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WEAK CONJUGATE DUALITY FOR NONCONVEX VECTOR
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Abstract: In this work, weak conjugate map, weak biconjugate map and weak subdifferential of a set-valued
map are defined by using notions of supremum/infimum of a set and vectorial norm, and relationships among
these notions are examined. Furthermore, necessary and sufficient conditions for weakly subdifferentiability
of a set-valued map are given. It is proved that under some assumptions Lipschitz set-valued maps are
weakly subdifferentiable. By using these notions a dual of unconstrained nonconvex vector optimization
problems is constructed, and weak duality theorem is presented. Stability of primal problem is defined
and it is proved that the stability of primal problem implies the strong duality. Furthermore, some stability
conditions are presented. By using a special perturbation function weak Fenchel dual problem of constrained
vector optimization problem is constructed and at the end, an example of a nonconvex constrained vector
optimization problem which can not be solved by using Lagrange dual problem [25] but can be solved by
using weak Fenchel dual problem is given.
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Introduction

Conjugate duality theory, based on conjugate maps of perturbation functions, provides
a frame work to duality in optimization. In scalar optimization, Fenchel [12] and Rockafel-
lar [30] presented early results of this theory. Ekeland and Temam [11] and Zalinescu [36]
improved this theory in topological vector spaces. In addition to these, Bot, Grad and
Wanka [7-9] constructed three dual problems, namely the Lagrange, Fenchel and Fenchel-
Lagrange dual problems, obtained by considering special perturbation functions for opti-
mization problems in finite dimensional spaces.

The notion of subdifferential which is based on to support the epigraph of a function at
a given boundary point by an hyperplane was defined by Rockafellar [30] and Moreau [28]
and was developed by Ekeland and Temam [11]. Some optimality conditions were given
for convex functions by using this notion [11,30]. However, it may be impossible to sup-
port from below the epigraph of most of the nonconvex functions by hyperplanes. So, the
classical subdifferential theory is insufficient to give optimality conditions for nonconvex op-
timization problems. Thus, some researchers used supporting cones instead of supporting
hyperplanes [5, 6,16-18,29]. In the light of to support a nonconvex set with supporting
conic surfaces instead of hyperplanes Kasimov [15] defined weak conjugate maps and weak
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subdifferential by using the set of concave functions in place of linear functionals in defini-
tions of conjugate function and subdifferential. Moreover, by using these functions and weak
subdifferential, Azimov and Gasimov [5,6] constructed a conjugate dual problem, presented
necessary and sufficient optimality conditions and duality theorems involving lower Lipschitz
functions. In addition, Kiigiik et al. [21], by using two special perturbation functions in the
construction of dual problems given by Azimov and Kasimov [6], defined two dual problems
namely weak Fenchel and weak Fenchel-Lagrange dual problems and gave optimality condi-
tions for nonconvex optimization problems.

Tanino and Sawaragi [34] extended the conjugate duality theory to vector optimization
by defining conjugate maps of vector functions using maximal element of a set in a partially
ordered finite dimensional space. Furthermore, Tanino [33] extended this theory to convex
vector optimization problems in partially ordered topological vector spaces by using the
concept of supremum of a set and constructed a conjugate dual problem for convex vector
optimization problems. Moreover, the notion generalized weak subdifferential was defined
for nonconvex functions with values in an ordered vector space and optimality condition for
nonconvex vector optimization problems were studied by Kiigiik et al. [22-24]. Conjugate
duality theory was extended to set-valued vector optimization problems by Song [31, 32]
and Kawasaki [19]. Furthermore, Li et. al. [25] constructed two dual problems for con-
strained set-valued optimization problems. For further development on this area one can
see [1,3,4,7-10,13, 20, 26, 27].

In this article, motivated by works [5,6,33] weak conjugate map, weak biconjugate map
and weak subdifferential of a set-valued map in a partially ordered topological vector space
are defined. Relationships among weak conjugate map, weak biconjugate map and weak
subdifferential are examined. In addition, necessary and sufficient conditions for weak sub-
differentiability of set-valued maps are presented. Moreover, it is proved that under some
assumptions Lipschitz set-valued maps are weakly subdifferentiable. Then a weak conjugate
dual problem of an unconstrained vector optimization problem of perturbation function is
constructed. Relations between the optimal objective maps of primal and dual problem are
investigated. Weak duality theorem is presented and stability of primal problem is defined.
Moreover, it is proved that the stability of a primal problem implies the strong duality.
Furthermore, conditions for stability of a primal problem are given. Finally, by choosing
a special perturbation function in the construction of weak conjugate dual problem weak
Fenchel dual problem for constrained vector optimization problem is constructed and an
example of a nonconvex constrained vector optimization problem which can not be solved
by using Lagrange dual problem [25] but can be solved by using weak Fenchel dual problem
is given.

This paper is organized as follows: in Section 2, some notions and preliminary results
are given, in Section 3 weak conjugate map, weak biconjugate map of a set-valued map are
defined and the relations between these notions are examined, in Section 4, weak subdiffer-
ential for set-valued maps is defined, weak subdifferentiability conditions are presented and
relations among weak subdifferential, weak conjugate map and weak biconjugate map are
examined. In Section 5, by using the weak conjugate map of the perturbation function, a
new dual problem for the given vector optimization problem is constructed. The inclusion
relationships between the image sets of primal problem and dual problem are given. In
addition, weak duality and strong duality assertions are proved. In Section 6, by using a
special perturbation function weak Fenchel dual problem is obtained.
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Mathematical Preliminaries

In this section, by using the concepts of supremum and infimum of a set and vecto-
rial norm, we define weak conjugate map and weak biconjugate map for a set-valued map.
Furthermore, we examine relations among a set-valued map, weak conjugate and weak bicon-
jugate maps of this set-valued map. First, let us remind the basic notions and preliminary
results.

Let Y be a real topological vector space which is partially ordered by a pointed, closed,
convex cone C' with nonempty interior intC' in Y. We use the following ordering relations:

ylgyz — yzfyleCandylgyz < y2 —y1 € intC.

We add two imaginary points 400, —oo which satisfy the following:

—ooéyg—l—oo, (£oo) +y =y + (£o0) = (£0) forallyeY

(£oo)+(£o0) = (£oo)  A(Foo) = (£oo) for all A > 0 and A(£oo0) = (Foo) forall A <0

to Y and denote the extended space by Y.
The sum +00 — 00 is not considered since we can avoid it.

Definition 2.1 ([33]). Given a set Z C Y, the set A(Z) of all points above Z and the set
B(Z) of all points below Z are defined by

A(Z):{y€?|ygy’forsomey’EZ}

B(Z)={yeY |y < y' for some y' € Z},
respectively.

Definition 2.2 ([33]). Given aset Z C Y,

i) a point § € Y is said to be weakly maximal point of Z if § € Z and § ¢ B(Z), i.e. if
7 € Z and there is no ¢y € Z such that g y'. The set of all weakly maximal points

of Z is called the weak maximum of Z and is denoted by wmaxZ.

ii) a point ¥ € Y is said to be weakly minimal point of Z if § € Z and y ¢ A(Z), i.e. if
7 € Z and there is no ¢y’ € Z such that 3’ g 7. The set of all weakly minimal points of
Z is called the weak minimum of Z and is denoted by wminZ.

iii) a point § € Y is said to be a supremal point of Z if § ¢ B(Z) and B(y) C B(Z) , i.e.
if there is no y € Z such that y g y and if the relation y’ é y implies the existence
of some y € Z such that y’ g y. The set of all supremal points of Z is called the
supremum of Z and denoted by SupZ.

iv) a point € Y is said to be an infimal point of Z if ¥ ¢ A(Z) and A(y) C A(Z), i.e.
if there is no y € Z such that y é y and if the relation y é v’ implies the existence of
some y € Z such that y g y'. The set of all infimal points of Z is called infimum of Z
and denoted by InfZ.
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Definition 2.3 ([14]). Let X and Y be real linear spaces, and let C' be a convex cone in Y.
A map |- || : X — C is called a vectorial norm, if the following conditions are satisfied for
all z, z € X and all A € R:

(a) [lzll =0y & = = 0x;
(b) [[Az]l = [A[l;
() llz+ 2l < Jlll + =]} (Triangle inequality)

In particular, if Y = R and C' = R, then the map || - || is called a norm and denoted || - ||.

Lemma 2.4 shows that characterizations of supremum and infimum in R can be extended
to partially ordered topological vector spaces.

Lemma 2.4. Let ) # Z C Y be a given set and T € Y be a given point. Then

i) T € InfZ if and only if there is no z € Z such that z g T and for each O é € there
exists x(e) € Z such that () S Z+e.

it) T € SupZ if and only if there is no z € Z such that T g z and for each 0 g € there
exists x(e) € Z such that T — ¢ S x(e).

Proof. i) Let Z € InfZ and 0 é . From the definition of infimum Z ¢ A(Z), i.e. there is
no z € Z such that z g Z. So, the first condition is satisfied.

Since 0 S € we have S Z +e. Hence, T+ ¢ € A(Z). Then from the definition of
infimum Z 4 ¢ € A(Z) C A(Z) which means there is z(¢) € Z such that x(e) S T +e.
So the second statement is satisfied.

Conversely, assume that there is no z € Z such that z < Z and for each 0 < € there
exists z(¢) € Z such that z(e) < Z 4+ €. The first condltlon implies 7 ¢ A(Z ) Now,
we will show A(Z) C A(Z). Let z € A(Z), ie. T < = By setting e = z — Z,
from the hypothesis we obtain the existence of an element x(e) € Z which satisfies

x(e) S Z + ¢ = z that means z € A(Z). Hence, Z € InfZ.

ii) The characterization for supremum can be proved similarly.

O

Proposition 2.5 ([33]). Let Z C Y be a given set. Then B(Z) = B(SupZ) and A(Z) =
A(InfZ).

Proposition 2.6 ([33]). For F1,F»: X =Y where X is an arbitrary set

Sup | J [Fi(z) + Fa(x)] = Sup | [Fi(z) + SupFa ()]
zeX zeX

where the sum +00 — 0o 1s assumed not to occur.
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Corollary 2.7 ([33]). Let X be a set, F: X =Y be a set-valued map. Then

Sup U F(z) = Sup U SupF'(z).

reX zeX

Lemma 2.8. Let D,E C Y be given sets. If SupE C SupD U A(SupD) and SupFE C
SupD U B(SupD), then SupD = SupFE.

Proof. From inclusions in the hypothesis and as A(SupD) N B(SupD) = (§ (Proposition 4.5
in [35]) we have

SupE C  (SupD U A(SupD)) N (SupD U B(SupD))
= SupDUD
= SupD. (2.1)
Let us show that SupD C SupE. Assume the contrary that § ¢ SupE for some § € SupD.

Then either § € A(SupFE) or §j € B(SupFE). We claim that § ¢ B(SupF). Otherwise, there
exists a € SupFE such that g g a. As a € SupE C SupD we have § € B(SupD) which

contradicts to g € SupD. So, § € A(SupFE). Thus, there exists a € SupE such that a g g
Because a € SupFE and SupE C SupD we get a € SupD. Hence, § € A(SupD) which
contradicts to § € SupD. Thus, ¥ € SupE. So we obtain

SupD C SupFE. (2.2)
From (2.1) and (2.2) we have SupD = SupE. O

Lemma 2.9. Let X, Y, Z be topological vector spaces, Y be partially ordered by closed,

convez, pointed cone C with nonempty interior intC, let F' : X =Y be a set-valued map

and a,b: Z x X =Y be vector valued functions. If a(z,z) < b(z,z) for all z € Z and for
c

all z € X, then

SupUInfU z,x)+ F(z)] C SupUInfU a(z,x) + F(x)])U

z€Z rzeX z€Z reX

SupUInfU a(z,x) + F(x)]).

z€Z reX

Proof. Assume the contrary that there exists § € Sup U Inf U [b(z,z) + F(x)] such that

z2€EZ zeX
g ¢ Sup U Inf U (z,2) + F(x)|UA(Sup U Inf U a(z,x) + F(z)]). Thus, from Propo-
2€Z zeX 2€Z zeX
sition 4.5 in [28] we have
yGBSupUInfU z,x) + F(x UInfU a(z,x) + F(x)]).
2€EZ zeX z€EZ rzeX

Hence, there exist Z € Z and y € Inf U [a(Z,z) + F(x)] such that
reX

vy (2.3)
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Now, let us prove y € B( U Inf U z,x) + F(z)]). Assume the contrary that y ¢
2€Z zeX

UInfU z,x) + F(z)])) So,

z€Z zeX

y ¢ B(Inf | [b(z,2) + F()])

zeX

for all z € Z. In particular,

y ¢ B(Inf | [b(z,2) + F()).

zeX

Hence, we have either y € A(Inf U zZ,z) + F(x)]) oryEInfU (z,2) + F(x)].
z€X reX

If y € A(Inf U )+ F(x)]) = A( U [b(Z,x) + F(x)]), then there exist z € X and
zeX reX

y' € F(x) such that

b(Z,x)+y Y As a(z, ) % b(z,x) we have

a(z,z)+y <b(z,z)+y <y
C C

that means

y € A(|J la(z,2) + F(x)]) = A(Inf | ] [a(z, ) + F(2))).
rzeX rzeX

This contradicts to y € Inf U zZ,x) + F(z)].

zeX
Hence, y ¢ A(Inf U (z,z) + F(x)]).
reX
IfyeInfU Z,x) + F(z)], then from (2.3) we get y € B( U Inf U z,x) + F(z)])
reX z€Z reX
that contradicts to § € Sup U Inf U (z,z) + F(x)].
2€Z xeX
Thus, y%InfU zZ,x) + F(x)].
reX

Hence, we obtain y € B( UInfU z,x) + F(z)]).

2€Z zeX
Because y € B( UInfU (z,2) + F(x)]) there exists § € UInfU (z,2) + F(2)]
2€Z z€X z2€Z z€X

such that y é 7. From (2.3) we have j é Y é 7 .Thus,
7€ B( UInfU z,x) + F(x SupUInfU z,z) + F(z)])
z€Z rzeX ze€Z zeX

that contradicts to g € Sup U Inf U z,z) + F(x)] .
z€Z xzeX
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Hence, 3§ ¢ B(Sup U Inf U a(z,z) + F(x)] which means

2€Z zeX
yESupUInfU z,x) + F(x UASupUInfU a(z,x) + F(x)]).
z€EZ zeX z€EZ reX

Weak Conjugate Maps

In this section, we define weak conjugate map and weak biconjugate map for a set-valued
map by using the concepts of supremum/infimum of a set and vectorial norm. Furthermore,
we examine relations among a set-valued map, weak conjugate and weak biconjugate maps
of this set-valued map.

Throughout this article, we assume that X, Y are topological vector spaces, Y is partially
ordered by closed, convex, pointed cone C with nonempty interior intC, F : X = Y is a
set-valued map and || - || : X — C is a vectorial norm.

Definition 3.1. Under assumptions given above

a) A set-valued map F* : X x L(X,Y) x Ry =Y defined by
F*(20,U,¢) := Sup | [~ellx — zoll + cllzo]| + U(x) - F(x)]
reX
for all (zo,U,c)e X xL(X,Y) x Ry is called the weak conjugate map of F'.
b) A set-valued map F“* : X =Y defined by
F*%(z) := Sup U [—cllz — 2ol + cllzoll + U(z) — F*(x0, U, c)]
(0,U,c) EXXL(X,Y)xR4

for all x € X is called the weak biconjugate map of F.

Weak biconjugate map F" can be represented more simply in the following way.

Proposition 3.2. For each x € X

F*%(x) = Sup U ezl + U(z) — F*(x,U, )]
(U,e)eL(X,Y) xR,

Proof. As ) [ellzl|+U (2)+F" (2, U, )l € | [=elle — zoll+ellzoll+U (z)— F* (w0, U, )]

ceERL ro€EX
U€eL(X,Y) UeCLE(RX,Y)
+

and the relation Y7 C Y, implies the relation SupY; C SupYs U B(SupYs) we have

Sup | [ellel|+U (@)= F*(z,U,e)) € Sup | [=clle — woll+ellzol|+ U ()= F* (0, U, 0)]

ceERL ro€EX
UeL(X,Y) UELIé(RX,Y)
ERy

B(Sup | Fellz = zoll+clloll+U(z) = F* (z0, U, )
ro€X

UeL(X,Y)
ceRy

= F“%(z) U B(F¥" (). (3.1)
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From definitions of F* and F™" we get

Fee(@) = Sup | [—cllz = woll + cllzoll + Uz) — F* (0, U, c)]
ro€EX

UeL(X,Y)
ceRy

= Sw |J [=elle = ol + cllwoll + Ulx)

zoEX
UeL(X,Y)
ce€Ry

—Sup | [=elly = zoll + cllzoll + U(y) = F(y)]
yeX

= Sup |J Inf | [=cllz —woll + clly — woll + Uz) = U(y) + F(y)].

ro€EX yeX
UeL(X,Y)
cER Y

Let us define a,b: X x L(X,)Y) xRy x X =Y

a(zo,Uye,y) = —clla = zoll + clly — zof| + U(z) = U(y)
b(zo,U,c,y) = clly -zl +U(z) - Uly),

respectively. Let (zo,U,c) € X x L(X,Y) x Ry be an arbitrary fixed element. As

—clz = zoll + clly — woll < clly — =]

for all y € X, we get a(xo, U, c,y) < b(xo, U, c,y) Thus, from Lemma 2.9 we obtain
c

sup () Inf (Jlelly —2ll +Ulx) = Uy) + F(y)]

ro€EX yeX
UEL(X,Y)
cew+
sup () Inf ([ [=elle —zoll +clly — zoll + Ulx) = Uy) + F(y)]
ro€EX yeX
UeL(X,Y)
ceRy
UASuw | Inf | [=ellz = zoll + clly — zoll + U(x) = U(y) + Fy)])
ro€EX yeX
UeL(X,)Y)
ceRy

= FU(z) U A(FY(z)).

Furthermore, we have

Sup ) Inf | Jlelly -2zl + Ux) — Uy) + F(y)]
roEX yeX
UeL(X,Y)
CER+

=Sup |J  If | lelly — 2l —cllzl| + cllell + Uz) = U(y) + F(y)]
UeL(X,Y) yeX

ceRy
=Suwp | J [elell +U(@) —Sup | [~cly — zl| + cll=]| + U(y) — F(y)]
UEL(X,Y) yeX
ceRy
=sw |J [ellzll +U(z) - F*(x,U,0)]
UEeL(X,Y)

ceRy
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Substituting the last equality into the last inclusion we obtain

Sup |J ezl + Ux) — F¥(x,U.c)] € F*"(2) U A(F"" (x)). (3.2)
UevLe(xé’Y)

From (3.1), (3.2) and Lemma 2.8 we get

sw |J [lelell +U(z) - F*(2,U,¢)] = F**(x).

UeL(X,Y)
(:E]R+

O

Now, let us find the weak conjugate and weak biconjugate map of a given nonconvex
set-valued map.

Example 3.3. Let the set-valued map F : R = R be defined by F(z) = [—|z|,+00) for all
x € R. Then weak conjugate of F' is

w CfA{lu—c=Dzo} , |u/<c-1
F (xo,u,c){ {400} 0 DS e-1

and weak biconjugate of F is F*"(z) = {—|z|}.
Proposition 3.4. Let g € Y and (xo,U,c) € X x L(X,Y) x Ry.. Then

Z) (F—i—g)w(.’bO’U,C) = Fw(anUv C) - g
i) (F+ )" (@) = F*(z) + .

Next proposition is the generalization of Fenchel inequality given for scalar functions.
Proposition 3.5. Let z € X and (z9,U,c) € X x L(X,Y) x Ry. Then
(F(z) = U(2) + cllz — oll = cllzoll) N B(=F"(z0, U, ¢)) = 0.
Proof. From the definition of the set A(F™(xo,U,c)) and as

F*(w0,U,¢) = Sup | J [~cllz — zof| + cllxoll + U (x) — F(
reX

8

)]

we have (—c||Z — xo|| + c|lzoll + U(Z) — F(Z)) N A(F* (x0, U, ¢)) = 0. Because
(F(Z) 4 ||z — zo|| — cllzoll = U(Z)) N (—A(F¥(x0,U,c))) =0 and —A(—Z) = B(Z) where Z
is an arbitrary subset of Y, we obtain

(F(z) = U(2) + cllz — oll = cllzoll) N B(=F"(z0, U, ¢)) = 0.

By taking Z = 0 in Proposition 3.5 the following corollary is obtained.

Corollary 3.6. Let j € F(0) and (z9,U,c) € X x L(X,Y) xRy. Ify € —F"(x0,U,¢),
then y £ v'.
c
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Corollary 3.7 is the generalization of inequality F**(Z) < F(Z) where F is scalar function
and F*" is weak biconjugate map of F' defined by Azimov and Kasimov [6].

Corollary 3.7. Letz € X, j € F(Z) and y" € F*"(Z). Then j £ y".
c
Proof. From Proposition 3.5 we have
(F(z) = U(x) + cllz — @ofl — cllaoll) N B(—=F*(z0,U, c)) =0
for all (zg,U,c) € X x L(X,Y) x R} and z € X. So, we obtain

0 = F@)nU(x) = clz — ol + cllzol + B(—F"* (w0, U, c)))
= F(z)nB(=clz —zoll + cllzoll + U(z) — F* (20, U, ).

Since (xg,U, ¢) is an arbitrary element of X x L(X,Y) x R} and from Proposition 2.5 we
get

0 = F@)nB( | [~z —woll + cllwoll + U(x) — F* (w0, U, ¢)))
(zo,U,c)
= F(x)nBSup |J [—clz — ol + cllwoll + U(x) = F*(20,U, 0)))
(wo,U,c)
= F(z)N B(F“’w(x)U).
Hence, y ¢ B(F*"(x)) for all y € F(z). So, § £ y". O
c

Weak Subdifferentials for Set-Valued Maps

In this section, weak subdifferential is defined by using concepts of weak-maximum of a
set and vectorial norm. Necessary and sufficient conditions for weakly subdifferentiability
of a set-valued map are obtained and under some assumptions it is proved that Lipschitz
set-valued maps are weakly subdifferentiable. Furthermore, relationships between weak
subdifferential and weak conjugate map are examined and a condition for equality of a
set-valued map and weak biconjugate map is obtained.

Definition 4.1. Let 7 € X and § € F(Z). A pair (U, c) € L(X,Y) x Ry is said to be weak
subgradient of F at (z,7) if

(U(z) —5) € wmax | J [U(2) - cllz — 2| — F(x)].
reX
The set of all weak subgradients of F at (z,y) is called the weak subdifferential of F' at (Z, y)

and is denoted by 0V F(z, ). If 9V F(Z,y) # 0 then F is said to be weakly subdifferentiable
at (z,y). It 0WF(z,y) # 0 for every § € F(Z), then F is said to be weakly subdifferentiable

at T and the weak subdifferential of F' at Z is denoted by the set 0V F(Z) = U OYF(Z,7).
geF ()
In the following example, we find the subdifferential of a nonconvex set-valued map.

Example 4.2. Let the set-valued map F': R =2 R be defined as F(z) = [—|x|, +00), for all
x € R, the ordering cone be R;. Then the weak subdifferential of F is

9" F(7,7) {{(u,c):czlg3 lu| <e—1}

for all z € R.
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Now, we give a characterization for being weakly minimal point of the image set of a
set-valued map by using weak subdifferential of this set-valued map.

Proposition 4.3. Let & € X and § € F(z). Then §j € wmin U F(z) if and only if
reX

(0,0) € 0" F(Z,7).

Proof. Proof is straightforward from the definiton of weak subdifferential. O

In Proposition 4.4 we present a characterization for being a weak subgradient by using
the weak conjugate map of a set-valued map.

Proposition 4.4. LetZ € X, § € F(Z) and (U,c) € L(X,Y)xRy. Then (U,c) € OV F(Z,7)
if and only if (c||z| + U(z) — §) € F*(z,U,c).

Proof. Let (U,c) € 0¥ F(Z, ). Then from the definition of weak subdifferential we have

(U(z) - ) € wmax | [U(z) = cl|lz — z|| - F(=)].
reX
Thus,
(clzl +U(@) —y) € wmax| ] [U(x) - clz -z + || - F()]
reX
C Suw | J[U(x) - cllz — z|| + c|lz[| — F()]
— (U,

Conversely, let (c|Z|| + U(z) — g) € F*(z,U, c). Then we have

(U(@) —g) € Sup | J [U(z) - eclle — 2]l - F(x)].

zeX

In addition to this, since

U@ -5 e |JU@) —cllz -zl - F(x)]

zeX

we get
(U () - y) € wmax | ] [U(x) = ¢|e - 2| - F(x)]
reX
which means (U, c¢) € OV F(z, 7). O

Theorem 4.5 gives a condition for equality of a set-valued map and weak biconjugate
map of it.

Theorem 4.5. Let & € X. If F is weakly subdifferentiable at Z, then F(z) C F*"(Z). In
addition, if InfF(z) = F(Z), then F(Z) = FY"(Z).

Proof. Let F be weakly subdifferentiable at Z and § be an arbitrary element of F(Z). Then
there exists (U, c) € 0V F(z,y). Thus, from Proposition 4.4 we have (c|z| + U(z) — 3) €
F*(z,U,c). So, we get

g € (clzll +U®) — F*(2,U,0)) € | [=dlz — zoll + dlloll + T(2) — F* (20, T, d)]. (4.1)
ro€EX
(T,d)eEL(X,Y) xRy
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From Proposition 3.5 we obtain § £ v + T(Z) — d||z — zol| + d||zo]| for all (z,T,d) €
C
X X L(X,Y) x Ry and for all y € —F"(x0,T,d). By using (4.1) we get

y € wmax U [=dllz = woll + dljzoll + T(z) = F* (w0, T, d)]
(z0,T,d)EX X L(X,Y) xR
C Suw U [=dllz = zoll + dllzoll + T(z) — F* (0, T, d)]
(z0,T,d)EX X L(X,Y) xR
= Fv(z)

which means F(z) C F*"(Z).
Let InfF(z) = F(Z), F be weakly subdifferentiable at Z and § be an arbitrary element
of F**(Z). From Proposition 2.5 in [33] we have

Y = InfF(z)UA(InfF(z)) U B(InfF(z))
F(z) UA(F(2)) U B(F(z))

and the above three sets in the right hand side are disjoint. From Corollary 3.7 we get y £ ¥
c
for all y € F(z). Thus, § ¢ A(F(Z)). Hence, we have either § € F(Z) or § € B(F(Z)).
We claim that § ¢ B(F(z)). Otherwise, there exists ¢y € F(Z) such that g < y'. As

y € F(Z) and F is weakly subdifferentiable at Z, F' is weakly subdifferentiable at (Z,y’),
ie. OVF(z,y") # 0. So, there exists (T,c) € OV F(Z,y’). From Proposition 4.4 we have
(=ellzl =T(@) +y') € —F*(%,T,c). Since y’ > we get y € B(cl|z]| + T(z) - F*(z,T¢)).

This contradicts to

y € Sup U [=dllz — zoll + dllzoll + U(Z) — F*(x0,U,d)] = F** ().
(20,U,d)€X X L(X,Y) xRy

Hence, § ¢ B(F(z)) which means § € F(Z). So, F**(Z) C F(Z). Then we obtain F(Z)
Fvv(z).

oo

Proposition 4.6 gives conditions for weak subdifferentiability of a set-valued map.

Proposition 4.6. Let & € X. If there exists L > 0 such that F(Z) ¢ F(x)+ L||z—Z| +intC
forallz € X and zf wminF(z) # 0, then F is weakly subdifferentiable at (Z,y) for all

gy € F(z)\ U )+ Lz — z|| + intC].
reX

Proof. Let § € F(Z)\ U )+ L|lx — Z|| 4+ intC]. This implies
z€X

y€ F(@) — Llz -2\ |J [F(z) + Ll — 2|| + intC).

zeX

Hence, y € wmin U ) + L]z — Z||] which means (0, L) € 0¥ F(Z, ). O
reX

Proposition 4.7 gives another necessary condition for weak subdifferentiability of a set-
valued map in finite dimensional Euclidean space.



WEAK CONJUGATE DUALITY FOR NONCONVEX VECTOR OPTIMIZATION 87

Proposition 4.7. Let F : R® =3 RP be a set-valued map, RP be partially ordered by Rﬁ,
the vectorial norm || - || : R™ — RE be defined as ||z|| = (|||, ..., [|z]]) for all z € R™ where
—_———

P
|- |l is @ norm on R™, T € R™ be a given point, wminF (Z) # 0 and let F(Z) be RE -bounded,
i.e. there exists a € R such that a < y for all y € F(z). If there exist L > 0 and a
&

neighborhood V' of T such that
F(z) ¢ F(x)+ Lz — z|| + intRE. for all z €V,
and p > 0 and g € R? such that
—pllz|l + g ¢ F(z) + intRE for all x € R™,
then there exists M > 0 satisfies
F(z) ¢ F(z) 4+ M|z — z|| + intRY. for all x € R™.
Proof. Assume the contrary that for any & € N there exists xj, € R™ such that
F(z) C F(xy) + kllze — Z|| + intRE..

So, there exists g, € F(x)) such that y — g, — kf|lz, — Z|| € intR". for all k € N and for all
y € F(Z). Let choose an arbitrary element y € F'(Z). Thus, we have

Yy =y — kKl -z >0 (4.2)
for all j € {1,2,...,p}. Because —p||z| + ¢ ¢ F(x) + intR” for all z € R", particularly
z), € R" satisfies —pllay|| + g ¢ F(zr) + intR".. So, we get —pllak| + ¢ — yx ¢ intRY. for all
yr € F(x,). By using triangle inequality we obtain —p|lzy — Z|| — p|Z|| + ¢ — yr ¢ intRE for
all yi, € F(xr). Hence, there exists iy, € {1,2,...,p} such that

—pllee =zl - pllz] + ¢ —y" <0. (4.3)
In particular g in (4.2) satisfies (4.3), i.e.

—pllex -zl - pllz] +¢* — g <0. (4.4)
Inequality (4.2) is valid for iy, i.e.

Y — g — kg — 2| >0 (4.5)

By adding both sides of inequalities (4.4) and (4.5) we obtain
0 > —plax — 2l = pllzl + " = 5* =y + Gk + klaw - 7|
= (k=pllzx — 2| - pllzl + ¢ — ™.
Therefore, we get 4 ‘
(k= p)llze — 2| <pll2| — g™ +y™. (4.6)

k—p > 0 for k large enough. Since i), € {1,2,...,p} forall k e N and y® is a component of
a chosen element y, the sequence (y"*)ren has p elements. So, (y**)ken is bounded. Then
from (4.6) and the boundedness of (y*)ren we have

pllE]| — g +y™

- —0ask — o0

[l — 2] <
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which means x; — Z.
As V is a neighborhood of Z and z — % there exists kg € N such that x; € V for all
k > ko. From hypothesis F'(z) ¢ F(xy) + Llxzr — Z|| + intRE for all k > ko. So, for each
yr € F(x) there exists z, € F(Z) such that z, — yp — Lf|zr — Z|| ¢ intRE. Hence, there
exists ji € {1,2,...,p} such that zi" — yik — L||zx, — Z|| < 0. In particular, for yi’“ there
exists z)* € F(Z) such that
s — gl — L|an — 2] <0 (4.7)

By using inequality (4.2), we obtain
Y — gt — k|xp — 7| > 0. (4.8)

From inequalities (4.7) and (4.8) we have z)* —y7* +k||z), —Z| — L||zx —Z|| < 0. As F(Z) is R -
bounded,

(ZF — ¥7* ) pen is bounded from below. Let b be a lower bound for this sequence. Therefore,
for enough large k we have b + (k — L)||zx — Z|| < 0 which is not possible. Hence, there
exists M > 0 such that F'(z) ¢ F(z) + M|z — z|| + intRE. O

Corollary 4.8. Under assumptions of Proposition 4.7, F is weakly subdifferentiable at (Z, )

for all g € F(z)\ U [F(x) + M|z — Z|| + intR%] where M is positive number obtained in
zER™

Proposition 4.7.

Proposition 4.9. Let F : R" = R be a set-valued map, RP be partially ordered by RY. and

let the vectorial norm || - || : R* — R be defined as ||z|| = (||]|,...,[|z||) for all z € R™
—— ——
P
where || - || is a norm on R™. Let & € R™, § € F(Z) and wminF (z) # 0. If Fis weakly

subdifferentiable at (Z,7), then there exists L > 0 such that F(z) ¢ F(x)+ L]z —Z|| +intRY.
for all x € R™.

Proof. Because F' is weakly subdifferentiable at (Z, ) there exists(U,c¢) € L(R™, RP) x R
such that
(5 —U(x)) € win | J [F(z) — U(2) + el - ]].

rER?
Then we get
(F(x) =U(x) +cllz — 2| =g+ U(z)) N (—intRE) =0 (4.9)
for all x € R™. We have ||U|| = sup [U()] > Vi) > Ui(z) for all x € R™\{0} and
zerm\{o} ||z [l [l
for all

t€{L,2,...,p} where U = (U1,Us,...,Up) and U; : R™ — Ris linear map fori =1,2,...,p.

Hence, we obtain |U]|||z| > U;(z) for all z € R™ and for all ¢ € {1,2,...,p}. In particular,

we have ||U||||lx — Z|| > U;(Z — x). Therefore, we get ||U||||lz — Z| > U(Z — z). From (4.9)
RL

we have

0

(F(z) +[|U]lle = 2| + ez — 2[| — 5) N (~intRE)

(F(z) + (U] + )lle — 2l — g) N (=intRY)

for all z € R™. Then y + (||U[| + ¢)[|lz — || — § ¢ —intRY for all y € F(x). Thus, we get
g¢y+ (U]l + o)flz — z|| + intRE.. As y is an arbitrary element of F(x) we have

g ¢ F(x)+ ([Ull + o)l — z|| + intRY
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which means F(z) ¢ F(x) + (||[U|| + ¢)||# — Z| 4 intRE.. By setting ||U|| 4+ ¢ = L in the last
relation we complete the proof. O

Corollary 4.10. Under assumptions of Proposition 4.9, F is weakly subdifferentiable at
(z,9) if and only if there exists L > 0 such that F(z) ¢ F(x)+ L||lz — Z|| + intRE. for all
z €R" and § € F(T)\ U [F(x) + L|lz — z|| + intRE].

IGR’N

Proposition 4.11. Let X, Y be real topological spaces, Y be partially ordered by closed,
convex and pointed cone C with nonempty interior intC, || - || : X — C be a vectorial norm
and F : X =Y be a set-valued map. Let T € X be given point and wminF () # (). If there
exists L > 0 such that F(Z) ¢ F(x)+ L|z — Z|| + intC for all x € X, then there existp >0
and g € Y such that —p||z|| + g ¢ F(x) + intC for all x € X.

Proof. Since F(Z) — L|lz — Z|| ¢ F(zx) + intC for all z € X we have
F(z) — L||z| — L)Z|| ¢ F(x)+ intC. Because, if F(z) — L|z| — L||Z| € F(z) + intC,
then for every § € F(Z) there exists y € F(x) such that § — L|z| — L|Z|| € y + intC. Thus,
we get
v <9~ Llal - Llall < 5 - Dle — 2l
c

Therefore,
F(z)— Lz — z|| € F(z) + intC

which contradicts to assumption. So,
F(z) = Lljz|| - L||z|| & F(x) + intC.

Hence, there exists § € F(Z) such that § — L|z|| — L||Z|| ¢ F(x) + intC. By setting p = L
and ¢ = § — L||Z|| we obtain

—pllz|l + q ¢ F(z) + intC
for all x € X. -

Corollary 4.12 gives two characterizations for weak subdifferentiability of a set-valued
map by using Corollary 4.8, Corollary 4.10 and Proposition 4.11.

Corollary 4.12. Let F' : R™ == RP be a set valued map, RP be partially ordered by Rﬁ
vectorial norm || - || : R™ — RE be defined as ||z = (||z]], ..., |z|) for all € R™ where || - ||
—_——

P
is a norm on R™ and T € R" be gwen. Let wminF(z) # 0 and F(Z) be RY_-bounded. Then
the followings are equivalent to each other:

i) There exist L > 0 and a neighborhood V € N (Z) of T such that
F() ¢ F(z) + Lo — ] + intR?,
for all x € V', in addition there exist p > 0 and q € RP such that
—pllzll + ¢ ¢ F(x) + intRY
for allz € R™ and g € F(Z)\ U [F(x) + M|z — Z|| + intR"] where M is the positive

zER™
number obtained in Proposition 4.7.
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ii) There exists L > 0 such that F(z) ¢ F(x)+ L|lx — Z|| + intRY. for all x € R™ and
g€ F@\ |J [F(@)+ Ljz — 2| + intRY ]
zER™

ili) F is weakly subdifferentiable at (Z,7).

Proposition 4.13. Let F': R" = RP be a set valued map, RP be partially ordered by Rﬂ,
vectorial norm || -|| : R™ — R be defined as ||z|| = (||z]], ..., [|=||) for all x € R™ where ||| is
—_———

P
a norm on R™ and £ € R™ be a given point. If F is Lipschitz on V with Lipschitz constant
L (in the sense Aubin [2]), where V is a neighborhood of T, then

F(z) ¢ F@) + Lz — 7] + intR”.
for all x € V\{Z}.

Proof. Since F is Lipschitz on V', we have F(x) C F(z)+ L|z—Z||B for all z € V\{z} where
B denotes the unit ball in RP. Hence, for all y € F(z) there exist § € F(z) and e € B such
that y = §+ L||z — Z|le where e = (e1,e2,...,€p,). Since e; +1 >0 for all ¢ € {1,2,...,p},
we obtain

y—y~—Lllz — 2z = ~Lljz - zlle — L= - z|
= (=Lllz — z|les, ..., ~Lllz — Zlley) = (Lljz —zl,..., Lllz - z[)
= (=L||lz —z|(ex +1),...,—Ll|z — z||(e, + 1))
€ —RE.

So we have j —y — L]l — Z|| ¢ intR%, that means
5 ¢ F(z) + Lliz — 7l +intR?.
As a consequence, we have F(Z) ¢ F(x) + Ll|jx — Z|| + intR%. for all z € V\{z}. O

Corollary 4.14 shows that under some assumptions, Lipschitz set-valued maps on a set
are weakly subdifferentiable.

Corollary 4.14. Let RP be ordered by Rﬂ’_, F :R" = RP be a set-valued map, the vectorial

norm

Il : R = RE be defined as ||z|| = (||zl],..., |z|) for all x € R™ where || - || denotes
—_——

P
a norm on R". Let T € R”, wminF(z) # 0 and F(z) be R -bounded. If F is Lip-
schitz on V(C domF) with Lipschitz constant L and if there exist p > 0 and q € RP
such that —pllz| + q ¢ F(x) + intR" for all x € R™, then there exists M > 0 such that
F(z) ¢ F(z) + M|z — Z|| + intR%. for all x € R™ and F is weakly subdifferentiable at (Z,7)

forally e F(z)\ U [F(z)+ M|z — z| 4+ intR% .
zER™

Weak Conjugate Duality in Vector Optimization

In this section, by using weak conjugate of perturbation function a weak conjugate dual
problem is defined for unconstrained vector optimization problems and weak duality theorem
is proved. Furthermore, stability of primal problem with respect to the perturbation function
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is defined and it is proved that stability of the primal problem implies the strong duality.
Moreover, some necessary conditions for stability of primal problem are presented.

First, let us define the unconstrained vector optimization problem. We assume that
X, Y are real normed spaces, Y is partially ordered by closed, convex and pointed cone C
with nonempty interior intC and f : X — Y is a vector valued function.

Consider the vector optimization problem

minimize f(x)
(VoP) { st.xeX

Solving this problem means to find the set
Inf(VOP) = Inf{f(z) | z € X}.

We introduce perturbation parameter z € Z and embed the primal problem (VOP) into
a family of vector optimization problems, where Z is another locally convex real topological
vector space. Let ¢ be a function from X x Z to Y U {400} such that

o(x,0) := f(x) forall z € X.

This function is called perturbation function.
Perturbed problem is defined as

minimize ¢(z, 2)
(PZ){ st.xeX ’

To construct weak conjugate dual problem of (VOP) let us find the weak conjugate map of

Let |- lx : X - C and ||- ||z : Z — C be vectorial norms. Weak conjugate of
o, Y X X L(X,)Y) xRy x Z x L(Z,Y) x Ry =Y is defined as

¢"(20,U,¢,20,V,d) =Sup U [—cllz = zollx + cllzollx + Ulx)
(z,2)eEXXZ
—d|lz = z0llz + dll20llz + V(2) — ¢(, 2)]

for all (xg,U, ¢, 20,V,d) € X X L(X,Y) xRy x Z X L(Z,Y) x R..
If we set x9g =0, 20 =0, U =0, ¢ =0 in this map we have

O V.d)=Sup |J [dlzllz +V(2) - (z,2)]
(z,2)EXXZ

where ¢*(0,0,0,0,V,d) = ¢“(0,V,d). The weak conjugate dual problem of (VOP) is defined
as

(D*) < Sup U [—¢"(0,V,d)] .
(V,d)EL(Z,Y) xRy
To solve this dual problem means to find the set
Sup(D") = Sup U [—¢"(0,V,d)].
(V,d)EL(Z,Y) xRy

Weak duality theorem presents that any feasible value of the primal problem is not less
than any feasible value of the dual problem.
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Theorem 5.1 (Weak Duality Theorem). For any x € X and (V,d) € L(Z,Y) xRy we have
¢(x,0) ¢ B(—¢"(0,V,d)). Hence,
Inf(VOP) N B(Sup(D™)) = 0.
Proof. From Proposition 3.5 we have
p(x,0) = 0(z) = V(0) + 0f} — 0| — Ofjof} + d]jo — Off - dl|o]] = ¢(x,0) ¢ B(—¢"(0,V,d))

for all x € X and (V,d) € L(Z,Y) x Ry. So, f(z) ¢ B(—¢"(0,V,d)) for all z € X and
(V,d) € L(Z,Y) x Ry. Thus, we have

U f@) nB( U [~ (0, V,d)]) = 0.

zeX (V,d)eL(Z,Y) xR

Therefore,

AU fenBC U [0V =0.

zeX (V,d)eEL(Z,Y ) xRy

Then we obtain

0 = cl(A(U F(@) N B( U [—=¢"(0,V.d)])

reX (V,d)eL(Z,Y) xRy
A f()))nB(Sup(D™))
zeX
As wmin cl(A( U f(x))) C cl(A( U f(x))) we get
reX reX

f = wmin cl(A U f(z))) N B(Sup(D"))
xGX
= Inf( U f(x)) N B(Sup(D™))

Inf(g‘v/ggP) N B(Sup(D™)).

Corollary 5.2. Let a € Inf(VOP) and b € Sup(D"). Then a £ b.
c

Before giving the definition of stability of (VOP) we need the following definition.

Definition 5.3. The set-valued map ¢ : Z = Y defined by ¢(z) := Inf{¢(z,2) | + € X} for
all z € Z is called the value map for problem (VOP). It is obvious that Inf(VOP) = ¢(0).

Lemma 5.4. For any (V,d) € L(Z,Y) x Ry we have ¢*(0,V,d) = ¢ (0,V,d).

Theorem 5.5 implies that the solution set of dual problem can be characterized by the
weak biconjugate map of the value map at 0.

Theorem 5.5. ¢ (0) = Sup(Dv).
Before giving Strong Duality Theorem we need the following definition.

Definition 5.6. The primal problem is said to be stable if the value map ¢ is weakly
subdifferentiable at 0 € Z.
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Theorem 5.7 (Strong Duality Theorem). If (VOP) is stable, then
Inf(VOP) = Sup(D®).

Proof. ¢$(0) = Inf{p(z,0) | z € X} = Inf{Inf{p(z,0) | z € X}} = Inf¢(0). As (VOP)
is stable ¢ is weakly subdifferentiable at 0. Thus, from Theorem 4.5 and Theorem 5.5 we
obtain

Inf(VOP) = $(0) = ¢**(0) = Sup(D™).

Proposition 5.8 states a necessary condition for the stability of (VOP).

Proposition 5.8. If there exist L > 0 and for any € € intC an element x(g) € X such that
—L|z|| € o(z,2) — @(z(e),0) + & for all (z,2) € X X Z and if Inf(VOP) # 0, then ¢ is
C

weakly subdifferentiable at 0 which means (VOP) is stable.

Proof. Let y € ¢(0) = Inf U x,0) be an arbitrary element and z € Z be a fixed arbitrary
zeX
element. Then we have y ¢ A( U ©(z,0)). Hence,
rzeX
¢(z,0) 75 Y (5.1)

for all z € X. In particular, (5.1) is valid for z(¢) € X, i.e. ¢(x(€),0) £y . As —L|z| <
c c
oz, z) —(x(€),0) + & we have
p(z,2) + Lzl +e £ v (5.2)
Therefore,
y—e ¢ p(r,2) + Lzl +intC
for all x € X. Then we get

—c¢ U (z,2)] + L z|| + intC.
reX

Now, we will show that

— ¢ ¢ Inf U (z,2)] + L z|| + intC.
zeX

Assume the contrary that

—¢ € Inf U (z,2)] + L|z|| + intC.

reX
Then there exist a(e) € Inf U ) and c(¢) € intC such that y —e = a(e) + L z|| + c(e).
reX
As a(e) € Inf U o(x, z) we have A(a(e)) C A( U o(x, z)). Thus, for any a with a(e) sa

zeX zeX
there exists x € X such that ¢(z,2) s a Since, y — e — L||z|| — c¢(e) = ale) we get



94 Y. KUQUK, I. ATASEVER GUVENC AND M. KUCUK

a(e) Sy-—e- L||z||. Therefore, there exists Z € X such that ¢(Z, z) Sy-—e- L||z|| which
contradicts to (5.2). Hence,
—c ¢ Inf U (x,2)] + L|z|| + intC. (5.3)
reX
Let us show that
y ¢ Inf | [e(x, 2)] + Llizl| + intC = ¢(2) + L 2|| + intC.

zeX

Assume the contrary that

y € Inf U (x,2)] + L|z|| + intC.
zeX

Then there exist a € Inf U [o(z, 2)] + L|z|| and ¢ € intC such that y = a + ¢. Since C'is a

reX
cone and ¢ € intC' we have g € intC. So, we have y = a + g + g Hence, y — g =a+ g €
Inf U (x, 2)] + L||z|| + intC which contradicts to (5.3). Thus,

zeX

y ¢ Inf | [e(x, 2)] + Llizl| + intC = ¢(2) + L 2|| + intC.
reX

Because y € ¢(0) is an arbitrary element
¢(0) N (4(2) + |zl + intC) = 0

for all z € Z. Moreover, since wming(0) = Inf(VOP) # () from Proposition 4.6 ¢ is weakly
subdifferentiable at (0,y). As y € ¢(0) is an arbitrary element, ¢ is weakly subdifferentiable

at 0. O
Proposition 5.9. Let R? be partially ordered by R, the vectorial norm ||- || : R™ — RE be
defined as ||| = (|||l - .-, ||z|]) for all z € R™ where ||-|| is a norm on R™ and f : R™ — RP
—_————
P

be a given function. Let ¢ : R" x R™ — RE be a perturbation function, ¢(0) be Rﬁ_—bounded
and wming(0) = Inf(VOP) # 0 where ¢ is the value map obtained from . If (VOP) is
stable, then there exist L > 0, and for any € € intRi, z(e) € R™ such that

p(a,2) — p(@(e),0) + & £ —Lllz| for all z € R™.
R
Proposition 5.10 gives another necessary condition for stability of the primal problem
(VOP).

Proposition 5.10. In addition to assumptions of Proposition 5.9 let there exist L > 0, a
neighborhood N(0) C R™ of 0 and, for any € € intRY, z(c) € R"™ such that

—L||=| S p(x,2) = p(2(e),0) +¢

+

for all z € N(0) and © € R™. If there exist p > 0 and q € RP such that
—plzll +q & p(z, z) + intRE
for all x € R™ and z € R™, then ¢ is weakly subdifferentiable at 0.
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Proof. Let y € ¢(0) = Inf U x,0) be an arbitrary element and z € N(0) be an arbitrary
IGR’”
fixed element. Then y ¢ A( U @(z,0)). Thus, we get p(x,0) £ y for all z € R". In
rER" Ri
particular, p(z(g),0) £ y. From assumption we have
A

—L||=| s p(x,2) — p(2(e),0) + ¢

+

for all x € R™. Therefore, we obtain ¢(z, 2) + ¢+ L||z|| £ y which means y — e ¢ ¢(z, z) +
=

L||z|| + intRE for all x € R™. Hence, we obtain
—¢ ¢ Inf U (z,2)] + L|z|) + intRE..
TER™
If we take limit as € | 0 in the last relation, then we get
y ¢ Inf U (z,2)] + L] z]) + intRE.

zER™ ) »
= ¢(2) + Lf|z[l + intRY

which means
¢(0) N (#(2) + L] 2]l + intRE ) = 0.

Hence, ¢(0) ¢ ¢(z) + L||z|| + intRE for all z € N(0).
As
—plell +q ¢ p(x, 2) + intR;,

for all z € R™ and z € R™, we obtain

—pllzll +a ¢ | (e, 2) + intRE].

zERn
So, we get
Dl +q ¢ i lp(,2) + intR?]
zER™
= ¢(z)+ntRY for all z € R™.
From Theorem 4.12, ¢ is weakly subdifferentiable at 0. 0

Proposition 5.11. In addition to assumptions of Proposition 5.9 let (VOP) be stable. Then
there exists L > 0 and for any € € intR", there exists x(c) € R™ such that

p(x,2) — p(2(e),0) +€D§ —L|l=]| (5.4)

for all x € R™ and z € R™, and there exist p > 0 and q € RP such that
—pllzll + q ¢ ¢(2) + intRY (5.5)

for all z € R™.
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@ Weak Fenchel Dual Problem

In this section, by using a special perturbation function in the construction of weak
conjugate dual problem weak Fenchel dual problem is obtained. Finally, an example of a
nonconvex constrained vector optimization problem which can not be solved by Lagrange
dual problem constructed in [25] but can be solved by weak Fenchel dual problem is pre-
sented.

Let us consider the constrained vector optimization problem

(VO) Inf{f(z) | z € G}

where f: R®™ — RP and g : R® — R™ are vector valued functions, R? and R™ are partially
ordered by RE and R, respectively, S is a nonempty subset of R”, the vectorial norm
I -l : R* — R% is defined as ||| = (||z]],...,]||z|) for all z € R™ where || - || is a norm on
R"and G={z €S| g(x) Rgm 0}.

+

The Fenchel perturbation function ¢ : R™ x R™ — RP U {+o00} is defined as

sDF(%Z):{f(erz) , G

400 , otherwise

for all z,z € R™.
The weak conjugate map ¢% : R" xR" xRy xR*" xR" xRy — R” of @ is obtained as

go%u‘ (.’130, Ua C, 20, ‘/a d) = Sup U [_C”l‘lj - $0||| + meO |” + U(J?)
(z,z) EGXR™
—dlz = zo|l + dllzoll + V(2) — f(z + 2)].

for all (z9,U, ¢, 20,V,d) € R" x R" x Ry x R" x R" x R;. By taking g = 20 = 0, U = 0,
¢=0, 2+ z =r and from Proposition 2.6 in [33] we get

PP, V.d)=Sup ) [~dlzll +V(z) - f(z +2)]

(z,2) EGXR™

=Sup(J U [=dllr = all + V() = V(z) = f(r)
r€G reRn

=Sup | J [V (@) —dlle| + | [V(r) + dJl| - dllr — =] = f(r)]].
r€G reRn”

= Sup | J [V (2) = dla]l + Sup | [V(r) +dlz]| - dllr — =] - f(r)]]-
zeG reER”

= Sup | J [V (2) - dl] + f*(x,V,d)].
zeG

Hence, by substituting ¢% in the weak conjugate dual problem
(DF)  sw ) [-¥E(0,V.d)]
(V,d)ER™ xRy

we obtain

(DE)  Sup  |J  Inf | JV(z)+dlz] - (V. d)].
(V,d)ER" xRy  z€G
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Example 6.1 gives a nonconvex constrained vector optimization problem which can not be
solved by Lagrange dual problem constructed by Li et al. in [25] but can be solved by weak
Fenchel dual problem.

Example 6.1. Let f : R — R? and g : R — R be defined as f(x) = (z,—|z|) and
g(x) = —x—1 <0 for all z € R, respectively, let S =R, R? be partially ordered by R% and

the vectorial norm || - || : R — R2 be defined as [|z[| = (|z,|z|) for all € R. Let us consider
the constrained vector optimization problem
Inf f(z)
_ - Inf (2, —|x])
(VOP) Zte %(JL‘) =—2x—-1<0 , ie (VOP) { stz>-1, zeR

It is obvious that Inf(VOP) = {—1} x[—1,400)U[-1, 1| x{-1}U{(z,y) |z > 1,y = —z}.

Firstly, let us show that (VOP) can not be solved by Lagrange dual problem constructed
in [25].

Lagrange dual problem for (VOP) is defined as

Sup(Dr) =Sup | J It J[f(2) + Alg(a))]

ACL+(RR2) z€R

where
LT (R,R?) = {Ae€L(R,R? |A(z) > 0forall z>0}
=
= {(a,b) €R? | az >0, bz >0 for all z>0}
= R2Z.
+

Substituting LT (R, R?) in the dual problem, we obtain
Sup(Dr) = Sup U Inf U [f(z)+ Alg())]

AeL*(R,R?) z€R

= Sup U If U [ —la]) + (a.b)(~z — 1))

(a,b)eR2  x€R

= Sup U Inf{ [(x—ax—a,—|z|—bxr—Db).
(a,b)eR7  =z€R

After some calculations, the set Inf |J [(z —az — a, —|z| — bx —b)] is obtained as in Figure
z€R
1forall 0 <a<1andb>1, and otherwise it equals {—oo}.
As seen in Figure 1 the set of all points below |J Inf {J [(x — az — a, —|z| — bz — b)]
(ab)eR?  z€R
equals the set of all points below {—1} x [—1,400) U [-1,0] x {-1} U {(z,y) | >0, y =
—2z — 1}. Hence,

Sup(Dr) = Sup( bL)JRz Inf LEJR[(:E —ax — a,—|x| — bz — b))
= {-1} x [—JrL—i—oo) U[-1,0] x {-1}U{(z,y) | >0, y = -2z — 1}.

So, strong duality is not satisfied.

Now, let us show that strong duality is satisfied for weak Fenchel dual problem. To
do this it is enough to prove the weak subdifferentiability of the value map at 0. For this
purpose we will follow below steps:
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1)0<a<1,b>1 2)0<a<1l,b=1 3)a=0b>1

y=—2x—-1 y:;2m71

Figure 1: InfU(a:—ax—a,—\ad—ba:—b)for 0<a<1 and b>1
z€eR

e Determine the perturbation function,
e Determine the value function,

e Show the existence of L > 0 that satisfies ¢(0) ¢ ¢(u) + Lfju|| + intR% for all u € R.

At the end, we will construct weak Fenchel dual problem and show that strong duality is
held for it.
Now, let us determine above steps.

The perturbation function g : R? — R? U {+00} is defined as

gap(z,u){f($+u) J r>-1 _{($+u7—|m+u|) , x> -1

o 400 , otherwise. 400 , otherwise.
for all (z,u) € R?.
The value map ¢ : R — R with respect to the perturbation map is defined as

€ R} = Inf{pp(z,u) | z > -1}

&

p(u) = Inf{or(z,u) |
{(z,y) |ly=—-14u, -1+u<z<l-uwjly , u<l
_ {(z.y) |z =21-u, y=—a}
{(x,y)|x:71+uay2]—7u}u u>1
{(‘rvy) | 1'2—1-’-’(1,7 y:_x} ’ o

for all u € R. Image set of ¢(-) is shown in Figure 2 (a) and (b).
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i) u<l1 i) u>1

—1+ 1-u —14+u

—1+4+u

Figure 2: (a) Image set of ¢(-) for u < 1 (b) Image set of ¢(-) for u > 1

Let us show the existence of L > 0 satisfies ¢(0) ¢ ¢(u) + L|ul| 4+ intR% for all u € R.
It is obvious that ¢(0) = Inf(VOP). By choosing L = 1 we get

(@,y) + Lllull = (@ + [ul,y + [u]) = (2 + [ul, —z + |u]) € {(z,y) | y > -z}
for all (z,y) € {(z,y) | *>1—wu, y=—2} C ¢(u) which means
¢(0) ¢ ¢(u) + Lljul| + intR?
where u < 1 and u # 0. It is clear that
$(0) & d(u) + Lijull + intR?
for u = 0 and for all u > 1. Hence, we have
$(0) ¢ d(u) + Lllull + intRZ

for all v € R that means ¢(-) is weakly subdifferentiable at (0,y) for all
y € ¢(0)\ U é(u) + Lljul| + intR2 = $(0), i.e. ¢(-) is weakly subdifferentiable at
€rR

0. From Strong Duality Theorem we obtain Inf(VOP) = Sup(D¥).

Now, let us construct weak Fenchel dual problem of (VOP). Itis defined as

(D¥)  Sup U Inf | J [(awo,bxo) + (d|zol, dlao]) — f* (0, a,b, d)].
(a,b,d)ER? xR zo>—1

After some calculations, sets  Inf U (axo, bxo) + (d|xo|, d|zo]) — f*(x0,a,b,d)] with
zro>—1
respect to elements (a,b,d) ER?x R, are found as in Figure 3 and Figure 4.
As seen in Figure 3 and Figure 4 the set of all points below

U Inf U (azg, bxo)+ (d|xol, d|zo])— f* (20,0, b,d)]
(a,b,d)eER?2xRy x0=>—1

equals to the set of all points below

{-1} x [-1,400) U[-1,1] x {1} U{(z,y)|x > 1,y= —x}.
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1)\1 1 2) —1 1 3)\1 4) —1

™ ~

y=—x Y= y=—x y:—i'

Figure 3: Inf U [(azo,bx0) + (d|z0], d|zo|) — £* (20, a, b, d)]
zg>—1

17\\—1 18\\—1 9\\‘—1 0\\—1 1

aw Dy \_\1 o il

- 3\\‘1 2)1 -

TN T

Y= —a — y=—a
25—+ 26—t 27— 28} -1l 1
y=—x y > y=-z

Figure 4: Inf U [(azo,bz0) + (d|zol,d|z0]) — f* (z0,a,b,d)]
zg>—1
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Hence, we get

Sup(D¥)

swp  |J  Inf | [awo,bxo) + (dlzol, dlzol) — £* (0, a,b,d)])
(a,b,d)ER?xR4 zo>—1

= {1} x[-L+oo)U[-L1] x{-1}U{(z,y) [z > 1, y = —=}

= Inf(VOP).

So, strong duality is held for weak Fenchel dual problem.

Concluding Remarks

In this study, by using concepts of supremum, infimum, weak maximum of a set and vecto-
rial norm, we defined weak conjugate maps and weak subdifferentials for set-valued maps.
Furthermore, we presented necessary and sufficient conditions for weak subdifferentiability
of set-valued maps. These notions enable us to construct a new conjugate dual problem for
nonconvex problems. Moreover, we constructed a new conjugate dual problem for uncon-
strained vector optimization problems by using weak conjugate map of perturbation function
and we presented weak and strong duality theorems. Furthermore, by using a special pertur-
bation function for constrained vector optimization problem weak Fenchel dual problem was
constructed. By using this dual problem we are able to solve some nonconvex constrained
vector optimization problems.
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