
2017



220 J. FAN, J. TAO AND G. RAVINDRAN

Theorem 1.2. Suppose L is a Z-transformation on K. Then the following are equivalent
([3]):

(1) L is positive stable (which means that every eigenvalue of L has positive real part).

(2) L is real positive stable (which means that all real eigenvalues are positive).

(3) There exists a d ∈ int(K) such that L(d) ∈ int(K).

(4) For all t ≥ 0, L+ tI is invertible.

(5) There exists a δ > 0 such that ||(L+ tI)x|| ≥ δ||x|| for all x ∈ H and t ≥ 0 in R.

(6) L is invertible and L−1(K) ⊆ K.

(7) For every q ∈ H, the linear complementrity problem, LCP(L,K, q), has a solution.

Moreover, when K is self-dual, the above are further equivalent to

(8) The game-theoretic value of L with respect to an e ∈ int(K) and the strategy set
∆ := {x ∈ H : ⟨x, e⟩ = 1} is positive.

2 Preliminaries

Throughout, we fix a finite dimensional real inner product space H, let B(H) denote the
space of all continuous linear transformations on H under the operator norm. Let K denote
a proper cone in H.

Definition 2.1. We say that L

(1) is a Z-transformation (and write L ∈ Z(K)) if

x ∈ K, y ∈ K∗, and ⟨x, y⟩ = 0 ⇒ ⟨L(x), y⟩ ≤ 0.

(2) is a Lyapunov-like transformation (and write L ∈ LL(K)) if

x ∈ K, y ∈ K∗, and ⟨x, y⟩ = 0 ⇒ ⟨L(x), y⟩ = 0.

(3) is a Strict Z-transformation (and write L ∈ StrZ(K)) if

0 ̸= x ∈ K, 0 ̸= y ∈ K∗, and ⟨x, y⟩ = 0 ⇒ ⟨L(x), y⟩ < 0.

(4) L ∈ Π(K) if L(K) ⊆ K.

(5) an M-transformation (and write L ∈ M(K)) if L = rI − S, where r ∈ R, S ∈ Π(K),
and r ≥ ρ(S).

(6) is a Stein-like transformation (and write L ∈ SL(K)) if L = I − S,where S ∈ Aut(K)
(Aut(K) is the set of all invertible linear transformations L : H → H such that
L(K) = K and Aut(K) is the closure of Aut(K)) .



ON THE STRUCTURE OF THE SET OF Z-TRANSFORMATIONS ON PROPER CONES 221

Given elements u, v ∈ H, we define the operator uvT ∈ B(H) by

uvT (x) := ⟨v, x⟩u.

For illustration purposes, we consider Euclidean Jordan algebras [1]. In that setting, we
assume that the algebra (denoted by V ) carries the trace inner product and K is the cor-
responding symmetric cone. If V is a Euclidean Jordan algebra of rank r, for any element
x ∈ V , we have the spectral decomposition

x = x1e1 + x2e2 + · · ·+ xrer,

where {e1, e2, . . . , er} is a Jordan frame and x1, x2, . . . , xr are the eigenvalues of x. When
x ∈ K, these eigenvalues are nonnegative. Note that trace(x) = x1 + x2 + · · · + xr and
||x||2 = x2

1 + x2
2 + · · ·+ x2

r. Thus,

||x|| ≤ trace(x) ≤ ||x||
√
k ∀ x ∈ K,

where k is the number of nonzero eigenvalues of x.

3 Numerical Description of Elements of Z(K)

Our objective in this section is to describe the Z-property by means of numerical quantity.
Let K be a proper cone in H. Define

Ω = {(x, y) : ||x|| = ||y|| = 1, 0 ̸= x ∈ K, 0 ̸= y ∈ K∗, and ⟨x, y⟩ = 0}. (3.1)

We observe that Ω is compact in H ×H. For any L ∈ B(H), we define

α(L) := min{⟨L(x), y⟩ : (x, y) ∈ Ω}

and
γ(L) := max{⟨L(x), y⟩ : (x, y) ∈ Ω}.

When the context is clear, we simply write α and γ in place of α(L) and γ(L). Here are
some elementarity properties:

• α(L+ ϵI) = α(L) and γ(L+ ϵI) = γ(L) for any ϵ ∈ R.

• −||L|| ≤ α(L) ≤ γ(L) ≤ ||L||.

• γ(−L) = −α(L).

• On B(H), α(L) and γ(L) are Lipschitz continuous with constant one.

The last statement follows from the inequality γ(L1) ≤ γ(L2) + ||L1 − L2||.

Theorem 3.1. Suppose K is a proper cone in H and L ∈ B(H). Then

(i) L ∈ Z(K) if and only if γ(L) ≤ 0.

(ii) L ∈ StrZ(K) if and only if γ(L) < 0. Hence, int(Z(K)) = StrZ(K).

(iii) L ∈ bdy(Z(K)) if and only if γ(L) = 0.
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(iv) L ∈ LL(K) if and only if α(L) = γ(L) = 0.

(v) L ∈ bdy(Z(K))\LL(K) if and only if α(L) < 0 = γ(L).

Proof. Item (i) and the first part of (ii) follow directly from the definitions. Now, StrZ(K) =
{L : γ(L) < 0}. By continuity of γ, we see that StrZ(K) is an open set and hence must
be contained in int(Z(K)). To prove the reverse inclusioin, let L ∈ int(Z(K)) and suppose,
if possible, γ(L) = 0. Then there exists (u, v) ∈ Ω such that ⟨L(u), v⟩ = γ(L) = 0.
It follows that for small positive ε, T := L + ε vuT ∈ Z(K). Hence, 0 ≥ ⟨Tu, v⟩ =
⟨Lu, v⟩ + ε⟨(vuT )(u), v⟩ = ε > 0. This contradiction shows that γ(L) < 0 whenever
L ∈ int(Z(K)). We thus have int(Z(K)) = StrZ(K).
As Z(K) is the disjoint union of int(Z(K)) and bdy(Z(K), (iii) follows from (i) and (ii).
Item (iv) follows from the definition of LL(K). Finally (v) follows from (iii) and (iv).

In what follows, we provide some examples.

Example 3.2. For u, v ∈ H and ρ ∈ R, let L = ρI − uvT .

(a) If u ∈ K and v ∈ K∗, then L ∈ Z(K) with γ(L) = −min{⟨v, x⟩ ⟨u, x⟩ : (x, y) ∈ Ω}.

(b) If u ∈ int(K) and v ∈ int(K∗), then L ∈ StrZ(K).

Example 3.3. Let u ∈ int(K) and v ∈ int(K∗). Then L = (I + uvT )−1 ∈ StrZ(K) with

γ(L) =
−min(x,y)∈Ω⟨v, x⟩⟨u, y⟩

1 + ⟨v, u⟩
.

Proof. Let (x, y) ∈ Ω and z := L(x). Then

(I + uvT )z = x ⇒ z + ⟨v, z⟩u = x ⇒ ⟨v, z⟩+ ⟨v, z⟩⟨v, u⟩ = ⟨v, x⟩ ⇒ ⟨v, z⟩ = ⟨v, x⟩
1 + ⟨v, u⟩

.

Thus, z = x − ⟨v,x⟩
1+⟨v,u⟩u. Hence, ⟨L(x), y⟩ = ⟨z, y⟩ = − ⟨v,x⟩

1+⟨v,u⟩ ⟨u, y⟩ < 0. This yileds the

stated expression for γ(L).

Example 3.4. Suppose V is a Euclidean Jordan aglebra of rank r and K is the correspond-
ing symmetric cone. Let L ∈ B(V ) and

θ := max{⟨L(ei), ej⟩ : i ̸= j, {e1, e2, . . . , er} is a Jordan frame}.

(i) If L ∈ Z(K), then γ(L) = θ ≤ 0.

(ii) If L ̸∈ Z(K), then θ > 0,

θ ≤ γ(L) ≤ r
2θ when r is even,

θ ≤ γ(L) ≤
√
r2−1
2 θ when r is odd, and

γ(L) = θ when r = 2.
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Proof. (i) It is clear that γ(L) ≥ θ. Now assume that L ∈ Z(K) so that θ ≤ 0. Let
(x, y) ∈ Ω. We may write the spectral decompositions of x and y with respect to the same

Jordan frame, and further write x =
∑k

1 xiei and y =
∑r

k+1 yiei. Then using the inequalities

||x|| ≤ trace(x) ≤ ||x||
√
k, where k is the number of nonzero xis, and θ ≤ 0, we have

⟨L(x), y⟩ =
∑
i,j

⟨L(ei), ej⟩xiyj ≤ θ(

k∑
1

xi)(

r∑
k+1

yj) ≤ θ trace(x) trace(y) ≤ θ||x|| ||y|| = θ.

Hence γ(L) ≤ θ. As γ(L) ≥ θ, we have γ(L) = θ.
(ii) Suppose that L ̸∈ Z(K). Then θ > 0 and (as before)

⟨L(x), y⟩ ≤ θ(

k∑
1

xi)(

r∑
k+1

yj) ≤ θ trace(x) trace(y) ≤ θ||x||
√
k ||y||

√
r − k = θ

√
k(r − k).

Note that this last expression is θ when r = 2 and k = 1. For general r, it is easy to verify

that max
√

k(r − k) is r
2 when r is even and

√
r2−1
2 when r is odd.

A special case: Let V = Rn and K = Rn
+. If A = [aij ] is a Z-matrix, then

γ(A) = max
i ̸=j

aij .

This is because, in Rn, there is only one Jordan frame, namely, the set of all standard
co-ordinate vectors.

We now consider a special Euclidean Jordan algebra V = Sn with K = Sn
+.

Example 3.5. For any A ∈ Rn×n, consider L = ρI −MA : Sn → Sn, where

MA(X) := AXAT .

(a) When n ≥ 3, γ(L) = 0.

(b) When n = 2, γ(L) = max{−b2,−c2}, where A =

[
a b
c d

]
.

Proof. (a) Since γ(L) = γ(−MA) = −α(MA), it is enough to show that α(MA) = 0. As
MA(X) ∈ Sn

+ when X ∈ Sn
+, we see that ⟨MA(X), Y ⟩ ≥ 0 for all X,Y ∈ Sn

+. Thus,
α(MA) ≥ 0. If A = 0, then α(MA) = 0. So assume that A ̸= 0 and let n ≥ 3. Take any
vector v ∈ Rn with ||v|| = 1 and Av ̸= 0. As the span of v and Av has dimension at most
two and n ≥ 3, there is a vector u in Rn of norm one perpendicular to this span. Thus,

u, v ∈ Rn, ||u|| = 1 = ||v||, ⟨u, v⟩ = 0, and uTAv = 0.

Now, let X = vvT and Y = uuT . It is easily seen that (X,Y ) ∈ Ω. Then

0 ≤ α(MA) ≤ ⟨MA(vv
T ), uuT ⟩ = (uTAv)2 = 0.

Hence, α(MA) = 0.
(b) When n = 2 and (X,Y ) ∈ Ω, we see that X and Y are rank one matrices. Thus,
X = vvT , Y = uuT , ||u|| = ||v|| = 1, and ⟨u, v⟩ = 0. Then

α(MA) = min
(X,Y )∈Ω

⟨AXAT , Y ⟩ = min
∆

⟨AvvTAT , uuT ⟩ = min
∆

(UTAv)2,
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where ∆ = {(u, v) ∈ R2 × R2 : ||u|| = 1 = ||v||, ⟨u, v⟩ = 0}. An easy computation shows
that the last expression is min{−b2,−c2}. Hence, γ(L) = max{−b2,−c2}.

In the above example, we see that ρI −MA can never be a strict Z-transformation for
n ≥ 3. However, for n = 2, there is a 2 × 2 matrix A for which ρI − MA is a strict Z-

transformation. In fact, Let A =

[
0 1
1 0

]
. Consider 0 ̸= X, Y ∈ S2

+, ||X|| = ||Y || = 1, and

⟨X,Y ⟩ = 0. Then X and Y are rank one matrices. Let X = vvT , Y = uuT , ||u|| = ||v|| = 1,
and ⟨u, v⟩ = 0. We have ⟨L(X), Y ⟩ = −⟨AXAT , Y ⟩ = −(uTAv)2 = −||u||2 = −1 < 0, as
Av = u. Thus ρI −MA is a strict Z-transformation.

4 Strict Z-Transformations

Theorem 4.1. A linear transformation L : H → H is a strict Z-transformation if and only
if there exist ρ > 0 and a linear transformation S such that L = ρI − S, with

S(K \ {0}) ⊆ int(K).

Proof. The “If” part follows easily from the observation that S(x) ∈ int(K), y ∈ K∗ ⇒
⟨S(x), y⟩ > 0. To see the “Only if” part, assume the contrary. Then for every natural
number n, we have (nI − L)(K \ {0}) ̸⊆ int(K). Thus we have a sequence xn in K with
||xn|| = 1 and (nI −L)xn ̸∈ int(K) for all n. By the well known Separation Theorem, there
exists 0 ̸= yn ∈ H such that

⟨(nI − L)xn, yn⟩ ≤ 0 ≤ ⟨z, yn⟩

for all z ∈ int(K). From the second inequality, we have yn ∈ K∗ for all n. Without loss
of generality, we may assume that ||yn|| = 1 and let xn → x and yn → x. From the first
inequality, we have ⟨(I − 1

nL)xn, yn⟩ ≤ 0. Thus, we have ⟨x, y⟩ ≤ 0. Since x ∈ K and
y ∈ K∗, ⟨x, y⟩ ≥ 0. Hence, ⟨x, y⟩ = 0. This implies that ⟨L(x), y⟩ < 0 and ⟨L(xn), yn⟩ < 0
for large n. Then ⟨(nI − L)xn, yn⟩ > 0, which is a contradiction.

5 Some Complementarity Results

Given a proper cone K, a linear transformation L on H and q ∈ H, the linear complemen-
tarity problem, LCP(L,K, q) is to find x ∈ V such that

x ∈ K y := L(x) + q ∈ K∗, and ⟨x, y⟩ = 0.

We say that L is a Q-transformation on K if for every q ∈ H, LCP(L,K, q) has a solution.
Now we recall the following theorem from [3] .

Theorem 5.1. The following are equivalent for a Z-transformation (on K):

(1) L is positive stable (that is, real part of any eigenvalue of L is positive).

(2) L is invertible and L−1(K) ⊆ K (equivalently, L−1(int(K)) ⊆ int(K)).

(3) There exists a d ∈ int(K) such that L(d) ∈ int(K).

(4) L is a Q-transformation.
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In the next result, we improve Item (2) for a strict Z-transformation.

Theorem 5.2. Suppose that L is a strict Z-transformation. Then L has the Q-property if
and only if L−1(K \ {0}) ⊆ int(K).

Proof. “Only if” part: Let L be a Q-transformation. Then, by the above theorem, L is
invertible and L−1(K) ⊆ K. Suppose there exists 0 ̸= x ∈ K such that L−1(x) ̸∈ int(K).
Then L−1(x) ∈ bdy(K). Thus, by the Separation Theorem, there exists 0 ̸= d ∈ H such
that

⟨L−1(x), d⟩ ≤ 0 ≤ ⟨u, d⟩ ∀u ∈ K.

The second inequality implies that d ∈ K∗. Thus, ⟨L−1(x), d⟩ ≥ 0. In view of the
first inequality, we have ⟨L−1(x), d⟩ = 0. Since L is a strict Z-transformation, ⟨x, d⟩ =
⟨L(L−1(x)), d⟩ < 0. However, ⟨x, d⟩ ≥ 0, as x ∈ K and d ∈ K∗. This is a contradiction.

“If” part: First, we claim that L is invertible. Suppose not. Then for some x ∈ K◦,
L−1(x) = u + Ker(L), where L(u) = x. This implies that u + Ker(L) ⊆ K◦ ⊆ K. Then
∀z ∈ Ker(L) and ∀n ∈ N , ±nz ∈ K. This implies that ±z ∈ K. Since K is a proper
cone, we have z = 0. Thus, L is invertible and L−1(K) ⊆ K. By Theorem 6, [3], L has the
Q-property.

Theorem 5.3. Let u, v ∈ K and L = ρI−uvT , where ρ ∈ R. If L has the Q-property, then
L has the P -property.

Proof. With S = uvT , it is obvious that S(K) ⊆ K and hence L is a Z-transformation.
Since L has the Q-property, by Theorem 6, [3], there exists d > 0 such that L(d) > 0. This
implies ρd − (uvT )(d) ⇒ ρ > 0. Now suppose there exists a Jordan frame {e1, e2, . . . , er}
such that x =

∑
xiei, y = L(x) =

∑
yiei and xiyi ≤ 0 for all i. We consider the following

cases:
Case 1: ⟨x, v⟩ = 0. Then y = ρx− (uvT )(x) = ρx− ⟨x, v⟩u = ρx. This implies that x = 0.
Case 2: Without loss of generality, ⟨x, v⟩ > 0. Then u = 1

⟨x,v⟩ (−y + ρx). Let u =
∑

uiei.

Thus, yi = ρxi − ⟨x, v⟩ui, for all i. Hence, xiyi ≤ 0 ⇒ ρx2
i − ⟨x, v⟩uixi ≤ 0 for all i. If

ui = 0, then xi = 0. If ui > 0, then xi ≥ 0. Therefore, x ≥ 0. If xi = 0, then yi ≤ 0. If
xi > 0, then yi ≤ 0. Thus, y ≤ 0. Since y = L(x), we have x = L−1(y) ≤ 0. As x ≥ 0, we
must x = 0. Thus, L has the P -property.
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