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The representation theorem presented in this paper uses the given norm of the normed
space and there is no need to prove the existence of an additional equivalent norm.

This theorem guarantees not only the availability for a representation of some class
of cones as a BP cone, but also provides relationship between the parameters (the linear
functional, the norm, and the scalar coefficient of the norm) determining this BP cone,
and explicitly defines the BP cone which equals the given cone. This is of great importance,
because it provides an analytical expression for the given cone and thus provides a convenient
mathematical tool in investigations. There are many existence and characterization theorems
for optimal solutions in the literature where the objective space is assumed to be partially
ordered by a BP cone (see e.g. [4, 5, 9]).

In this paper we also prove theorems on interior of the BP cone and by using the represen-
tation theorem we present a detailed discussion on the relationship between the augmented
dual cones and the representation of the interior of BP cones.

Finally, by using the representation theorem we show that every BP cone and its conic
neighborhood satisfy the nonlinear separation property in finite dimensional spaces. This
property was suggested by R. Kasimbeyli in [10] where he proved that two cones satisfying
the separation property, can be separated by some BP cone. Such a BP cone is defined by
some element from the augmented dual cone. Note that, the augmented dual cones, BP
cones and the nonlinear separation theorem are used to develop optimality conditions and
solution approaches for a certain class of nonconvex optimization problems in both single
objective optimization theory and in vector optimization (see e.g, [4, 9, 11–14]).

The theorems on the representation, on the interior and on the separation property
studied in this paper are comprehensively illustrated on examples in finite and infinite di-
mensional spaces.

The paper is organized as follows. Section 2 gives some preliminaries. The general non-
linear separation property and separation theorems are given in Section 3. In this section a
sufficient condition for separation property is also presented. The representation theorem,
the theorems on the interior of BP cones and the relationship between the nonlinear sep-
aration property and the BP cones are given in Section 4. Section 5 presents illustrative
examples and detailed discussions of the representation and characterization theorems in
finite and infinite dimensional spaces. Finally, Section 6 draws some conclusions from the
paper.

2 Preliminaries

In this section, we recall some concepts of cones, separability and proper efficiency. Through-
out the paper, we will assume always, unless stated specifically otherwise, that:

(i) Y is a reflexive Banach space with dual space Y ∗, and C ⊊ Y is a cone which contains
nonzero elements;

(ii) cl(S), bd(S), int(S), and co(S) denote the closure (in the norm topology), the bound-
ary, the interior, and the convex hull of a set S, respectively;

(iii) R+ and R++ denote the sets of nonnegative and positive real numbers, respectively;
The unit sphere and unit ball of Y are denoted by

U = {y ∈ Y : ∥y∥ = 1} (2.1)

and

B = {y ∈ Y : ∥y∥ ≤ 1},



A REPRESENTATION THEOREM FOR BISHOP-PHELPS CONES 57

respectively.
A nonempty subset C of Y is called a cone if

y ∈ C, λ ≥ 0 ⇒ λy ∈ C.

Pointedness of C means that

C ∩ (−C) = {0Y }.

cone(S) = {λs : λ ≥ 0 and s ∈ S}

denotes the cone generated by a set S.
CU = C ∩ U = {y ∈ C : ∥y∥ = 1} denotes the base norm of the cone C . The term base

norm is justified by the obvious assertion that C = cone(CU ), and is firstly used in [18].
Recall that the dual cone C∗ of C and its quasi-interior C# are defined by

C∗ = {y∗ ∈ Y ∗ : y∗(y) ≥ 0 for all y ∈ C} (2.2)

and

C# = {y∗ ∈ Y ∗ : y∗(y) > 0 for all y ∈ C \ {0}}, (2.3)

respectively.
The following three cones called augmented dual cones of C were introduced in [10].

Ca∗ = {(y∗, α) ∈ C# ×R+ : y∗(y)− α∥y∥ ≥ 0 for all y ∈ C}, (2.4)

Ca◦ = {(y∗, α) ∈ C# ×R+ : y∗(y)− α∥y∥ > 0 for all y ∈ int(C)}, (2.5)

and

Ca# = {(y∗, α) ∈ C# ×R+ : y∗(y)− α∥y∥ > 0 for all y ∈ C \ {0}}, (2.6)

where C is assumed to have a nonempty interior in the definition of Ca◦.

3 Separation Property

In this section, we recall the separation property introduced by R. Kasimbeyli in [10]. This
property enables to separate two cones (which are not necessarily convex, having only the
vertex in common) by a level set of some monotonically increasing (with respect to the
ordering cone) sublinear function.

A general sufficient condition for two cones to satisfy the separation property is proved
in [12]. In this section, we present this theorem without proof.

Definition 3.1. Let C and K be closed cones of a normed space (Y, ∥ · ∥) with base norms

CU and KU , respectively. Let K∂
U = KU ∩ bd(K), and let C̃ and K̃∂ be the closures of

the sets co(CU ) and co(K∂
U ∪ {0Y }), respectively. The cones C and K are said to have the

separation property with respect to the norm ∥ · ∥ if

C̃ ∩ K̃∂ = ∅. (3.1)

Definition 3.2. Let C andK be nonempty cones of a normed space (Y, ∥·∥) with int(K) ̸= ∅.
A cone K is called a conic neighborhood of C if (C \ {0Y }) ⊂ int(K). For a positive real
number ε, a cone Cε = cone(CU + εB) is called an ε-conic neighborhood of C.
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The following two theorems proved in [10, Theorems 4.3 and 4.4] concern the existence
of a pair (y∗, α) ∈ Ca# for which the corresponding sublevel set S(y∗, α) of the strongly
monotonically increasing sublinear function g(y) = y∗(y) + α∥y∥ separates the given cones
C and K, where S(y∗, α) is defined as

S(y∗, α) = {y ∈ Y : y∗(y) + α∥y∥ ≤ 0.} (3.2)

Theorem 3.3. Let C and K be closed cones in a reflexive Banach space (Y, ∥ · ∥). Assume
that the cones −C and K satisfy the separation property defined in Definition 3.1,

−C̃ ∩ K̃∂ = ∅, (3.3)

Then, Ca# ̸= ∅, and there exists a pair (y∗, α) ∈ Ca# such that the corresponding sublevel
set S(y∗, α) of the strongly monotonically increasing sublinear function g(y) = y∗(y)+α∥y∥
separates the cones −C and bd(K) in the following sense:

y∗(y) + α∥y∥ < 0 ≤ y∗(z) + α∥z∥ (3.4)

for all y ∈ −C \ {0Y }, and z ∈ bd(K). In this case the cone −C is pointed.
Conversely, if there exists a pair (y∗, α) ∈ Ca# such that the corresponding sublevel set

S(y∗, α) of the strongly monotonically increasing sublinear function g(y) = y∗(y) + α∥y∥
separates the cones −C and bd(K) in the sense of (3.4) and if either the cone C is closed
and convex or (Y, ∥ · ∥) is a finite dimensional space, then the cones −C and K satisfy the
separation property (3.3).

Remark 3.4. It follows from Theorem 3.3 that two cones satisfying the separation property
(3.3) can be separated by a BP cone defined for some pair (y∗, α) ∈ Ca#, and conversely, if
there exists a pair (y∗, α) ∈ Ca# such that the corresponding BP cone separates the given
cones, then these cones satisfy the separation property (3.3).

Theorem 3.5. Let C be a closed cone of a reflexive Banach space (Y, ∥ · ∥Y ), and let Cε

be its ε-conic neighborhood for a real number ε ∈ (0, 1). Suppose that C and Cε satisfy the
separation property given in Definition 3.1. Then, there exists a pair (y∗, α) ∈ Ca# such
that

−C \ {0Y } ⊂ int(S(y∗, α)) ⊂ −Cε, (3.5)

where int(S(y∗, α)) can be defined as

int(S(y∗, α)) = {y ∈ Y : y∗(y) + α∥y∥ < 0}. (3.6)

Remark 3.6. It follows from definition of the augmented dual cone that every nontrivial
cone C ⊂ Y is a subset of the BP cone

C(y∗, α) = {y ∈ Y : α∥y∥ ≤ y∗(y)}

if (y∗, α) ∈ Ca∗.. Theorem 3.5 strengthens this assertion by saying that for a cone C
satisfying conditions of this theorem, there exists a BP cone which contains the given cone
being contained in the ε-conic neighborhood of C for a real number ε ∈ (0, 1). In other
words, under the conditions of Theorem 3.5, there exists a BP cone which is as close to the
given cone as possible.

The following theorem is presented in [12, Lemma 3] and gives a general sufficient con-
dition for the separation property in Rn.
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Theorem 3.7. Let C be a closed convex cone in Rn. Assume that there exist a pair (y∗, α) ∈
Rn ×R++ such that,

cl(co(CU )) = {y ∈ B : y∗(y) ≥ α}. (3.7)

Then for an arbitrary closed cone K ⊂ Rn with C ∩ K = {0}, the cones C and K satisfy
the separation property given in Definition 3.1.

4 Main Results

In this section, we show that the condition (3.7) of Theorem 3.7 is necessary and sufficient
for the representation of a given cone as a BP cone in reflexive Banach spaces. Moreover,
this BP cone is defined for the same norm (which is the given norm of the normed space)
and the same pair (y∗, α) ∈ Y ∗×R++ used in condition (3.7). Thus, the theorem presented
in this paper guarantees not only the availability of a representation of some class of cones
as a BP cone, but also gives its exact expression by explaining properties of parameters
determining this BP cone.

The following definition for BP cones is used in this paper:

Definition 4.1. Let (Y, ∥ · ∥) be a real normed space. For some positive number α > 0 and
some continuous linear functional y∗ from the dual space Y ∗ the cone

C(y∗, α) = {y ∈ Y : α∥y∥ ≤ y∗(y)} (4.1)

is called Bishop-Phelps cone. In this definition, the triple (y∗, α, ∥ · ∥) will be referred to as
parameters determining the given BP cone.

In the original definition of Bishop and Phelps, it is required that ∥y∗∥∗ = 1 and α ∈ (0, 1].
Some authors (see for example, [4, 6, 8]) do not use the constant α and the assumption

∥y∗∥∗ = 1. This paper follows Definition 4.1. It easily follows from the definition that every
BP cone is closed and pointed [8, 15].

We first present a sufficient condition for characterizing interior of every BP cone. Then,
the representation theorem will be presented. We begin with the following lemma charac-
terizing the quasi-interior of the augmented dual cone.

Lemma 4.2. Let C ∈ Y be a given nonempty cone. If (y∗, α) ∈ Ca# then ∥y∗∥∗ > α.

Proof. Let (y∗, α) ∈ Ca# and let y ∈ C \ {0}. Then

0 < y∗(y)− α∥y∥ ≤ ∥y∗∥∗∥y∥ − α∥y∥ = ∥y∥(∥y∗∥∗ − α),

which completes the proof.

The following theorem characterizes interior of BP cones. Note that this theorem is given
in [10] in a slightly different setting, therefore we present this theorem without the proof for
which we refer reader to [10, Lemma 3.6].

Theorem 4.3. Let C(y∗, α) = {y : y∗(y) ≥ α∥y∥} be a given BP cone for some pair
(y∗, α) ∈ Ca∗. If (y∗, α) ∈ Ca# then

int(C(y∗, α)) = {y : y∗(y) > α∥y∥} ̸= ∅. (4.2)

Remark 4.4. A sufficient condition on the characterization of interior of BP cones was
also presented in [8, Theorem 2.5(b)], which is equivalent to that of Theorem 4.3. Below we
present examples which demonstrate that the condition of Theorem 4.3 is not necessary in
general (see, Section 5 and Remark 5.2).
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Now we present the representation theorem.

Theorem 4.5. Let C be a nonempty closed convex cone of a real normed space (Y, ∥ · ∥).
Assume that

cl(co(CU )) = {y ∈ B : y∗(y) ≥ α} (4.3)

for some (y∗, α) ∈ Y ∗ × R++. Then C is representable as a Bishop–Phelps cone with the
same norm and the same pair (y∗, α) defining the condition (4.3). Conversely, if C = {y ∈
Y : y∗(y)−α∥y∥ ≥ 0} is a Bishop–Phelps cone of a reflexive Banach space (Y, ∥ · ∥), then C
satisfies condition (4.3).

Proof. Necessity. Let y∗ ∈ Y ∗ and let α > 0 be a real number, and let C = {y ∈ Y :
y∗(y)−α∥y∥ ≥ 0} be a given Bishop–Phelps cone in (Y, ∥·∥). Show that C satisfies condition
(4.3) with the same y∗ ∈ Y ∗, α > 0 and the same norm.

Let
C̃ = cl(co(CU )). (4.4)

It is clear that the base norm of C can be represented as

CU = {y ∈ U : y∗(y)− α∥y∥ ≥ 0} = {y ∈ U : y∗(y)− α ≥ 0}. (4.5)

As α > 0, in particular, it follows from the definition that C is convex and pointed.

We define the following set

D = {y ∈ B : y∗(y) ≥ α}. (4.6)

First we show that
co(CU ) = D. (4.7)

Let y ∈ co(CU ). Then, by definition of convex hull, there exists a set of nonnegative
numbers βi, i ∈ I such that, y can be represented as

y =
∑
i∈I

βiyi, where yi ∈ CU and
∑
i∈I

βi = 1.

Clearly, y ∈ B. On the other hand

y∗(y) =
∑
i∈I

βiy
∗(yi) ≥ α.

Then, from (4.6) we have y ∈ D; that is, co(CU ) ⊂ D.
Now, let y ∈ D. We will show that y ∈ co(CU ).

If ∥y∥ = 1 then y ∈ U and the inclusion y ∈ CU ⊂ co(CU ) follows from (4.5).

Consider the case ∥y∥ < 1, that is y ∈ int(B). Denote ν = y∗(y). Clearly ν ≥ α. Take
any non-zero vector b ∈ Y satisfying y∗(b) = 0. Consider

yλ = y + λb, λ ∈ (−∞,∞).

We have
y∗(yλ) = y∗(y) + λy∗(b) = ν ≥ α. (4.8)
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As b ̸= 0, we have ∥yλ∥ → ∞ if |λ| → ∞ which means that y /∈ B for sufficiently large values
of λ. On the other hand, since y ∈ int(B), the inclusion yλ ∈ int(B) holds for sufficiently
small in absolute value numbers λ > 0 and λ < 0. Then, since ∥yλ∥ is a weakly upper
semicontinuous function of λ, and B is weakly compact, there exist numbers λ1 > 0 and
λ2 < 0 such that the corresponding points y1

.
= yλ1 and y2

.
= yλ2 belong to the boundary of

B (as maximum values of ∥yλ∥ w.r.t. λ > 0 and λ < 0 respectively). That is,

yi ∈ U, i = 1, 2.

These inclusions together with (4.8) and (4.5) imply that yi ∈ CU , i = 1, 2.
Finally, denoting λ′ = λ1/(λ1 − λ2), it is not difficult to check that,

λ′ ∈ (0, 1) and y = (1− λ′)y1 + λ′y2.

Therefore, y ∈ co(CU), which means that D ⊂ co(CU).

Thus, we have shown that the relation (4.7) is true. From this relation, we have

C̃ = {y ∈ B : y∗(y) ≥ α},

and the proof of Necessity is completed.
Sufficiency. Now let C be a nonempty closed convex cone of Y, and suppose that

condition (4.3) is satisfied for some (y∗, α) ∈ Y ∗×R with α > 0. Show that C is representable
as a Bishop–Phelps cone, that is show that C = C(y∗, α).

Let y ∈ C \ {0}Y . Then there exists a positive real number β such that βy ∈ CU , and
hence βy ∈ cl(co(CU )). Then by condition (4.3) we have:

y∗(βy) ≥ α.

Then, since βy ∈ CU , we have α = α∥βy∥, and y∗(βy) ≥ α∥βy∥. Thus, y∗(y) ≥ α∥y∥, which
means that C ⊂ C(y∗, α).

Now let y ∈ C(y∗, α). Then for every y ∈ C(y∗, α) there exists a scalar β > 0 such that
βy ∈ U ∩ C(y∗, α) and therefore

y∗(βy) ≥ α∥βy∥ = α,

which implies by condition (4.3) that βy ∈ cl(co(CU )). Since C is a closed and convex cone,
we obtain y ∈ C, which establishes the inclusion C(y∗, α) ⊂ C, and the proof of the theorem
is completed.

The next theorem establishes an additional property for parameters of the BP cone
representing the given cone.

Theorem 4.6. Let C ⊂ Y be a given cone which is representable as a BP cone. If C(y∗, α)
is a BP cone representing the given cone C, then (y∗, α) ∈ Ca∗ \ Ca#.

Proof. Assume that C = C(y∗, α) for some pair (y∗, α) ∈ Ca∗. Then C = C(y∗, α) = {y ∈
Y : y∗(y)−α∥y∥ ≥ 0, } and clearly (y∗, α) ∈ Ca∗ by the definition of Ca∗. Obviously, the set
{y ∈ Y : y∗(y)−α∥y∥ = 0} represents the boundary of C, and since C is assumed to contain
nonzero elements, there exists some y ∈ C \ {0} in the boundary with y∗(y) − α∥y∥ = 0
which completes the proof.
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Remark 4.7. Theorem 4.6 explains an interesting property of the BP cone representing
the given cone. Since Theorem 4.3 gives only sufficient condition, it is not clear whether the
interior of the BP cone representing the given cone can be represented by formula (4.2) or
not. It seems that if the pair (y∗, α) ∈ Ca∗ does not belong to Ca# then there is no guarantee
that the interior of this cone can be described by the set {y : y∗(y) > α∥y∥} which may be
empty. In the next section we present examples which illustrate this situation. The following
theorem explains an easy way, how the given cone C can be included in the interior of a
(closest to C) BP cone whose interior is represented by (4.2).

Theorem 4.8. Let C ⊂ Y be a given cone and let (y∗, α) ∈ Ca∗ with α > 0, be the pair for
which the representation property (4.3) is satisfied. Let C(y∗, α) be the BP cone representing
the given cone C. Then (y∗, β) ∈ Ca# for every β ∈ (0, α), and

(C \ {0}) ⊂ int(C(y∗, β)) = {y : y∗(y) > β∥y∥} ̸= ∅.

Proof. Let C = C(y∗, α), where (y∗, α) ∈ Ca∗ with α > 0. Then by Lemma [10, Lemma 3.2
(ii)] (y∗, β) ∈ Ca# for every β ∈ (0, α). Now let y ∈ C(y∗, α), and β ∈ (0, α) be arbitrary
elements. Then

y∗(y)− β∥y∥ > y∗(y)− α∥y∥ ≥ 0,

which means by Theorem 4.3 that y ∈ int(C(y∗, β)) and the proof is completed.

The following theorem establishes that every BP cone in Rn, satisfies the separation
property together with its ε conic neighborhood.

Theorem 4.9. Let C be a BP cone in Rn. Then for every ε ∈ (0, 1), cones C and bd(Cε)
satisfy the separation property given in Definition 3.1.

Proof. Since C∩bd(Cε) = {0}, the proof follows from theorems 4.5 and 3.7 and the definition
of the ε conic neighborhood of a cone (see Definition 3.2).

5 Illustrative Examples

In this section we present illustrative examples for the representation and separation the-
orems, and for the theorem on interior of BP cones in both finite and infinite dimensional
spaces.

5.1 Example 1

The example presented in this section illustrates the representation theorem for a given
convex and pointed cone, where different norms are analyzed. In the case when the repre-
sentation is available, we also present the analysis of the theorem on interior of the BP cone.
The relation between the separation property and the representation theorem is analyzed
by considering some nonconvex cone.

Let Y = R2, C = {(s, s) : s ≥ 0} and let K = {(s, t) : s ≤ 0 or t ≤ 0}. Since
the separation property and the representation theorem both depend on the norm induced,
we will investigate this example with respect to all three norms l1, l2, and l∞ in R2. Let
∥ · ∥1, ∥ · ∥2 and ∥ · ∥∞ be the l1, l2 and l∞ norms respectively, where ∥y∥1 = |s| + |t|,
∥y∥2 =

√
s2 + t2, and ∥y∥∞ = max{|s|, |t|}, for every y = (s, t) ∈ R2.
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For y∗ = (1, 1), it is easy to calculate α = max{y∗( y
∥y∥ ) : y ∈ R2.} It is clear that α1 = 1,

α2 =
√
2, and α∞ = 2, where α1, α2 and α∞ are the maximum values of α calculated with

respect to l1, l2 and l∞ norms respectively.
Let B1, B2 and B∞ be the unit balls w.r.t. l1, l2 and l∞ norms respectively. Denote by

CU1 , CU2 and CU∞ the base norms of C w.r.t. l1, l2 and l∞ norms respectively. Then, we
have

C̃1 = cl(co(CU1)) = {(1/2, 1/2)},

C̃2 = cl(co(CU2)) = {(
√
2/2,

√
2/2)}

and

C̃∞ = cl(co(CU∞)) = {(1, 1)}.

5.1.1 Illustration of the Separation Property

Noting that K∂
U1

= K∂
U2

= K∂
U∞

= {(0, 1), (1, 0)}, one has K̃∂ = {(s, t) : s ≥ 0, t ≥
0 and s+ t ≤ 1}. Since K̃∂ ∩ C̃1 = {(1/2, 1/2)} ̸= ∅, the separation property is not satisfied
for these cones for the case of l1 norm. It is easy to see that for y∗ = (1, 1) and α1 = 1,

{y ∈ B1 : y∗(y) ≥ α1} = {(s, t) : s+ t = 1, s ≥ 0, t ≥ 0} ≠ C̃1,

which shows that C does not satisfy assumption (3.7) for l1 norm.
On the other hand, C̃2 = {y ∈ B2 : y∗(y) ≥ α2} = {(

√
2/2,

√
2/2)}. Hence C satisfies

assumption (3.7) for l2 norm and since C ∩ K = {0}, by Theorem 3.7 the cones C and
K must satisfy the separation property given in Definition 3.1. It is easy to check that
K̃∂ ∩ C̃ = ∅ and hence C and K satisfy the separation property given in Definition 3.1 for
l2 norm.

It can be shown in a similar way that C̃∞ = cl(co(CU∞)) = {y ∈ B∞ : y∗(y) ≥ α∞} =
{(1, 1)}. Hence C satisfies assumption (3.7) and therefore the separation property is satisfied
for the cones C and K in the case of l∞ norm.

5.1.2 Illustration of the Representation Theorem

In this subsection we discuss the representation condition (4.3) and show that similar to the
separation property for this example, it is not satisfied in the case of l1 norm, but is satisfied
for l2, and l∞ norms.

For y∗ = (1, 1) and α1 = 1, it has been shown in the previous subsection that
cl(co(CU1)) ̸= {y ∈ B1 : y∗(y) ≥ α1}. Therefore, condition (4.3) of the representation
theorem is not satisfied for C in the case of l1 norm. In such a case Theorem 4.5 says that
C can not be represented as a Bishop–Phelps cone with the parameters y∗ = (1, 1), α1 = 1,
and the l1 norm. Actually we can conclude by the construction that, there does not exist a
pair (y∗, α) with C = {y = (s, t) : y∗(y) ≥ α∥y∥1}. It seems that the smallest Bishop–Phelps
cone (with y∗ = (1, 1), α1 = 1 and l1 norm) containing C is a cone {(s, t) : s+ t ≥ |s|+ |t|}
which equals R2

+.
In the case of l2 norm, C satisfies assumption (4.3). Then by Theorem 4.5 it should be

represented as a Bishop–Phelps cone. Indeed, for y∗ = (1, 1) and α2 =
√
2 we have

C = {y = (s, t) : y∗(y) ≥ α2∥y∥2} = {(s, t) : s+ t ≥
√
2
√
s2 + t2.} (5.1)
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The relation

C̃∞ = cl(co(CU∞)) = {y ∈ B∞ : y∗(y) ≥ α∞} = {(1, 1)}

shows also that C can be represented as a Bishop–Phelps cone in the following form:

C = {y = (s, t) : y∗(y) ≥ α∞∥y∥∞} = {(s, t) : s+ t ≥ 2max{|s|, |t|}.} (5.2)

5.1.3 Illustration of the Theorem on Interior

Finally we illustrate Theorem 4.3 on interior of the BP cone. By this theorem, if (y∗, α) ∈
Ca# then the interior of BP cone C(y∗, α) is representable by (4.2). Since C = {(s, s) : s ≥
0}, it is clear that int(C) = ∅. Now use the representation (5.1) of this cone as a BP cone
in the case of l2 norm, and check whether (y∗, α2) ∈ Ca# where y∗ = (1, 1) and α2 =

√
2/2.

For the point y = (1, 1) ∈ C \ {0} we have

y∗(y)− α2∥y∥2 = s+ t−
√
2/2

√
s2 + t2 = 1 + 1−

√
2
√
12 + 12 = 0,

which shows that (y∗, α2) /∈ Ca#. Consequently, since

{y = (s, t) : y∗(y) ≥ α2∥x∥2} = {(s, t) : s+ t ≥
√
2
√
s2 + t2} = {(s, s) : s ≥ 0}

we have
{y = (s, t) : y∗(y) > α2∥y∥2} = {(s, s) : s+ s >

√
2
√
s2 + s2} = ∅.

It can easily be checked that the same interpretation is also valid for the representation
(5.2).

5.2 Example 2

Let C = Rn
+. Due to Kasimbeyli [10, Theprem 5.9], this cone satisfies the separation property

(3.1) with respect to l1 norm for arbitrary n with y∗ = (1, . . . , 1), and α = 1. Then by
Theorem 4.9, it satisfies the representation property, and its BP representation is given by

C(y∗, α)l1 = {(y1, . . . , yn) :
n∑

i=1

yi −
n∑

i=1

|yi| ≥ 0}.

It is evident that int(Rn
+) = {(y1, . . . , yn) : yi > 0, i = 1, . . . , n} ̸= ∅. On the other hand,

(y∗, α) ∈ Ca∗ \ Ca# (see, Theorem 4.6) and thus the interior of the BP cone C(y∗, α)l1
cannot be represented by

{(y1, . . . , yn) :
n∑

i=1

yi −
n∑

i=1

|yi| > 0},

which is empty set.
The nonnegative orthant Rn

+ has interesting and different interpretations for different
values of n and different norms. Therefore we consider each case separately.

In the case n = 1, all three norms l1, l2, l∞ have the same formulation and therefore the
BP representation of R+ for all the three norms is given by (see also [6, Example 2.6 (a)])

C(1, 1) = {y ∈ R : y − |y| ≥ 0}.
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In the case n = 2, the l2 and the l∞ norms representations of R2
+ are respectively:

C((1, 1), 1)l2 = {(y1, y2) : y1 + y2 −
√
y21 + y22 ≥ 0},

and

C((1, 1), 1)l∞ = {(y1, y2) : y1 + y2 −max(|y1|, |y2|) ≥ 0}.

It is remarkable that, the condition (4.3) of the representation theorem is not satisfied for
Rn

+ with n ≥ 3 in the cases of l2 and l∞ norms. Hence the nonnegative orthant of Rn with
n ≥ 3 can not be represented as a BP cone in the cases of l2 and l∞ norms. For example,
consider the vector y = (−1, 2, 2) ∈ R3. Let y∗3 = (1, 1, 1) and let α = 1. Then, the relation

y∗3(y) ≥ α∥y∥

is satisfied for both l2 and l∞ norms, but y /∈ R3
+.

Remark 5.1. The nonnegative orthant of Rn is also considered in [6, Example 2.6 (c)],
where the BP cone representation with l1 norm and the interpretation on the interior are
not correct.

5.3 Example 3

Hamel and Jahn investigated the dual of the cone given in the following example, see [7]
and [8, Example 2.15].

Let Y = R2, C = {(y1, y2) : y1 ≥ 0, y2 = 0}. Jahn represented this cone as a BP cone
with y∗ = (1, 0), α = 1 and the l2 norm. We analyze this example using condition (4.3)
with y∗ = (1, 0), α = 1 and different norms and explain why the given cone with the given
parameters can (or cannot) be represented as a BP cone. We use the similar notation as in
subsection 5.1.

5.3.1 The case of l1 norm

Clearly, C̃1 ≜ cl(co(CU1)) = {(1, 0)}. On the other hand

D1 ≜ {y = (y1, y2) ∈ B1 : y∗(y) ≥ α} = {y = (y1, y2) : ∥y∥1 ≤ 1, y1 ≥ 1} = {(1, 0)}.

Hence C̃1 = D1, which means that (4.3) is satisfied and therefore C can be represented as
a BP cone:

C1((1, 0), 1) = {(y1, y2) : y1 ≥ |y1|+ |y2|} = {(y1, y2) : y1 ≥ 0, y2 = 0}.

5.3.2 The case of l2 norm

By the similar analysis it can easily be shown that C̃2 = D2, which means that (4.3) is
satisfied for l2 norm, and therefore C can be represented as a BP cone in the following form:

C2((1, 0), 1) = {(y1, y2) : y1 ≥
√
y21 + y22} = {(y1, y2) : y1 ≥ 0, y2 = 0}.
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5.3.3 The case of l∞ norm

The simple calculation shows that in this case the representation condition (4.3) is not
satisfied:

D∞ ≜ {y = (y1, y2) ∈ B∞ : y∗(y) ≥ α} = {y = (y1, y2) : ∥y∥∞ ≤ 1, y1 ≥ 1}

= {(y1, y2) : −1 ≤ y2 ≤ 1, y1 = 1} ̸= C̃∞ = {(1, 0)}.
This shows by Theorem 4.5 that C can not be represented as a BP cone with
the parameters y∗ = (1, 0), α = 1 and the l∞ norm. Indeed, the BP cone C∞((1, 0), 1)
with these parameters, is different from C, as shown below:

C∞((1, 0), 1) = {(y1, y2) : y1 ≥ max{|y1|, |y2|}}

= {(y1, y2) : −y1 ≤ y2 ≤ y1, y1 ≥ 0} ≠ C.

The BP cone obtained in this section for l∞ norm, takes us to another interesting example
that is considered in the following section.

5.4 Example 4

Let
C = {(y1, y2) : −y1 ≤ y2 ≤ y1, y1 ≥ 0}.

We will illustrate the representation theorem for different norms and the theorem on the
interior.

5.4.1 The case of l1 norm

Let y∗ = (1, 0), α1 = 1/2. Then it is easy to check that

D1 ≜ {y = (y1, y2) ∈ B1 : y∗(y) ≥ α1} = {(y1, y2) : |y1|+ |y2| ≤ 1, y1 ≥ 1/2} = C̃1,

where C̃1 = cl(co(CU1)). This means that (4.3) is satisfied and therefore C can be represented
as a BP cone:

C = C1((1, 0), 1/2) = {(y1, y2) : y1 ≥ 1/2(|y1|+ |y2|)}.
Clearly (y∗, α1) = ((1, 0), 1/2) ∈ Ca∗ \ Ca#, nevertheless the interior of C1((1, 0), 1/2) can
be represented by (4.2):

int(C) = int(C1((1, 0), 1/2)) = {(y1, y2) : y1 > 1/2(|y1|+ |y2|)}.

Remark 5.2. The example presented in Subsection 5.1 illustrates Theorem 4.3 on interior
of the BP cone in the case when interior of the original cone C is empty. This example
illustrates the case if (y∗, α) /∈ Ca# then interior of BP cone C(y∗, α) is not representable
by (4.2).

Example presented in Subsection 5.2 illustrates the representation theorem and the the-
orem on the interior of BP cones in the case when interior of the original cone C is not
empty, but since the BP representation of this cone uses pair (y∗, α) which does not belong
to Ca#, its interior can not be represented in the form of (4.2).

Example 5.4 illustrates the case when interior of the original cone is not empty and the
cone is represented as a BP cone by using some pair (y∗, α) which does not belong to Ca#.
However the relation (4.2) for the interior is satisfied (see Section 5.4.1). This example
demonstrates that the condition (4.2) of Theorem 4.3 is not necessary in general.
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5.4.2 The case of l2 norm

Let y∗ = (1, 0), α2 =
√
2/2. Then

D2 ≜ {y = (y1, y2) ∈ B2 : y∗(y) ≥ α2} = {(y1, y2) :
√
y21 + y22 ≤ 1, y1 ≥

√
2/2} = C̃2,

where C̃2 = cl(co(CU2)). This means that (4.3) is satisfied and therefore C can be represented
as a BP cone in the following form:

C = C2((1, 0),
√
2/2) = {(y1, y2) : y1 ≥

√
2/2

√
y21 + y22}.

Again (y∗, α2) = ((1, 0),
√
2/2) ∈ Ca∗ \ Ca#, and the interior of C1((1, 0),

√
2/2) is repre-

sented by (4.2):

int(C) = int(C1((1, 0),
√
2/2)) = {(y1, y2) : y1 > (

√
2/2)

√
y21 + y22}.

5.4.3 The case of l∞ norm

Let y∗ = (1, 0), α∞ = 1. Then it can easily be shown that the conditions of the representation
theorem are satisfied and C can be represented as a BP cone by using the l∞ norm in the
form

C = C∞((1, 0), 1) = {(y1, y2) : y1 ≥ max{|y1|, |y2|}}.

The interior of C∞((1, 0), 1) is represented in the form:

int(C) = int(C∞((1, 0), 1)) = {(y1, y2) : y1 > max{|y1|, |y2|}}.

The BP cones in the following three examples are considered in [6, Example 2.7]. Here
we present a detailed analysis and comprehensive illustrations of the theorems given in this
paper, on these examples.

5.5 Example 5

Let Y be the Banach space l1, and let C be the nonnegative orthant of l1. Then (l1)∗ = l∞

and taking y∗(y) =
∑∞

i=1 yi and α = 1 it can easily be shown that the representation
condition (4.3) is satisfied and the BP cone

C(y∗, α) = {y ∈ l1 :
∞∑
i=1

yi ≥
∞∑
i=1

|yi|}

is a cone representing the nonnegative orthant of l1. The augmented dual cone Ca∗ and its
quasi interior Ca# can easily be calculated for the nonnegative orthant C of l1.

By definition of the augmented dual cone, we have

Ca∗ =

{
((w1, w2, . . .), α) ∈ C# × R+ :

∞∑
i=1

wiyi ≥ α

∞∑
i=1

yi for all (y1, y2, . . .) ∈ C

}
or

Ca∗ = {((w1, w2, . . .), α) : wi > 0, i = 1, 2, . . . , 0 ≤ α ≤ inf{w1, w2, . . .}}
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and
Ca# = {((w1, w2, . . .), α) : 0 ≤ α < inf{w1, w2, . . .}}.

It is evident that (y∗, α) ∈ Ca∗ \ Ca#, where y∗(y) =
∑∞

i=1 yi and α = 1.
Note that similar interpretation on the interior presented in subsection 5.2 for R2

+ with
l1 norm is also valid for the nonnegative orthant of l1.

In this case we have:

{(y1, y2, . . .) :
∞∑
i=1

yi −
∞∑
i=1

|yi| > 0} = ∅,

thus, the relation (4.2) for the interior of a BP cone is not satisfied. Again, by [10, Lemma
3.2 (ii)]), we have that the pair (y∗, β) belongs to Ca# for every β ∈ (0, 1). Then by Theorem
4.3, the interior of BP cone C(y∗, β) with β ∈ (0, 1), can be represented in the following
form:

int(C(y∗, β)) = {(y1, y2, . . .) :
∞∑
i=1

yi − β

∞∑
i=1

|yi| > 0} ̸= ∅

and C \ {0l1} ⊂ int(C(y∗, β)) for every β ∈ (0, 1).

5.6 Example 6

Let Y be the Banach space C([0, 1]) of continuous functions y(·) on [0, 1], and let C be a
cone of functions in C([0, 1]) defined as follows:

C = {y ∈ C([0, 1]) : 0 ≤ y(1) = max
t∈[0,1]

|y(t)|}.

First we will show that C is a closed convex and pointed cone of C([0, 1]), then the illustra-
tions of the representation and separation theorems, and the theorem on the interior will be
given.

5.6.1 C is a closed convex and pointed cone

The closedness is obvious. To show the convexity, let x(·) and y(·) be elements from C.
Then

(x+ y)(1) = max
t∈[0,1]

|x(t)|+ max
t∈[0,1]

|y(t)| ≥ max
t∈[0,1]

|x(t) + y(t)|.

On the other hand,
0 ≤ (x+ y)(1) ≤ max

t∈[0,1]
|x(t) + y(t)|,

which implies that x(·)+ y(·) ∈ C and thus the convexity is proved. Now let y(·) ∈ C. Then
y(1) = maxt∈[0,1] |y(t)|. Assuming that −y(·) ∈ C, we obtain −y(1) = maxt∈[0,1] |−y(t)|, and
hence y(1) ≥ 0 and −y(1) ≥ 0 which implies y(1) = 0. Finally, the equality maxt∈[0,1] |y(t)| =
0 leads y(·) = 0, which proves the pointedness of C.

5.6.2 Illustration of the Representation Theorem

Let y∗(y(·)) = y(1) and α = 1. Then by the definition,

CU = {y ∈ C([0, 1]) : sup
t∈[0,1]

|y(t)| = y(1) = 1},
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and hence

co(CU ) = {y ∈ C([0, 1]) : y(·) = λy1(·) + (1− λ)y2(·), yi(·) ∈ CU , λ ∈ [0, 1], i = 1, 2, }.

Let y(·) = λy1(·) + (1 − λ)y2(·) ∈ co(CU ) where maxt∈[0,1] |yi(t)| = yi(1) = 1, i = 1, 2 and
λ ∈ [0, 1]. Then

max
t∈[0,1]

|y(t)| = max
t∈[0,1]

|λy1(t) + (1− λ)y2(t)|

≤ λ max
t∈[0,1]

|y1(t)|+ (1− λ) max
t∈[0,1]

|y2(t)| = λy1(1) + (1− λ)y2(1) = 1 = y(1).

On the other hand

y(1) = λy1(1) + (1− λ)y2(1) = 1 ≤ max
t∈[0,1]

|λy1(t) + (1− λ)y2(t)| = max
t∈[0,1]

|y(t)|,

which implies maxt∈[0,1] |y(t)| = y(1) = 1 and therefore we obtain that co(CU ) = CU . Now
due to closedness of the unit sphere in C([0, 1]) we obtain:

C̃ = cl(co(CU )) = CU .

Now let
D = {y ∈ C([0, 1]) : sup

t∈[0,1]

|y(t)| ≤ 1, y∗(y(·)) ≥ α}.

Then since y∗(y(·)) = y(1) and α = 1 we have:

D = {y ∈ C([0, 1]) : sup
t∈[0,1]

|y(t)| ≤ 1, y(1) ≥ 1}

= {y ∈ C([0, 1]) : sup
t∈[0,1]

|y(t)| = y(1) = 1}.

The expressions obtained for C̃ and D shows that these sets are equal and hence the repre-
sentation condition (4.3) is satisfied. Thus C can obviously be represented as the following
BP cone:

C(y∗, α) = {y ∈ C([0, 1]) : y(1) ≥ sup
t∈[0,1]

|y(t)|}. (5.3)

5.6.3 Illustration of the Theorem on Interior

Theorem 4.3 on interior of BP cones says that the interior of the BP cone C(y∗, α) can be
represented by (4.2) if (y∗, α) ∈ Ca#. However, Theorem 4.6 says that (y∗, α) ∈ Ca∗ \ Ca#

for every BP cone C(y∗, α) representing the given cone C. Unfortunately, as it is illustrated
in the examples presented in this section, in such a situation the set defined in (4.2) and
representing the interior of the BP cone may be empty. Regarding the cone C that we
consider in this subsection, it is easy to conclude that the interior of this cone cannot be
represented by (4.2) because we have:

{y ∈ C([0, 1]) : y(1) > sup
t∈[0,1]

|y(t)|} = ∅.

In this situation one can use Theorem 4.8 to construct a BP cone containing the given
one (without the zero element) in its interior. That is by Theorem 4.8, we have that
(y∗, β) ∈ Ca# for every β ∈ (0, 1), where y∗(y(·)) = y(1) and

C \ {0} = C(y∗, 1) \ {0} ⊂ int(C(y∗, β)) = {y ∈ C[0, 1] : y(1) > β sup
t∈[0,1]

|y(t)|}. (5.4)
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We now give an independent proof of this assertion.
Let y ∈ C(y∗, 1) \ {0} and let β ∈ (0, 1). Then we have:

y(1)− β sup
t∈[0,1]

|y(t)| > y(1)− sup
t∈[0,1]

|y(t)| ≥ 0, (5.5)

and therefore there exists a positive number ε such that

y(1)− β sup
t∈[0,1]

|y(t)| > ε. (5.6)

Now let ε1 be a positive number such that ε1 < ε/(1+β), and let x ∈ BC = {x(·) ∈ C[0, 1] :
supt∈[0,1] |x(t)| ≤ 1.} We show that ỹ = y + ε1x ∈ C(y∗, β).

ỹ(1)− β sup
t∈[0,1]

|ỹ(t)| = y(1) + ε1x(1)− β sup
t∈[0,1]

|y(t) + ε1x(t)|

≥ y(1) + ε1x(1)− β sup
t∈[0,1]

|y(t)| − β sup
t∈[0,1]

|ε1x(t)| > ε1x(1) + ε− ε1β sup
t∈[0,1]

|x(t)|

≥ ε+ ε1(x(1)− β) ≥ ε+ ε1(−1− β) > 0,

and the assertion (5.4) is proved.

5.6.4 Illustration of the Separation Property

It follows from (5.4) that

C(y∗, β) = {y ∈ C([0, 1]) : y(1) ≥ β sup
t∈[0,1]

|y(t)|}

with 0 < β < 1, is a BP cone containing C \ {0} in its interior and this cone becomes as
close to C as β is close to 1. Then it is clear that C(y∗, β) is a conic neighborhood of C
and its boundary bd(C(y∗, β)) is a nonconvex cone satisfying bd(C(y∗, β))∩C = {0C([0,1])}.
Denote K = bd(C(y∗, β)) :

K = {y ∈ C([0, 1]) : y(1) = β sup
t∈[0,1]

|y(t)|}.

In this subsection we check whether the separation property C̃ ∩ K̃∂ = ∅ given by (3.1) is
satisfied for K and C.

In Section 5.6.2 it is shown that C̃ = cl(co(CU )) = CU , and hence

C̃ = {y ∈ C([0, 1]) : sup
t∈[0,1]

|y(t)| = y(1) = 1}.

Let β ∈ (0, 1) be chosen. Then we have:

K∂
U = KU ∩ bd(K) = KU = {x ∈ C([0, 1]) : sup

t∈[0,1]

|x(t)| = 1, x(1) = β},

and thus

K̃∂ = co(K∂
U ∪ {0C([0,1])}) = {x ∈ C([0, 1]) : sup

t∈[0,1]

|x(t)| = λ, x(1) = λβ, λ ∈ [0, 1].}

Since x(1) = λβ < 1 for every x(·) ∈ K̃∂ , and y(1) = 1 for every y ∈ C̃, we obtain C̃∩K̃∂ = ∅
and hence it is shown that the separation property for K and C is satisfied.

Remark 5.3. The BP cone of this subsection is also considered in [6, Example 2.7 (a)],
where the interpretation is not correct.
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5.7 Example 7

Let Y be the Banach space L([0, 1]) of Lebesgue integrable functions y(·) on [0, 1], and let
C be a cone of nonnegative functions in L([0, 1]) defined as follows:

C = {y ∈ L([0, 1]) : y(t) ≥ 0, for a.e. t ∈ [0, 1]}.

5.7.1 Illustration of the Representation Theorem

Let y∗(y(·)) =
∫ 1

0
y(t)dt and let α = 1. Then

CU = {y ∈ L([0, 1]) :

∫ 1

0

|y(t)|dt = 1, y(t) ≥ 0, t ∈ [0, 1]}

= {y ∈ L([0, 1]) :

∫ 1

0

y(t)dt = 1, y(t) ≥ 0, t ∈ [0, 1]}.

Obviously CU is convex and closed and hence

C̃ = cl(co(CU )) = CU .

Now let
D = {y ∈ L([0, 1]) : ∥y(·)∥ ≤ 1, y∗(y(·)) ≥ α}.

Then

D = {y ∈ L([0, 1]) :

∫ 1

0

|y(t)|dt ≤ 1,

∫ 1

0

y(t)dt ≥ 1},

which implies that C̃ = D and hence the representation condition (4.3) is satisfied. Thus C
can be represented as the following BP cone:

C(y∗, α) =

{
y ∈ L([0, 1]) :

∫ 1

0

y(t)dt ≥
∫ 1

0

|y(t)|dt
}
,

or

C(y∗, α) =

{
y ∈ L([0, 1]) :

∫ 1

0

y(t)dt =

∫ 1

0

|y(t)|dt
}
.

5.8 Example 8

Let Y be the reflexive Banach space L2([0, 1]), and let C be a cone of nonnegative functions
in L2([0, 1]) defined as follows:

C = {y ∈ L2([0, 1]) : y(t) ≥ 0, for a.e. t ∈ [0, 1]}.

Let y∗(y(·)) =
∫ 1

0
y(t)dt and let α = 1. Then the corresponding BP cone C(y∗, α) is

defined as follows:

C(y∗, α) =

{
y ∈ L2([0, 1]) :

∫ 1

0

y(t)dt ≥
(∫ 1

0

|y(t)|2dt
)1/2

}
,

or, equivalently

C(y∗, α) =

{
y ∈ L2([0, 1]) :

∫ 1

0

y(t)dt =

(∫ 1

0

|y(t)|2dt
)1/2

}
.
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It is easy to see that function y(t) = t belongs to the cone C but does not belong to
C(y∗, α), which demonstrates that the BP cone C(y∗, α) does not represent the cone C of
nonnegative functions in L2([0, 1]). In this case, we can conclude by Theorem 4.5 that, the
representation condition (4.3) is not satisfied and the sets cl(cone(CU )) and D are not equal,
where

CU =

{
y ∈ L2([0, 1]) :

(∫ 1

0

|y(t)|2dt
)1/2

= 1, y(t) ≥ 0, for a.e. t ∈ [0, 1]

}

and by the definition

D =

{
y ∈ L2([0, 1]) :

(∫ 1

0

|y(t)|2dt
)1/2

≤ 1,

∫ 1

0

y(t)dt ≥ 1

}
,

or

D =

{
y ∈ L2([0, 1]) :

∫ 1

0

y(t)dt =

(∫ 1

0

|y(t)|2dt
)1/2

= 1

}
.

Note that the cone C of this example has a base {y ∈ C :
∫ 1

0
y(t)dt = 1} which is

unbounded.

6 Conclusions

In this paper, we present a representation theorem which establishes that every cone of a
real normed space satisfying condition (4.3) is representable as a Bishop–Phelps cone and
conversely, every BP cone of a reflexive Banach space, representing given cone C satisfies
this condition. This theorem is formulated without any conditions neither on the existence
of a base, nor on a base itself. The condition (4.3) uses the given norm of the normed
space (the presented theorem does not need to construct another norm for representation)
and gives an explicit formulation of how a given cone can be expressed in the form of a
BP cone. Note that such a representation theorem appears in the literature firstly. Earlier
a representation theorem was given by Petschke, who showed that every nontrivial convex
cone C with a closed and bounded base in a real normed space is representable as a BP
cone.

The paper studies two important properties of BP cones in relation with the represen-
tation theorem. One of them is the interior of BP cones, the other one is the separation
property used in the nonlinear separation theorem for not necessarily convex cones. The
paper presents characterization theorems on interior of BP cones. It has been shown that
every BP cone satisfies the separation property together with its ε conic neighborhood in Rn.
This property is very important in both theoretical investigations and practical applications
in nonconvex analysis (see e.g. [4, 5, 9–14]).

The paper presents eight illustrative examples in finite and infinite dimensional spaces
where the representation theorem, and the theorems on the interior and theorem on the
separation property are all comprehensively investigated. In these examples both the stan-
dard positive orthant and special cones are considered. For example, it is shown that the
positive orthant of Rn for n = 1, 2 satisfies the representation theorem and the BP cone
representation of the positive orthant is given explicitly for all three norms l1, l2, l∞. It is
shown that the positive orthant of (Rn, ∥ · ∥l1) can be represented as a BP cone for every n,
while Rn

+ with l2 and l∞ norms, cannot be represented as a BP cone for n ≥ 3. We have also
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shown that the positive orthant of l1 and the one of L([0, 1]) can be represented as a BP
cone, and these representations are given. It has been shown that the positive orthant of
L2([0, 1]) cannot be represented as a BP cone. The paper also considers some special cones
in R2 and C([0, 1]) along with the illustrations of theorems given in the paper.
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