},
and the S-level set of g at level y ∈ Y is defined as

{x ∈ dom g : g(x) ∈ y − S}.

There are several notions about lower semi-continuity of mappings like g ([1],[10],[15],
[17], [18]). Here, we only use the ones depending on the S-epigraph or the S-level sets of
g. We shall say that g is S-epi-closed convex if epi Sg is closed and convex, and that g is
S-level-closed convex if its S-level set at level y is closed and convex for each y ∈ Y . Of
course any S-epi-closed convex function is also S-level-closed convex.

We denote by
S+ := {λ ∈ Y ∗ : ⟨y, λ⟩ ≥ 0, ∀y ∈ S},

the positive polar cone of S.
Given λ ∈ S+, we denote by λg the function defined on X by

λg(x) =


⟨g(x), λ⟩ if x ∈ dom g

+∞ otherwise.

If g is defined on the whole space X then λg is the standard composition of λ by g usually
denoted by λ ◦ g.
The level set of g at level y = 0Y is

g−1(−S) := {x ∈ dom g : g(x) ∈ −S}.

Let us consider the set
Kg :=

∪
λ∈S+

epi (λg)∗,

which can be viewed as the characteristic cone associated to the system of inequalities ([13]):{
x ∈ dom g : λg(x) ≤ 0 , ∀λ ∈ S+

}
.
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Let us quote that, without any convexity assumption on g, Kg is always a convex cone.
More precisely, one has:

Property 2.2. For each mapping g : dom g ⊂ X → Y such that g−1(−S) ̸= ∅, it holds:

i) ig−1(−S) = supλ∈S+(λg) ;

ii) Kg is a convex cone.

Proof. i). Let x ∈ X. If x ∈ g−1(−S) then ⟨g(x), λ⟩ ≤ 0 for each λ ∈ S+, thus

sup
λ∈S+

(λg)(x) = 0.

If x /∈ g−1(−S) then g(x) /∈ −S which is closed convex. By Hahn-Banach separation
Theorem, there exists (y∗, r) ∈ Y ∗ × R such that ⟨y, y∗⟩ < r < ⟨g(x), y∗⟩ for all y ∈ −S.
Since 0Y ∈ S, it then follows that r > 0 and thus y∗ ∈ S+. Therefore supλ∈S+(λg)(x) ≥
⟨g(x), ny∗⟩ > 0 for all n ≥ 1. Letting n → +∞, one gets supλ∈S+(λg)(x) = +∞, and i)
holds.
ii). We first prove that Kg is a cone. Let (x∗, r) ∈ Kg and t > 0. There exists λ ∈ S+ such
that (λg)∗(x∗) ≤ r, and we have

(tλg)∗(tx∗) = sup
x∈X

{⟨x, tx∗⟩ − tλg(x)} = t sup
x∈X

{⟨x, x∗⟩ − λg(x)} = t(λg)∗(x∗) ≤ tr.

Therefore, t(x∗, r) ∈ epi (tλg)∗ ⊂ Kg.
We now prove that Kg is convex. Let (x∗

i , ri) ∈ Kg for i = 1, 2. One has to check that
(x∗

1 + x∗
2 , r1 + r2) ∈ Kg. There exists λi ∈ S+ such that (x∗

i , ri) ∈ epi (λig)
∗. For all

x ∈ dom g, we have

⟨x, x∗
1 + x∗

2⟩ − ⟨g(x), λ1 + λ2⟩ =⟨x, x∗
1⟩ − ⟨g(x), λ1⟩+ ⟨x, x∗

2⟩ − ⟨g(x), λ2⟩
≤(λ1g)

∗(x∗
1) + (λ2g)

∗(x∗
2)

≤ r1 + r2.

Taking the supremum over x ∈ dom g we get:

(x∗
1 + x∗

2 , r1 + r2) ∈ epi ((λ1 + λ2)g)
∗ ⊂ Kg.

In the presence of convexity, we have:

Proposition 2.3. For any S-epi-closed convex mapping g : dom g ⊂ X → Y , such that
g−1(−S) ̸= ∅, we have:

epiσg−1(−S) = Kg. (2.3)

Proof. Let us defined the function H : X × Y → R ∪ {+∞} by:

H(x, y) = iepi Sg(x,−y).

It is easy to check that

H∗(x∗, λ) =


(λg)∗(x∗) if λ ∈ S+

+∞ else.
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Since g is S-epi-closed convex and g−1(−S) ̸= ∅, we have H ∈ Γ(X × Y ). In particular for
each x ∈ X, one has:

H(x, 0Y ) =H∗∗(x, 0Y )

= sup
x∗∈X∗

λ∈Y ∗

{⟨x, x∗⟩ − ⟨0Y , λ⟩ −H∗(x∗, λ)}

= sup
x∗∈X∗

λ∈S+

{⟨x, x∗⟩ − (λg)∗(x∗)}

= sup
λ∈S+

{
sup

x∗∈X∗
{⟨x, x∗⟩ − (λg)∗(x∗)}

}
= sup

λ∈S+

(λg)∗∗(x).

On the other hand, for each x ∈ X, one has:

H(x, 0Y ) = iepi Sg(x, 0Y ) = ig−1(−S)(x).

Therefore ig−1(−S) = supλ∈S+(λg)∗∗ and since g−1(−S) ̸= ∅, Lemma 2.2 says that

epi σg−1(−S) = co

( ∪
λ∈S+

epi (λg)∗∗∗

)
= co

( ∪
λ∈S+

epi (λg)∗

)
= Kg,

where the last equality is due to Property 2.2.ii) and the definition of Kg.

Remark 2.4. Despite the fact that

ig−1(−S) = sup
λ∈S+

(λg),

one cannot directly apply Lemma 2.2 to function ig−1(−S) to reach (2.3). The reason is that
λg is not necessary lower semi-continuous for each λ ∈ S+ even if g is S-epi-closed convex.
In fact, if g is a S-epi-closed convex function whose domain is not closed, then for λ = 0Y ∗ ,
we have λg = idom g, which is not lower semi-continuous.

3 Worst Value Versus Robust Value

In this section, we give a necessary and sufficient condition for the equality between the
worst value and the robust value of the uncertain problem (P ) with attainment of the worst
value:

inf(RP ) = max
u∈U

inf(Pu). (3.1)

For each u ∈ U , let Fu be the feasible set of (Pu) that is

Fu = {x ∈ dom gu : gu(x) ∈ −S}.

We denote by F the feasible set of the problem (RP ) :

F := {x ∈ X : x ∈ dom gu , gu(x) ∈ −S , ∀u ∈ U} =
∩
u∈U

Fu,



34 M. BARRO, A. OUÉDRAOGO AND S. TRAORÉ

and define the function p : X → R ∪ {+∞} by

p = sup
u∈U

(f + iFu) = f + sup
u∈U

iFu = f + iF .

We have dom p = F ∩ dom f , and infX p = inf(RP ).

Proposition 3.1. It holds that

sup(Q) ≤ inf(RP ). (3.2)

Proof.

sup(Q) = sup
u∈U

inf(Pu) = sup
u∈U

inf
x∈X

(f + iFu)(x) ≤ inf
x∈X

sup
u∈U

(f + iFu)(x) = inf(RP ).

We present an example to show that the inequality (3.2) may be strict even if f is linear,
the set of uncertain parameters U is finite and inf(RP ) is reached.

Example 3.2. Consider the following uncertain conical convex programming problem:

(P ) min x1 + x2 s.t.
1

2
[(2− u1)x

2
1 + (1 + u2)x

2
2] ≤ 1,

where (u1, u2) = (1, 2) or (u1, u2) = ( 12 , 1). In this example, one has:

X = R2, f(x1, x2) = x1 + x2, Y = R, S = R+, U =

{
(1, 2),

(
1

2
, 1

)}
,

gu(x1, x2) =
1

2

[
(2− u1)x

2
1 + (1 + u2)x

2
2

]
− 1.

For each u ∈ U , the Slater qualification condition holds for (Pu). By solving the correspond-
ing Karush-Kuhn-Tucker system, one gets

min(Pu) = −

√
2

(
1

2− u1
+

1

1 + u2

)
=


−
√

8
3 if u = (1, 2)

−
√

7
3 if u = ( 12 , 1).

Therefore

max(Q) = −
√

7

3
.

On the other hand, the robust counterpart of (P ) is given by:

(RP ) min x1 + x2 s.t.


x2
1 + 3x2

2 ≤ 2

3x2
1 + 4x2

2 ≤ 4.

Slater qualification condition holds for (RP ). By solving the corresponding Karush-Kuhn-
Tucker system, one gets

min(RP ) = −2 +
√
2√

5
> −

√
7

3
= max(Q).
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Let us consider the opposite of the problem (Q) namely:

(−Q) inf
u

sup{−f(x) : gu(x) ∈ −S} s.t. u ∈ U.

The perturbation of the objective function of (−Q) by adding a linear continuous form leads
to define the value function q : X∗ → R̄ by:

q(x∗) := inf
u∈U

sup
x∈Fu

{⟨x, x∗⟩ − f(x)} = inf
u∈U

(f + iFu)
∗
(x∗).

From Property 2.1 we have

q∗ = sup
u∈U

(f + iFu)
∗∗ ≤ sup

u∈U
(f + iFu) = p.

Therefore
p∗ ≤ q∗∗ ≤ q. (3.3)

Let us introduce the condition

(H )


f ∈ Γ(X)

F ∩ dom f ̸= ∅ (that is inf(RP ) < +∞)

gu is S-level-closed convex, ∀u ∈ U.

Lemma 3.3. Assume (H ) holds. Then

epi p∗ = co

(∪
u∈U

epi (f + iFu)
∗

)
. (3.4)

Proof. If (H ) holds then f + iFu ∈ Γ(X) for each u ∈ U , and one has:

q∗ = sup
u∈U

(f + iFu)
∗∗ = sup

u∈U
(f + iFu) = p.

Therefore, q∗∗ = p∗ and dom q∗ = F ∩ dom f ̸= ∅. Applying Lemma 2.2 to the function
p = supu∈U (f + iFu) one gets (3.4).

Theorem 3.4. Assume (H ) holds. For each x∗ ∈ X∗, the following statements are equiv-
alent:

i) p∗(x∗) = minu∈U supx∈Fu
{⟨x, x∗⟩ − f(x)};

ii)
∪

u∈U epi (f + iFu)
∗
is weak∗-closed convex regarding {x∗} × R.

Proof. Since dom p ̸= ∅, the conjugate function p∗ does not take the value −∞.
Let x∗ ∈ X∗. We first consider the case where p∗(x∗) = +∞. Since p∗ ≤ q, we have
q(x∗) = +∞ and i) holds. On the other hand, by Lemma 3.3, we have:

co

(∪
u∈U

epi (f + iFu)
∗

)∩(
{x∗} × R

)
= epi p∗

∩(
{x∗} × R

)
= ∅.
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Consequently, if p∗(x∗) = +∞ then i) and ii) are both satisfied.
Assume now that p∗(x∗) ∈ R. We first prove that ii) =⇒ i). By Lemma 3.3 it holds that

(x∗, p∗(x∗)) ∈ epi p∗
∩(

{x∗} × R
)
= co

(∪
u∈U

epi (f + iFu)
∗

)∩(
{x∗} × R

)
.

By ii) it follows that

(x∗, p∗(x∗)) ∈

(∪
u∈U

epi (f + iFu)
∗

)∩(
{x∗} × R

)
.

Consequently, there exists ū ∈ U such that:

inf
u∈U

(f + iFu)
∗(x∗) = q(x∗) ≤ (f + iFū)

∗(x∗) ≤ p∗(x∗).

Since p∗(x∗) ≤ q(x∗), we get i).
Conversely, let us prove i) ⇒ ii). Let (x∗, r) ∈ co

(∪
u∈U epi (f + iFu)

∗)
. By Lemma 3.3 we

have p∗(x∗) ≤ r. By i) there exists ū ∈ U such that

p∗(x∗) = (f + iFū)
∗(x∗)

and finally (x∗, r) ∈ epi (f + iFū)
∗
.

Corollary 3.5. Assume (H ) holds. Then the following statements are equivalent:

i) −∞ ≤ maxu∈U inf(Pu) = inf(RP ) < +∞ ;

ii) the set
∪

u∈U epi (f + iFu)
∗
is weak∗ − closed convex regarding {0X∗} × R.

Proof. Since −p∗(0X∗) = inf(RP ), the result follows from Theorem 3.4 applied with x∗ =
0X∗ .

Corollary 3.6. Assume (H ) holds. Then the following statements are equivalent:

i) −∞ < p∗(x∗) = minu∈U (f + iFu)
∗(x∗) ≤ +∞, ∀x∗ ∈ X∗;

ii) the set A :=
∪

u∈U epi (f + iFu)
∗
is weak∗-closed convex .

Proof. Note that the set A is weak∗-closed convex if and only if A is weak∗-closed convex
regarding {x∗} × R for all x∗ ∈ X∗. Then the result follows from Theorem 3.4.

Let us reinforce condition (H ) by assuming that for each u ∈ U , the mapping gu is
S-epi-closed convex, and consider the new condition (H ′) given by:

(H ′)


f ∈ Γ(X)

F ∩ dom f ̸= ∅
gu is S-epi-closed convex, ∀u ∈ U.
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Corollary 3.7. Assume (H ′) holds. Then the following statements are equivalent:

i) inf(RP ) = max(Q);

ii)
∪

u∈U (epi f∗ +Kgu) is weak∗-closed convex regarding {0X∗} × R.

Proof. Since F ̸= ∅, one has Fu = g−1
u (−S) ̸= ∅ for each u ∈ U . Applying Proposition 2.3

to the mapping gu, one has:

epi i∗Fu
= Kgu , ∀u ∈ U.

By Lemma 2.1 we have, for each u ∈ U ,

epi (f + iFu)
∗ =
(
epi f∗ + epi i∗Fu

)
=
(
epi f∗ +Kgu

)
=(epi f∗ +Kgu).

Consequently, ∪
u∈U

epi (f + iFu)
∗ =

∪
u∈U

(epi f∗ +Kgu)

and the conclusion follows from Corollary 3.5.

4 Link with Robust Strong Duality Property

For each parameter u ∈ U , we associate to (Pu) the classical Lagrangian dual defined as:

(Du) sup
λ

inf
x∈X

{
f(x) + λgu(x)

}
s.t. λ ∈ S+.

The optimistic dual of the uncertain problem (P ) is given by ([2],[8],[14],[16])

(ODP ) sup
(u,λ)

inf
x∈X

{
f(x) + λgu(x)

}
s.t. (u, λ) ∈ U × S+.

Proposition 4.1. It holds that:

sup(ODP ) ≤ sup(Q). (4.1)

Proof. By Lagrangian weak duality between (Pu) and (Du), one has, for each u ∈ U :

sup
λ∈S+

inf
x∈X

{
f(x) + λgu(x)

}
≤ inf(Pu).

Taking the supremum over U , one gets

sup(ODP ) = sup
u∈U
λ∈S+

inf
x∈X

{
f(x) + λgu(x)

}
≤ sup

u∈U
inf(Pu) = sup(Q).
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Remark 4.2. It is worth noticing that, even in the certainty case, say U = {ū}, it may
happen that (see Lemma 4.5 below):

sup
λ∈S+

inf
x∈X

{f(x) + λgū(x)} = sup(ODP ) < sup(Q) = inf(Pū).

One says that robust strong duality holds for the uncertain conical convex problem (P )
whenever the values of the robust counterpart and the optimistic dual coincide with dual
attainment, i.e.

inf(RP ) = max(ODP ). (4.2)

The terminology robust strong duality was introduced in [16]. This property can be found
in [2] and [14] under the name ”primal worst equals dual best”.

Proposition 4.3. If robust strong duality holds then

inf(RP ) = max(Q).

Proof. Assume that robust strong duality holds. By Juxtaposing Proposition 3.1 and Propo-
sition 4.1, we have

max(ODP ) = sup(Q) = inf(RP ).

Consequently, there exists (ū, λ̄) ∈ U × S+ such that

inf
x∈X

{
f(x) + λ̄gū(x)

}
= inf(RP ) = sup(Q) ≥ inf(Pū) ≥ inf

x∈X

{
f(x) + λ̄gū(x)

}
,

where the last inequality results from the weak duality between (Pū) and (Dū). Thus
inf(RP ) = inf(Pū) and we are done.

In order to obtain robust strong duality from the previous results, we recall a convex
composite duality principle.

Lemma 4.4 ([7] Theorem 8.3). Assume that f ∈ Γ(X), g : dom g ⊂ X → Y is S-epi-closed
convex and g−1(−S)

∩
dom f ̸= ∅. Then the following statements are equivalent:

i) infg(x)∈−S{f(x)−⟨x, x∗⟩} = maxλ∈S+ infg(x)∈−S{f(x)−⟨x, x∗⟩+λg(x)}, for any x∗ ∈
X∗;

ii)
∪

λ∈S+ epi (f + λg)∗is weak∗ − closed.

Lemma 4.5 ([11] Corollary 5). Assume that f ∈ Γ(X), g : dom g ⊂ X → Y is S-epi-closed
convex and g−1(−S)

∩
dom f ̸= ∅. Then the following statements are equivalent:

i) infg(x)∈−S f(x) = maxλ∈S+ infx∈X{f(x) + λg(x)};

ii)
∪

λ∈S+ epi (f + λg)∗is weak∗-closed regarding {0X∗} × R.

Concerning the problems (ODP ) and (Q), we have:
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Proposition 4.6. Assume that (H ′) holds and for each u ∈ U , the set
∪

λ∈S+ epi (f+λgu)
∗

is weak∗-closed regarding {0X∗} × R . Then,

sup(ODP ) = sup(Q). (4.3)

Proof. Applying Lemma 4.5, we obtain

inf
x∈Fu

f(x) = max
λ∈S+

inf
x∈X

{f(x) + λgu(x)}, ∀u ∈ U.

Taking the supremum over U , one obtains

sup(Q) = sup(ODP ).

Remark 4.7. Consider the Example 3.2. Due to Slater qualification condition, it holds
that the set

∪
λ≥0 epi (f + λgu)

∗ is closed for all u ∈ U ( see for instence [9], Remark 4.3),
and we have by Proposition 4.6:

sup(Q) = sup(ODP ) < inf(RP ). (4.4)

We now consider robust strong duality property. Let us denote by Sol(Q) the set of
optimal solutions of (Q):

Sol(Q) = {u ∈ U : inf(Pu) = sup(Q)}.

Theorem 4.8. Assume (H ) holds and∪
u∈U

epi (f + iFu)
∗is weak∗ − closed convex regarding {0X∗} × R, (4.5)

∃ū ∈ Sol(Q) :

{
gūis S-epi-closed convex and∪
λ∈S+ epi (f + λgū)

∗is weak∗ − closed regarding {0X∗} × R.
(4.6)

Then, robust strong duality property holds.

Proof. We have:

inf(RP ) =max(Q) (follows from Corollary 3.5 and (4.5) )

= inf(Pū) (for some optimal solution ūof (Q) )

=max(Dū) (by (4.6) and Lemma 4.5 )

≤ sup(ODP ) (by the definition of the optimistic dual problem).

Applying Proposition 4.1 we get:

sup(ODP ) ≤ sup(Q) = inf(RP ) = max(Dū) ≤ sup(ODP ).

Consequently, there exists (ū, λ̄) ∈ U × S+ such that

sup(ODP ) = inf
x∈X

{f(x) + λ̄gū(x)} = inf(RP ),

and we are done.
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One says that robust strong duality holds at a given x∗ ∈ X∗ if

inf
x∈F

{f(x)− ⟨x, x∗⟩} = max
λ∈S+

u∈U

inf
x∈X

{f(x)− ⟨x, x∗⟩+ λgu(x)}. (4.7)

If x∗ = 0X∗ we go back to robust strong duality property. If robust strong duality holds at
each x∗ ∈ X∗, one says that robust stable strong duality holds for (P ).

Corollary 4.9. Assume (H ′) holds and∪
u∈U

epi f∗ +Kgu is weak∗-closed convex, (4.8)

∀u ∈ U ,
∪

λ∈S+

epi (f + λgu)
∗ is weak∗-closed. (4.9)

Then, robust stable strong duality holds.

Proof. By Lemma 2.1 and Proposition 2.3, one has:

A :=
∪
u∈U

epi (f + iFu)
∗ =

∪
u∈U

epi f∗ +Kgu .

By (4.8) A is weak∗-closed convex . Therefore, for each x∗ ∈ X∗, one has:

inf
x∈F

{f(x)− ⟨x, x∗⟩} =max
u∈U

inf
x∈Fu

{f(x)− ⟨x, x∗⟩} (by Corollary 3.6)

= inf
x∈Fū

{f(x)− ⟨x, x∗⟩} (for some ū ∈ U)

= max
λ∈S+

inf
x∈X

{f(x)− ⟨x, x∗⟩+ λgū(x)} (by Lemma 4.4 and (4.9))

= inf
x∈X

{f(x)− ⟨x, x∗⟩+ λ̄gū(x)} (for some λ̄ ∈ S+)

≤ sup
λ∈S+

u∈U

inf
x∈X

{f(x)− ⟨x, x∗⟩+ λgu(x)}.

Now, by weak duality (apply Proposition 3.1 and Proposition 4.1 to f − x∗), it holds

sup
λ∈S+
u∈U

inf
x∈X

{f(x)− ⟨x, x∗⟩+ λgu(x)} ≤ inf
x∈F

{f(x)− ⟨x, x∗⟩},

and we are done.

Remark 4.10. Let us assume that for each u ∈ U , the maping gu : X → Y is continuous
and S-epi-convex. For each λ ∈ S+ the function λgu = λ ◦ gu is convex and continuous, and
by Moreau-Rockafellar Theorem one has

epi (f + λgu)
∗ = epi f∗ + epi (λgu)

∗.

In such a case condition (4.9) turns into

∀u ∈ U, epi f∗ +Kgu is weak∗-closed . (4.10)
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Robust strong duality property was established in [16] (Corollary 3.1) for continuous
S-epi-convex mappings gu : X → Y under the condition

epi f∗ +
∪
u∈U

Kgu is weak
∗-closed convex (4.11)

without assuming (4.9) (that is (4.10)) as we did in Corollary 4.9. However, let us observe
that:

Proposition 4.11. The condition (4.8) is weaker than the condition (4.11).

Proof. We have

epi f∗ +
∪
u∈U

Kgu ⊂
∪
u∈U

(epi f∗ +Kgu) ⊂

(
epi f∗ +

∪
u∈U

Kgu

)
⊂ co

(
epi f∗ +

∪
u∈U

Kgu

)
.

Thus, if (4.11) holds, then all the above inclusions are equalities, and we have in particular

∪
u∈U

(epi f∗ +Kgu) = co

(
epi f∗ +

∪
u∈U

Kgu

)
,

which is weak∗- closed convex.
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