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al., see, e.g., [8, 11]. They study the same model with block-structured regularization but
not consider penalty terms related to singular values of the matrix variable. It happens
that Lu [7] explore convex optimization methods for solving matrix regression model with
nuclear norm penalty, but not in high-dimensional case.

On the other hand, Zou and Hastie [17] propose the elastic net model in the case of
vector. Similar to the lasso, the elastic net simultaneously does automatic variable selection
and continuous shrinkage. And more important, the elastic net model can select groups of
correlated variables. Note that, Zhou and Li [16] does not consider the grouping effect and
other property as in Zou and Hastie [17]. An interesting question occurs: Is there also a
similar grouping effect property for elastic net-penalized matrix regression ? If so, can we
use the method VNS [7] to give the optimal solution of our model?

This paper focuses on the above questions and gives affirm answer. Based on the results
in Zou and Hastie [17], we get the grouping effect property of elastic net-penalized matrix
regression. Moreover, we give a upper bound of deviation between two correlated prediction
vectors. By reforming the elastic net-penalized matrix regression as nuclear norm matrix
regression, we apply the approach in [7] to solve it. Following their terminology, we call our
method as VNS-EN algorithm. We give the convergence results and iteration-complexity of
VNS-EN algorithm. We also report the numerical experiment results.

The rest of the paper is organized as follows. We formulate elastic net-penalized matrix
regression in Section 2 and show its grouping effect property in Section 3. In Section 4, we
derive the VNS-EN method and show its convergence and iteration-complexity. Then we do
simulation study using the proposed method. We conclude the paper with a discussion of
potential future research in Section 5.

2 Elastic Net-Penalized Matrix Regression

We will introduce the elastic net-penalized matrix regression for high-dimensional linear
model.

We begin with the following high-dimensional matrix regression model. Consider the
matrix regression model

B = AX +W, (2.1)

where A ∈ Rn×m is the predictor matrix, B ∈ Rn×q is the response matrix, X ∈ Rm×q is the
unknown regression matrix, and W ∈ Rn×q is the measurement error/noise matrix. When
q = 1, it is the linear multivariate regression which has been attracted much more research
for long times. Throughout the paper, we assume A with each column vector A·j being
normalized such that ∥A·j∥2 = 1 for j = 1, 2, · · · ,m, and W = (εij) with all components
εij(i = 1, 2, · · · , n, j = 1, 2, · · · , q) being independently identically distributed from normal
distribution with mean zero and finite variance σ2.

We will focus on the high dimensional case where the number of observations n is less
than the size m and q of unknown coefficients matrix X, i.e., n < min{m, q}. Without
loss of generality, let m ≤ q. In this setting of n < m ≤ q, the goal is to propose a good
estimator of the true coefficient matrix. To do so, a key and common assumption is that the
true coefficient matrix X∗ is a low-rank matrix, which guarantees the model identifiability
and enhances the model fitting accuracy and interpretability, see, e.g, [4, 12]. We assume
r = rank(X∗) with r < n. Let the singular value decomposition (SVD) of coefficient matrix
X∗ be given as

X∗ = UDV T,
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where U ∈ Rm×m, V ∈ Rq×q are orthogonal matrices, and D is a diagonal block matrix
with Dii = λi(X

∗) and Dij = 0 for i ̸= j(i = 1, · · · ,m, j = 1, · · · , q), with the singular
values λ1(X

∗) ≥ λ2(X
∗) ≥ · · · ≥ λr(X

∗) > λr+1(X
∗) = · · · = λm(X∗) = 0. Note that the

above SVD is not unique. Clearly, the parameters X∗ and r are implicitly dependent on the
sample size n, but we omit the index n in notation whenever there is no confusion.

In order to reconstruct the high-dimensional matrix regression model and estimate the
low-rank matrix X∗, we consider the following elastic net-penalized matrix regression prob-
lem

min
X∈Rm×q

1

2
∥B −AX∥2F + µ1∥X∥∗ +

1

2
µ2∥X∥2F, (2.2)

where ∥B − AX∥2F is the matrix least square error loss function, ∥X∥∗ =
∑m

i=1 λi(X) is

the nuclear norm of X, and ∥X∥F =
√

tr(XTX) =
√∑m

i=1

∑q
j=1 X

2
ij is the Frobenius

norm of X, and µ1 ≥ 0 and µ2 ≥ 0 are the penalized/regularization parameters. We call
µ1∥X∥∗ + 1

2µ2∥X∥2F the matrix elastic net penalty term. It is easy to see that [17] deals
with the matrix regular via elastic net penalty in case of q = 1. When µ2 ≡ 0, it is the
nuclear norm-penalized matrix regression which has been solved by the variant of Nesterov’s
smooth method when A has full column rank [7]. We define the elastic net-penalized matrix
regression estimator as

X̂ ∈ argmin
X∈Rm×q

1

2
∥B −AX∥2F + µ1∥X∥∗ +

1

2
µ2∥X∥2F. (2.3)

Similarly, it is the nuclear norm-penalized matrix regression estimator when µ2 ≡ 0.

3 Grouping Effect Property

In this section, we will discuss the grouping effect property of (2.2). In the high-dimensional
setting problem, for a long time, there are much attention on the ’grouped variables’ situa-
tion, which is a particularly important concern for the single linear multivariate regression
model, see, e.g., [6, 17] and references therein. For instance, Zou and Hastie [17] showed
that in the situation where some variables exhibits the grouping effect, the following generic
penalization least-square regression assigns identical coefficients to the identical variables,

x̂ = argmin
x∈Rp

∥b−Ax∥22 + µh(x),

where b ∈ Rn, and h(x) is positive for x ̸= 0. This important property is called grouping
effect by Zou [17]. As mentioned in the introduction, can we get the grouping effect property
for the matrix case?

Consider the following matrix regression estimator counterpart above

X̂ = argmin
X∈Rm×q

∥B −AX∥2F + µJ(X), (3.1)

where J(·) is positive valued for X ̸= 0.
The following result shows a clear distinction between strictly convex penalty functions

and the matrix lasso-type penalty, where strict convexity guarantees the grouping effect in
the extreme situation with identical predictors. Here we define J is symmetric if J(PX) =
J(X) where P is a permutation operator.
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Proposition 3.1. Assume that A·i = A·j , i, j ∈ {1, · · · ,m}. Let X̂ be the penalized matrix
regression estimator of (3.1).

(a) If J(·) is strictly convex and symmetric, then Xi· = Xj· for any µ > 0.

(b) If J(X) = ∥X∥∗, then X̂∗ is another minimizer of the penalized matrix regression
estimator of (3.1), where

X̂∗
k· =


X̂k·, if k ̸= i and k ̸= j,

tX̂i· + (1− t)X̂j·, if k = i,

(1− t)X̂i· + tX̂j·, if k = j.

for any t ∈ [0, 1].

Proof. (a) Fix µ > 0. Assume Xi· ̸= Xj·. Let us define X̃ as follows

X̃k· =


X̂k·, if k ̸= i and k ̸= j,

X̂j·, if k = i,

X̂i·, if k = j.

(3.2)

This together with the assumption A·i = A·j derives AX̂ = AX̃. Notice that X̃ is just a

permutation of X̂ and J is symmetric, J(X̂) = J(X̃). Thus we obtain that

∥B −AX̃∥2F + µJ(X̃) = ∥B −AX̂∥2F + µJ(X̂).

Take the convex combination of X̃ and X̂, X̄t = tX̃ + (1− t)X̂ for t ∈ (0, 1). Clearly, from
the strictly convexity of ∥B −AX∥2F + µJ(X), we easily obtain that

∥B −AX̄t∥2F + µJ(X̄t) < t
[
∥B −AX̃∥2F + µJ(X̃)

]
+ (1− t)

[
∥B −AX̂∥2F + µJ(X̂)

]
.

This together with above equality yields that

∥B −AX̄t∥2F + µJ(X̄t) < ∥B −AX̂∥2F + µJ(X̂).

This is a contradiction of X̂ is the solution of (3.1). Hence Xi· = Xj·.
(b) From the proof of (a), and the fact that J(X) = ∥X∥∗ is not strictly convex, we get

that ∥B − AX∥2F + µ∥X∥∗ is convex but not strictly convex. For the same X̃ in (3.2) and

X̄t = tX̃ + (1− t)X̂ with t ∈ (0, 1), we have

∥B −AX̄t∥2F + µJ(X̄t) ≤ t
[
∥B −AX̃∥2F + µJ(X̃)

]
+ (1− t)

[
∥B −AX̂∥2F + µJ(X̂)

]
.

Observing that the fact of X̃ and X̂ being minimizers of the penalized matrix regression
estimator ∥B −AX∥2F + µ∥X∥∗, we obtain

∥B −AX̄t∥2F + µJ(X̄t) ≤ ∥B −AX̂∥2F + µJ(X̂).

Hence the desired conclusion follows immediately.

Remark 3.2. As we can see ∥X∥∗ + 1
2∥X∥

2
F is strictly convex and symmetric, elastic net-

penalized matrix regression (2.2) has grouping effect.
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It is easy to note that the proposition 3.1 and its proof are different from those in the
vector setting in [17]. However, the above results have the similar implication as in the
vector case, see, e.g., [3, 12, 17] for further explanations. That is, for the matrix regression,
the matrix lasso-type penalty does not even have a unique solution, while the matrix elastic
net penalty with µ2 > 0 is strictly convex and possesses the above grouping effect property.

Furthermore, the elastic net-penalized matrix regression method can provide a quantita-
tive description for the grouping effect as in vector case. We below show that the difference
between the i-th and j-th row coefficient paths of predictors is almost 0 if A·i and A·j are
highly correlated, i.e. ρ

.
= 1 (if ρ

.
= −1 then consider −A·j), where ρ = AT

·iA·j is the sample
correlation.

Theorem 3.3. Given data (B,A) and parameters (µ1, µ2), let X̂ be the elastic net-penalized
matrix regression estimator,

X̂ = argmin
X∈Rm×q

1

2
∥B −AX∥2F + µ1∥X∥∗ +

1

2
µ2∥X∥2F. (3.3)

Suppose that ∥B∥F ̸= 0 and µ2 ̸= 0. Then

1

∥B∥F
∥X̂i· − X̂j·∥2 ≤

1

µ2

√
2(1− ρ).

Proof. Let L(µ1, µ2, X) = 1
2∥B − AX∥2F + µ1∥X∥∗ + 1

2µ2∥X∥2F, and let the singular value

decomposition (SVD) of X̂ = UΞV T with Ξii = λi(X̂) ≥ 0 and Ξij = 0 for i ̸= j. Con-
sidering the subdifferential of ∥ · ∥∗ in [14], we obtain the first-order optimality condition of
(3.3)

0 ∈ ∂L(µ1, µ2, X̂)

∂X
= AT(AX̂ −B) + µ1USign(Ξ)V T + µ2X̂,

where (Sign(Ξ))ii = sign(λi(X̂)) and its other components are zero. Set rank(X̂) = r.
Thus, there is a nonnegative matrix D with Dii = 1 for i ∈ {1, 2, · · · , r}, Dii ∈ [0, 1] for
i ∈ {r + 1, r + 2, · · · ,m}, and Dij = 0 for i ̸= j such that

AT(AX̂ −B) + µ1UDV T + µ2X̂ = 0.

Let e
(k)
m = (0, · · · , 0, 1, 0, · · · , 0)T ∈ Rm with all zero but the k-th component one. Then

[e(k)m ]TAT(AX̂ −B) + µ1[e
(k)
m ]TUDV T + µ2[e

(k)
m ]TX̂ = 0.

Taking k = i and k = j, by direct computation we obtain

AT
·i(AX̂ −B) + µ1Ui·DV T + µ2X̂i· = 0,

AT
·j(AX̂ −B) + µ1Uj·DV T + µ2X̂j· = 0. (3.4)

Thus, we have

(AT
·i −AT

·j)(AX̂ −B) + µ1(Ui· − Uj·)DV T + µ2(X̂i· − X̂j·) = 0.

Then on both sides of the above equation, taking the inner product with the row vector
X̂i· − X̂j·, we obtain

(X̂i·−X̂j·)
[
(AT

·i −AT
·j)(AX̂ −B)

]T
+µ1(X̂i·−X̂j·)

[
(Ui· − Uj·)DV T

]T
+µ2∥X̂i·−X̂j·∥2 = 0.

(3.5)
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Noting that X̂i· − X̂j· =
(
[e

(i)
m ]T − [e

(j)
m ]T

)
UΞV T and Ui· − Uj· =

(
[e

(i)
m ]T − [e

(j)
m ]T

)
U , by

direct calculation, we obtain

(X̂i· − X̂j·)
(
(Ui· − Uj·)DV T

)T
=

(
[e(i)m ]T − [e(j)m ]T

)
UΞV TV DTUT(e(i)m − e(j)m )

=
(
[e(i)m ]T − [e(j)m ]T

)
UΞDTUT(e(i)m − e(j)m ). (3.6)

This together with the fact that UΞDTUT is positive semidefinite yields

(X̂i· − X̂j·)
(
(Ui· − Uj·)DV T

)T ≥ 0. (3.7)

Combining the above arguments (3.5), (3.7) and µ1 ≥ 0, we obtain

µ2∥X̂i· − X̂j·∥2 ≤
∣∣∣∣(X̂i· − X̂j·)

[
(AT

·i −AT
·j)(AX̂ −B)

]T∣∣∣∣ .
Then,

µ2∥X̂i· − X̂j·∥2 ≤ ∥X̂i· − X̂j·∥2∥(AT
·i −AT

·j)(AX̂ −B)∥2.

On the other hand,

1

2
∥B −AX̂∥F + µ1∥X̂∥∗ +

1

2
µ2∥X̂∥2F ≤

1

2
∥B∥F.

Thus, ∥B −AX̂∥F ≤ ∥B∥F. Therefore,

1

∥B∥F
∥X̂i· − X̂j·∥2

≤ 1

µ2∥B∥F
∥(AT

·i −AT
·j)(AX̂ −B)∥2

≤ 1

µ2∥B∥F
∥AT

·i −AT
·j∥2 · ∥AX̂ −B∥F

≤ 1

µ2
∥A·i −A·j∥2

≤ 1

µ2

√
2(1− ρ). (3.8)

The proof is complete.

4 Optimal Method

In this section, we give VNS-EN method for solving (2.2) based on [7]. Following the ideas
from [7], we give the convergence results and iteration-complexity of the VNS-EN method.
Lu et al. [7] explore convex optimization methods VNS for solving nuclear norm-penalized
matrix regression model, which is a variant due to Nesterov’s smooth method [9, 10]. Note
that there is a precondition that the predictor matrix must have full rank. It is not possible
under high-dimensional data. We find that our elastic net-penalized matrix regression model
can be transformed into nuclear norm-penalized matrix regression model. And then the new
predictor matrix has full column rank. So, we can use VNS to solve elastic net-penalized
matrix regression.
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4.1 VNS-EN Algorithm

We give the VNS-EN method for solving (2.2) and discuss its convergence, iteration-
complexity.

There is a closely related connection between the elastic net-penalized matrix regression
and the nuclear norm-penalized matrix regression as in the linear multivariate regression

model in [17]. In fact, letting B⋆ =

(
B
O

)
, A⋆ = 1√

1+µ2

(
A√
µ2I

)
, it is easy to see that elastic

net-penalized matrix regression problem (2.2) can be seen as nuclear norm-penalized matrix
regression

min
X⋆∈Rm×q

1

2
∥B⋆ −A⋆X⋆∥2F + γ∥X⋆∥∗, (4.1)

where X⋆ =
√
1 + µ2X, γ = µ1√

1+µ2
. If X̂⋆ ∈ argmin

X⋆∈Rm×q

L(γ,X⋆), then X̂ = 1√
1+µ2

X̂⋆.

For any µ2 > 0, no matter how much the rank(A) is, the matrix A⋆ has full column
rank, so we can use the method VNS in [7] to solve (4.1). In order to reduce the amount of
computation, we first simplify the problem (4.1).

Since A⋆ has a full column rank, there exists an orthonormal matrix Q ∈ Rm×m and a
positive diagonal matrix Λ ∈ Rm×m such that A⋆TA⋆ = QΛ2QT. Letting X̆ = QTX⋆,H =
Λ−1QTA⋆TB⋆, then (4.1) is equivalent to

min
X̆∈Rm×q

1

2
∥ΛX̆ −H∥2F + γ∥X̆∥∗. (4.2)

Now, we present the VNS-EN method step by step. We first need to present the following
results which are easy to induce from [7]. So, we omit the proofs.

Lemma 4.1. For every γ > 0, problem (4.2) has a unique optimal solution X̆∗
λ. Moreover,

∥X̆∗
λ∥F ≤ ∥X̆∗

λ∥∗ ≤ rX̆ := min

{
∥H∥2F
2γ

, ∥Λ−1H∥∗
}
.

Theorem 4.2. For some ϵ ≥ 0, assume that Xϵ is an ϵ-optimal solution of the smooth
saddle point problem

min
X̆∈Bm×q

F (rX̆)
max
W∈Ω1

{
1

2
∥ΛX̆ −H∥2F + γmtr

(
WTG(X̆)

)}
, (4.3)

where Ω1 = {W ∈ Sm+q|0 ⪯W ⪯ I/m, tr(W ) = 1}, Bm×q
F (rX̆) =

{
X̆ ∈ Rm×q|∥X̆∥F ≤ rX̆

}
,

G(X̆) =

(
Oq X̆T

X̆ Om

)
. Then Xϵ is an ϵ−optimal solution of (4.2),

According to Theorem 4.2, we only need to solve (4.3) rather than (4.2). But as discussed
in [7], owing to the objective function has Lipschitz continuous gradient, we would like to
solve the dual problem of (4.3), i.e.

max
W∈Ω1

min
X̆∈Bm×q

F (rX̆)

{
1

2
∥ΛX̆ −H∥2F + γmtr

(
WTG(X̆)

)}
. (4.4)

By scaling the variable X̆ of (4.4) as X̆ ← X̆/rX̆ , and multiplying the resulting formu-
lation by −1, then we can reformulate (4.4) as the problem

min
W∈Ω1

max
X̆∈Bm×q

F (1)

{
−γmrX̆tr

(
WTG(X̆)

)
− 1

2
∥rX̆ΛX̆ −H∥2F

}
. (4.5)
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Let ϕ(W, X̆) := −γmrX̆tr
(
WTG(X̆)

)
− 1

2∥rX̆ΛX̆ −H∥2F, N := m+ q, for every W ∈ Ω1,

the function ϕ(W, ·) : Bm×q
F (1)→ R is strictly concave. Thus

max
X̆∈Bm×q

F (1)

{
−γmrX̆tr

(
WTG(X̆)

)
− 1

2
∥rX̆ΛX̆ −H∥2F

}
has the unique solution X̆(W ). Selecting the prox-function pΩ1

(·) for the set Ω1 as pΩ1
(W ) =

tr (W logW ) + log(N), then

W0 := argmin
W∈Ω1

pΩ1
(W ) = I/N, DΩ1

:= max{pΩ1
(W ) : W ⊆ Ω1} = log(N/m)

and pΩ1
(W ) is a differentiable strongly convex function with modulus σΩ1

= m.
To deal with pΩ1(W ), we define

dpΩ1
(W ; W̃ ) = pΩ1

(W )− lpΩ1
(W ; W̃ ),∀W, W̃ ∈ Ω1, (4.6)

where lpΩ1
(W ; W̃ ) = pΩ1

(W̃ ) +
⟨
∇pΩ1

(W̃ ),W − W̃
⟩
. Similarly, we can define the function

lf (·, ·) for f(W ) := max
X̆∈Bm×q

F (1)
ϕ(W, X̆),∀W ∈ Ω1 as

lf (W ; W̃ ) = f(W̃ ) +
⟨
∇f(W̃ ),W − W̃

⟩
, (4.7)

where ∇f(W̃ ) can be computed as ∇f(W̃ ) = ∇Wϕ
(
W, X̆(W )

)
. One can verify that f(W )

is L-Lipschitz-differentiable on Ω1 with L = 2γ2m2∥Λ−1∥2F.
Before stating our algorithm, we need the following assumption

0 < αk ≤

(
k∑

i=0

αi

)1/2

,∀k ≥ 0, (4.8)

where {αk}k≥0 is a sequence of scalars.
Now, we present the method VNS-EN for our problem (4.5).

VNS-EN Algorithm
(0) Set W sd

0 = W0, X̆0 = 0, τ0 = 1 and k = 1;
(1) Compute X̆(Wk−1) and ∇f(Wk−1);
(2) Compute

(
W sd

k ,W ag
k

)
⊆ Ω1 × Ω1 and X̆k ⊆ Bm×q

F (1) as

X̆k = (1− τk−1)X̆k−1 + τk−1X̆(Wk−1),

W ag
k = argmin

W∈Ω1

{
L

σΩ1

dpΩ1
(W ;W0) +

k−1∑
i=0

αilf (W ;Wi)

}
,
(
dpΩ1

in(4.6), lf in(4.7)
)

W sd
k = (1− τk−1)W

sd
k−1 + τk−1W

ag
k ;

(3) Set τk = αk∑k
i=0 αi

and Wk = (1− τk)W
sd
k + τkW

ag
k ;

(4) Set k ← k + 1 and go to step (1).

We below give the convergence result for the above VNS-EN algorithm. Its proof is easy
from Corollary 3 of Tseng [13].
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Theorem 4.3. The sequence {(W sd
k , X̆k)} ⊆ Ω1×Bm×q

F (1) generated by VNS-EN algorithm
satisfies

0 ≤ f(W sd
k )− g(X̆k) ≤

LDΩ1

σΩ1
(
∑k−1

i=0 αi)
=

2γ2m2∥Λ−1∥2F log(N/m)

m(
∑k−1

i=0 αi)
,∀k ≤ 1,

where g(X̆) := min
W∈Ω1

ϕ(W, X̆), for all X̆k ⊆ Bm×q
F (1). A typical sequence αk satisfying

(4.8) is the one in which αk = (k + 1)/2 for all k ≥ 0. With this choice for αk, we have the
following specialization of Theorem 4.3.

Corollary 4.4. If αk = (k + 1)/2 for every k ≥ 0, then the sequence {(W sd
k , X̆k)} ⊆

Ω1 ×Bm×q
F (1) generated by VNS-EN algorithm satisfies

0 ≤ f(W sd
k )− g(X̆k) ≤

4LDΩ1

σΩ1
k(k + 1)

=
8γ2m2∥Λ−1∥2F log(N/m)

mk(k + 1)
,∀k ≤ 1.

From corollary 4.4, we obtain the following iteration-complexity theorem.

Theorem 4.5. For a given ϵ > 0, the iteration-complexity of finding an ϵ-optimal solution
to (4.3) and its dual (4.4) by VNS-EN algorithm does not exceed⌈

2
√
2γ∥Λ−1∥F√

ϵ

√
m log(N/m)

⌉
=

⌈
2
√
2γ∥(A⋆TA⋆)−1/2∥F√

ϵ

√
m log(N/m)

⌉
.

We observe that the iteration-complexity given in Theorem 4.5 is in terms of the trans-
formed data of problem (4.2) or (4.1). We next relate it to the original data of problem
(2.2).

Corollary 4.6. For a given ϵ > 0, the iteration-complexity of finding an ϵ-optimal solution
to (4.3) and its dual (4.4) by VNS-EN algorithm does not exceed⌈

2
√
2µ1∥(ATA+ µ2I)

−1/2∥F√
ϵ

√
m log(N/m)

⌉
.

4.2 Numerical Experiment

We now report the results of our computational experiment using the VNS-EN algorithm for
solving elastic net-penalized matrix regression (2.2) on a set of randomly generated instances.

The random instances of (2.2) used in our experiments were generated as follows. We
first randomly generated matrices A ∈ Rn×m,m = 2n with entries uniformly distributed in
[0, 1] and B ∈ Rn×q, q = 5n with entries from the standard normal distribution. We then
computed H for (4.2) according to the procedures described in Sec. 4.1. In addition, all
computations were performed on an Intel Core(TM)i7-2640M CPU (2.80 GHz) and 8 GB
RAM. The code for VNS is written in MATLAB, and the initial point for this method is set
to be W0 = I/(m + q). The method VNS-EN terminates once the duality gap is less than
ϵ = 10−8.

The performance of VNS-EN for our randomly generated instances is presented in Table
1 with different (µ1, µ2). The problem size (n,m, q) is given in column one. The numbers of
iterations of VNS-EN are given in column two. CPU times (in seconds) are given in column
three, and the amount of memory (in mega bytes) used are given in column four. In the last
column, the rank of optimization are presented.
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In Table 2, we present the performance of problem (10, 20, 50) with different (µ1, µ2).
The first column is the different values of (µ1, µ2). The rest columns are the same as in
Table 1.

Table 1 Performance of VNS-EN with µ1 = 0.02, µ2 = 0.44
Problem (n,m, q) Iteration Time Rank of optimization solution

(10, 20, 50) 119 2.06 10
(50, 100, 250) 258 13.29 50
(100, 200, 500) 360 40.93 100
(150, 300, 750) 448 127.20 150
(200, 400, 1000) 505 300.08 200

Table 2 Performance of VNS-EN Algorithm for solving (10, 20, 50)
(µ1, µ2) Iteration Time Rank of optimization solution

(0.025, 0.44) 215 2.51 10
(0.05, 0.44) 1042 13.87 10
(0.1, 0.44) 5798 53.98 10
(0.2, 0.44) 16326 75.99 10
(8, 63) 50136 461.70 16

(32, 1023) 20390 141.04 10
(128, 16383) 88 1.17 10

5 Concluding Remarks

In this paper, we studied the elastic net-penalized matrix regression in high-dimensional
case. We show the grouping effect property of this model. Following the ideas from [7], we
gave a VNS-EN method to solve the elastic net-penalized matrix regression (2.2). Here we
assume n < m ≤ q. As we can see, if we solve the elastic net-penalized matrix regression
(2.2) directly, we only deal with n × q matrices. But when we use VNS-EN algorithm to
solve the elastic net-penalized matrix regression (2.2), we should make a reformation of data
set. In this case, we must manage (n+m)× q matrices. Therefore, when we use VSN-EN
method, we must cope with matrices of higher dimension. And we must handle heavier
computational task. So, in the future one can develop an effective algorithm of solving
elastic net-penalized matrix regression directly.
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