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[8], [13], [16], [17], and [18] and the references therein. Consider a tensor A of order m and
dimension n given by

A := [ai1 i2 ··· im ],

where ai1 i2 ··· im ∈ R for all i1, i2, . . . , im ∈ {1, 2, . . . , n}. Let F (x) := Axm−1 denote the
homogeneous polynomial map whose ith component is given by

(Axm−1)i :=

n∑
i2,i3,...,ik=1

ai i2 ··· imxi2xi3 · · ·xim .

Then, for any q ∈ Rn, PCP(F, q) is called a tensor complementarity problem, denoted by
TCP(A, q).

Now consider a polynomial map f : Rn → Rn, which is expressed, after regrouping
terms, in the following form:

f(x) = Amxm−1 +Am−1x
m−2 + · · ·+A2x+A1, (1.1)

where each term Akx
k−1 is a polynomial map, homogeneous of degree k − 1, and hence

corresponds to a tensor Ak of order k. We assume that Amxm−1 is nonzero and say that f
is a polynomial map of degree m− 1.
Let

f∞(x) := lim
λ→∞

f(λx)

λm−1
= Amxm−1

denote the ‘leading term’ of f . Then, for all q ∈ Rn,

PCP(f∞, q) ≡ TCP(Am, q).

The main focus of this paper is to exhibit some connections between the complementarity
problems corresponding to the polynomial f and its leading term f∞ (or the tensor Am).
Some connections of this type have already been observed in [6] for multifunctions satisfying
the so-called ‘upper limiting homogeneity property’. A polynomial map, being a sum of
homogeneous maps, satisfies this upper limiting homogeneity property (see remarks made
after Example 2 in [6]). The results of [6], specialized to a polynomial map f , connect
PCP(f, q) and PCP(f∞, 0) (which is TCP(Am, 0)) and yield the following.

• Suppose f is copositive, that is, ⟨f(x), x⟩ ≥ 0 for all x ≥ 0, and let S denote the
solution set of PCP(f∞, 0). If q is in the interior of the dual of S, then PCP(f, q) has
a nonempty compact solution set.

• If PCP(f∞, 0) and PCP(f∞, d) have (only) zero solutions for some d > 0, then for all
q, PCP(f, q) has a nonempty compact solution set.

The first result, valid for an ‘individual’ q, is a generalization of a copositive LCP result
(Theorem 3.8.6 in [3]); it is new even in the setting of tensor complementarity problems.
The second result is a ‘Karamardian type’ result that yields ‘global’ solvability for all q.
Reformulated in terms of tensors, it says the following: If A is a tensor of order m for which
the problems TCP(A, 0) and TCP(A, d) have (only) zero solutions, then for F (x) = Axm−1,
PCP(F + P, q) has a nonempty compact solution set for all polynomial maps P of degree
less than m − 1 and for all vectors q. This is a substantial improvement over the existing
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results where only problems of the type TCP(A, q) (= PCP(F, q)) are considered.

Our objectives in this paper are to prove similar but refined results, address uniqueness
issues, and provide examples. Our contributions are as follows.

• Assuming that zero is the only solution of PCP(f∞, 0) and the local (topological)
degree of min{x, f∞(x)} at the origin is nonzero, we show that for all q, PCP(f, q) has
a nonempty compact solution set.

• Assuming that PCP(f∞, 0) and PCP(f, d) (or PCP(f∞, d)) have (only) zero solutions
for some d > 0, we show that for all q, PCP(f, q) has a nonempty compact solution
set.

• Analogous to the concept of degree of an R0-matrix, we define the degree of an R0-
tensor. We show that when the degree of an R0-tensor A is nonzero, PCP(f, q) has a
nonempty compact solution set for all polynomial maps f with f∞(x) = Axm−1. We
further show that the degree of an R-tensor is one.

• We construct matrix based tensors. Given a matrix A ∈ Rn×n and an odd (natural)
number k, we define a tensor A of order m (= k + 1) by Axm−1 = (Ax)[k] and show
that many solution based complementarity properties of A (such as R0, R, Q, and
GUS-properties) carry over to A.

These results clearly exhibit some close connections between polynomial complementarity
problems and tensor complementarity problems. In particular, they show the usefulness of
tensor complementarity problems in the study of polynomial complementarity problems.

The organization of the paper is as follows. Section 2 covers some preliminary material.
In Section 3, we present our main, degree-theoretic, result. In Section 4, we describe tensors
induced by matrices. Section 5 deals with a Karamardian type result for polynomials. Global
uniqueness of PCPs is addressed in Section 6 and copositive PCPs are covered in Section 7.
Finally, in Section 8, we present an example to show that the set of all solvable qs in a PCP
need not be closed.

2 Preliminaries

2.1 Notation

Here is a list of notation, definitions, and some simple facts that will be used in the paper.

• Rn carries the usual inner product and Rn
+ denotes the nonnegative orthant; we write

x ≥ 0 when x ∈ Rn
+ and x > 0 when x ∈ int(Rn

+). For two vectors x and y in Rn, we
write min{x, y} for the vector whose ith component is min{xi, yi}. We note that

min{x, y} = 0 ⇔ x ≥ 0, y ≥ 0, and ⟨x, y⟩ = 0. (2.1)

Given a vector y ∈ Rn and a natural number k, we write y[k] for the vector whose
components are (yi)

k. When k is odd, we similarly define y[
1
k ].

• f denotes a polynomial map from Rn to itself.
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• A nonconstant polynomial map F from Rn to itself is homogeneous of degree k (which
is a natural number) if F (λx) = λkF (x) for all x ∈ Rn and λ ∈ R. For a tensor A of
order m ≥ 2, the polynomial map F (x) := Axm−1 is homogeneous of degree m− 1.

• Given f represented as in (1.1), f∞(x) denotes the leading term.

• The solution set of PCP(f, q) is denoted by SOL(f, q).

• f̂q(x) := min{x, f(x) + q}, f̂(x) := min{x, f(x)}, and f̂∞(x) := min{x, f∞(x)}.
Note that f̂q(x) = 0 if and only if x ∈ SOL(f, q), etc. Also, as f∞ is homogeneous,
SOL(f∞, 0) contains zero and is invariant under multiplication by positive numbers.
Moreover,

SOL(f∞, 0) = {0} if and only if
[
f̂∞(x) = 0 ⇒ x = 0

]
.

• For a tensor A of order m and q ∈ Rn, we let TCP(A, q) denote PCP(F, q), where
F (x) := Axm−1. We write SOL(A, q) for the corresponding solution set.

For a polynomial map f , PCP(f, q) is equivalent to PCP(f − f(0), f(0)+ q). Because of
this and to avoid trivialities, throughout this paper, we assume that

f(0) = 0 and f is a nonconstant polynomial, so that m ≥ 2 in (1.1).

Analogous to various complementarity properties that are studied in the linear comple-
mentarity literature [3], one defines (similar) complementarity properties for polynomial or
tensor complementarity problems. In particular, we say that the polynomial map f has the
Q-property if for all q, PCP(f, q) has a solution and f has the GUS-property (that is, glob-
ally uniquely solvable property) if PCP(f, q) has a unique solution for all q. Similarly, we
say that a tensor A has the Q-property (GUS-property) if F has the Q-property (respec-
tively, GUS-property), where F (x) := Axm−1. A tensor A is said to have the R0-property
if SOL(A, 0) = {0} and has the R-property if it has the R0-property and SOL(A, d) = {0}
for some d > 0. Here is a new definition.

We say that a tensor A has the strong Q-property if PCP(f, q) has a nonempty com-
pact solution set for all q ∈ Rn and for all polynomial maps f with f∞(x) = Axm−1 or
equivalently, PCP(F +P, q) has a nonempty compact solution set for all q ∈ Rn and for all
polynomial maps P of degree less than m− 1.

We note an important consequence of the Q-property of a polynomial map f : Given any
vector q, if x̄ is a solution of PCP(f, q − e), where e is a vector of ones, then, x̄ ≥ 0 and
f(x̄) + q ≥ e > 0. By perturbing x̄ we get a vector u such that u > 0 and f(u) + q > 0.
This shows that when f has the Q-property, for any q ∈ Rn, the (semi-algebraic) set
{x ∈ Rn : x ≥ 0, f(x) + q ≥ 0} has a Slater point.

In this paper, we use degree-theoretic ideas. All necessary results concerning degree
theory are given in [4], Prop. 2.1.3; see also, [12], [15]. Here is a short review. Suppose
Ω is a bounded open set in Rn, g : Ω → Rn is continuous and p ̸∈ g(∂ Ω), where Ω and
∂ Ω denote, respectively, the closure and boundary of Ω. Then the degree of g over Ω with
respect to p is defined; it is an integer and will be denoted by deg (g,Ω, p). When this
degree is nonzero, the equation g(x) = p has a solution in Ω. Suppose g(x) = p has a
unique solution, say, x∗ in Ω. Then, deg (g,Ω′, p) is constant over all bounded open sets
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Ω′ containing x∗ and contained in Ω. This common degree is called the local (topological)
degree of g at x∗ (also called the index of g at x∗ in some literature); it will be denoted by
deg (g, x∗). In particular, if h : Rn → Rn is a continuous map such that h(x) = 0 ⇔ x = 0,
then, for any bounded open set containing 0, we have

deg (h, 0) = deg (h,Ω, 0);

moreover, when h is the identity map, deg (h, 0) = 1. Let H(x, t) : Rn × [0, 1] → Rn be
continuous (in which case, we say that H is a homotopy) and the zero set {x : H(x, t) =
0 for some t ∈ [0, 1]} be bounded. Then, for any bounded open set Ω in Rn that contains
this zero set, we have the homotopy invariance of degree:

deg
(
H(·, 1),Ω, 0

)
= deg

(
H(·, 0),Ω, 0

)
.

2.2 Bounded solution sets

Many of our results require (and imply) bounded solution sets. The following is a basic
result.

Proposition 2.1. For a polynomial map f , consider the following statements:

(i) SOL(f∞, 0) = {0}.

(ii) For any bounded set K in Rn,
∪

q∈K SOL(f, q) is bounded.

Then, (i) ⇒ (ii). The reverse implication holds when f is homogeneous (that is, when
f = f∞).

Proof. Assume that (i) holds. We show (ii) by a standard ‘normalization argument’ as
follows. If possible, let K be a bounded set in Rn with

∪
q∈K SOL(f, q) unbounded. Then,

there exist sequences qk in K and xk ∈ SOL(f, qk) such that ||xk|| → ∞ as k → ∞. Now,
from (2.1),

min{xk, f(xk) + qk} = 0 ⇒ min
{ xk

||xk||
,
f(xk) + qk
||xk||m−1

}
= 0.

Let k → ∞ and assume (without loss of generality) lim xk

||xk|| = u. As m ≥ 2, from (1.1) and

the boundedness of the sequence qk, we get f(xk)
||xk||m−1 → f∞(u) and qk

||xk||m−1 → 0; hence

min{u, f∞(u)} = 0.

From (i), u = 0. As ||u|| = 1, we reach a a contradiction. Thus, (ii) holds.
Now, if f is homogeneous, that is, if f = f∞, (ii) implies that SOL(f∞, 0) is bounded. As
this set contains zero and is invariant under multiplication by positive numbers, we see that
SOL(f∞, 0) = {0}. This concludes the proof.

Remarks 1. As the solution set of any PCP(f, q) is always closed, we see that

When SOL(f∞, 0) = {0}, the solution set SOL(f, q) is compact for any q (but may be
empty).
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3 A Degree-Theoretic Result

The following result and its proof are slight modifications of Theorem 3.1 in [8] and its proof.

Theorem 3.1. Let f be a polynomial map and f̂∞(x) := min{x, f∞(x)}. Suppose the
following conditions hold:

(a) f̂∞(x) = 0 ⇒ x = 0 and

(b) deg
(
f̂∞, 0

)
̸= 0.

Then, for all q ∈ Rn, PCP(f, q) has a nonempty compact solution set.

Proof. From the representation (1.1), we can write f(x) = f∞(x) + p(x), where p(x) is the
sum of the lower order terms in f(x). We fix a q and consider the homotopy

H(x, t) := min
{
x, (1− t)f∞(x) + t[f(x) + q]

}
= min

{
x, f∞(x) + t[p(x) + q]

}
,

where t ∈ [0, 1]. Then, H(x, 0) = min{x, f∞(x)} and H(x, 1) = min{x, f(x) + q}. Since
min{x, f∞(x)} = 0 ⇒ x = 0, a normalization argument (as in the proof of Proposition 2.1)
shows that the zero set {

x : H(x, t) = 0 for some t ∈ [0, 1]
}

is bounded, hence contained in some bounded open set Ω in Rn. Then, by the homotopy
invariance of degree, we have

deg
(
H(·, 1),Ω, 0

)
= deg

(
H(·, 0),Ω, 0

)
= deg

(
f̂∞, 0

)
̸= 0.

So, H(·, 1), that is, min{x, f(x) + q} has a zero in Ω. This proves that PCP(f, q) has a
solution. The compactness of the solution set follows from the previous proposition and
Remark 1.

Remarks 2. We make two important observations. First, note that the conditions (a) and
(b) in the above theorem are imposed only on the leading term of f . This means that in the
conclusion, the lower order terms of f are quite arbitrary. Second, the above theorem yields
a stability result: If g is a polynomial map with g∞ sufficiently close to f∞ and q ∈ Rn, then
PCP(g, q) has a nonempty compact solution set. To make this precise, suppose conditions
(a) and (b) are in place and let Ω be any bounded open set in Rn containing zero. Let ε

be the distance between zero and (the compact set) f̂∞(∂ Ω) in the ∞-norm. Then, for any

polynomial map g on Rn with supΩ ||f̂∞(x) − ĝ∞(x)||∞ < ε and any q ∈ Rn, PCP(g, q)
has a nonempty compact solution set. This follows from the nearness property of degree,
see [4], Proposition 2.1.3(c).

To motivate our next concept, consider an R0-matrix A on Rn so that for Φ(x) :=
min{x,Ax}, Φ(x) = 0 ⇒ x = 0. Then, the local (topological) degree of Φ at the origin is
called the degree of A in the LCP literature [7], [3]. Symbolically,

deg(A) := deg (Φ, 0).
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An important result in LCP theory is: An R0-matrix with nonzero degree is a Q-matrix.
We now extend this concept and result to tensors.

Let A be an R0-tensor. Then, with F (x) = Axm−1 and F̂ (x) := min{x, F (x)}, we have

F̂ (x) = 0 ⇒ x = 0; hence deg (F̂ , 0) is defined. We call this number, the degree of A.
Symbolically,

deg(A) := deg (F̂ , 0).

We now state the tensor version of Theorem 3.1. Recall that A has the strong Q-
property if PCP(f, q) has a nonempty compact solution set for all polynomial maps f with
f∞(x) = Axm−1 and all q ∈ Rn.

Theorem 3.2. Suppose A is an R0-tensor with deg(A) ̸= 0. Then, A has the strong
Q-property.

Proof. Let f be any polynomial map with f∞(x) = Axm−1. Then, the assumed conditions
on A translate to conditions (i) and (ii) in Theorem 3.1. Thus, PCP(f, q) has a nonempty
compact solution set for all q. By definition, A has the strong Q-property.

4 Matrix Based Tensors

In order to illustrate our results, we need to construct polynomials or tensors with specified
complementarity properties. With this in mind, we now describe matrix based tensors. First,
we prove a result that connects complementarity problems corresponding to a homogeneous
polynomial and its power.

Theorem 4.1. Suppose F : Rn → Rn is a homogeneous polynomial map and k is an
odd natural number. Define the map G by G(x) = F (x)[k] for all x. Then the following
statements hold:

(a) SOL(G, q) = SOL(F, q[
1
k ]) for all q ∈ Rn. In particular, SOL(G, 0) = SOL(F, 0).

(b) If SOL(F, 0) = {0}, then deg
(
F̂ , 0

)
= deg

(
Ĝ, 0

)
.

Proof. (a) As k is odd, the univariate function t 7→ tk is strictly increasing on R. Hence,
the following statements are equivalent:

• x ≥ 0, G(x) + q ≥ 0, and xi

[
G(x) + q

]
i
= 0 for all i.

• x ≥ 0, F (x) + q[
1
k ] ≥ 0, and xi

[
F (x) + q[

1
k ]
]
i
= 0 for all i.

From these we have (a).
(b) Now suppose SOL(F, 0) = {0}. Then, SOL(G, 0) = {0} from (a). These are equivalent

to the implications F̂ (x) = 0 ⇒ x = 0 and Ĝ(x) = 0 ⇒ x = 0. Consider the homotopy

H(x, t) := min
{
x, (1− t)F (x) + tG(x)

}
,

where t ∈ [0, 1]. We show that H(x, t) = 0 ⇒ x = 0 for all t.

Clearly, this holds for t = 0 and t = 1 as H(x, 0) = F̂ (x) and H(x, 1) = Ĝ(x). For 0 < t < 1,

H(x, t) = min
{
x, F (x) [(1− t) + tF (x)[k−1]]

}
.
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As k is odd, each component in the factor [(1− t)+ tF (x)[k−1]] is always positive and hence,

H(x, t) = 0 ⇒ min{x, F (x)} = 0 ⇒ x = 0.

Let Ω be any bounded open set containing 0. Then, by the homotopy invariance of degree,

deg
(
F̂ , 0

)
= deg

(
F̂ ,Ω, 0

)
= deg

(
Ĝ,Ω, 0

)
= deg

(
Ĝ, 0

)
.

As an illustration, let A be tensor of order m and dimension n with the corresponding
homogeneous map F (x) := Axm−1. Let k be an odd natural number. Define a tensor B of
order l := k(m− 1) + 1 by

Bxl−1 := (Axm−1)[k].

Then for all q,

SOL(B, q) = SOL(A, q[
1
k ]).

In particular, B has the Q-property if and only if A has the Q-property and B has the
GUS-property if and only if A has the GUS-property.
As a further illustration, we construct matrix based tensors. Let A be an n× n real matrix.
For any odd natural number k, define a tensor A of order k + 1 and dimension n by

Ax(k+1)−1 := (Ax)[k].

We say that A is a matrix based tensor induced by the matrix A and exponent k. It follows
from the above result that

SOL(A, q) = SOL(A, q[
1
k ]), (4.1)

where SOL(A, q) denotes the solution set of the linear complementarity problem LCP(A, q).

We have the following result.

Proposition 4.2. Consider a matrix based tensor A corresponding to a matrix A and odd
exponent k. Then the following statements hold:

(1) The set of all q’s for which TCP(A, q) has a solution is closed.

(2) If A is an R0-matrix, then A has the R0-property. In this setting, deg(A) = deg(A).

(3) If A is an R-matrix, then A has the R-property.

(4) If A is a Q-matrix, then A has the Q-property.

Proof. (1) For any matrix A, the set D := {q ∈ Rn : SOL(A, q) ̸= ∅} is closed (as it

is the union of complementary cones [3]). As SOL(A, q) = SOL(A, q[
1
k ]), we can write

D = {p[k] ∈ Rn : SOL(A, p) ̸= ∅}. Since k is odd, the map p 7→ p[k] is a homeomorphism
of Rn; hence set {p ∈ Rn : SOL(A, p) ̸= ∅} is closed. The statements (2)-(4) follow easily
from Theorem 4.1.

Combining this with Theorem 3.2, we get the following.
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Corollary 4.3. Suppose A is an R0-matrix with deg(A) ̸= 0. Then, the corresponding
tensor A has the strong Q-property.

Remarks 3. Extending the ideas above, we now outline a way of constructing (more) R0-
tensors with the strong Q-property. Let A be an R0-matrix with deg(A) ̸= 0 and k be an
odd natural number. Let θ(x) be a homogeneous polynomial function such that θ(x) > 0 for
all 0 ≤ x ̸= 0. (For example, θ(x) = ||x||2r, where r is a natural number.) Define a tensor
B by Bxm−1 = θ(x)(Ax)[k]. Then, as in the proof of Theorem 4.1, we can show that for all
t ∈ [0, 1],

min
{
x, t(Ax)[k] + (1− t)θ(x)(Ax)[k]

}
= 0 ⇒ x = 0.

This implies that B is an R0-tensor and (by homotopy invariance of degree) deg(B) =
deg(A) = deg(A) ̸= 0. Hence B has the strong Q-property by Theorem 3.2.

5 A Karamardian Type Result

A well-known result of Karamardian [9] deals with a positively homogeneous continuous map
h : Rn → Rn. It asserts that for such a map, if NCP(h, 0) and NCP(h, d) have trivial/zero
solutions for some d > 0, then NCP(h, q) has nonempty solution set for all q. Below, we
prove a result of this type for polynomial maps.

Theorem 5.1. Let f : Rn → Rn be a polynomial map with leading term f∞. Suppose there
is a vector d > 0 in Rn such that one of the following conditions holds:

(a) SOL(f∞, 0) = {0} = SOL(f∞, d).

(b) SOL(f∞, 0) = {0} = SOL(f, d).

Then, deg
(
f̂∞, 0

)
= 1. Hence, for all q ∈ Rn, PCP(f, q) has a nonempty compact solution

set.

Note: We recall our assumption that f(0) = 0. In the case of (a), the second part of the
conclusion has already been noted in Theorem 3 of [6]; here we present a different proof.

Proof. Let g denote either f∞ or f . Then, for any t ∈ [0, 1], the leading term of (1 −
t)f∞(x) + t[g(x) + d] is f∞. Now consider the homotopy

H(x, t) := min
{
x, (1− t)f∞(x) + t[g(x) + d]

}
,

where t ∈ [0, 1]. Since the condition SOL(f∞, 0) = {0} is equivalent to min{x, f∞(x)} =
0 ⇒ x = 0, by a normalization argument (as in the proof of Proposition 2.1), we see that
the zero set {

x : H(x, t) = 0 for some t ∈ [0, 1]
}

is bounded, hence contained in some bounded open set Ω in Rn. Then, with ĝd(x) =
min{x, g(x) + d}, by the homotopy invariance of degree,

deg
(
f̂∞, 0

)
= deg

(
f̂∞,Ω, 0

)
= deg

(
ĝd,Ω, 0

)
= deg

(
ĝd, 0

)
,

where the last equality holds due to the implication min{x, g(x) + d} = 0 ⇒ x = 0. Now,
when x is close to zero, g(x) + d is close to g(0) + d = d > 0 (recall that f(0) = 0). Hence
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for x close to zero, ĝd = min{x, g(x) + d} = x. So, the (local) degree of ĝd at the origin is

one. This yields deg
(
f̂∞, 0

)
= 1. The second part of the conclusion comes from Theorem

3.1.

We now have a useful consequence of the above theorem.

Corollary 5.2. The degree of an R-tensor is one. Hence, every R-tensor has the strong
Q-property.

Proof. Let A be an R-tensor so that for some d > 0, SOL(A, 0) = {0} = SOL(A, d).
Written differently, SOL(F, 0) = {0} = SOL(F, d), where F (x) = Axm−1. Now, let f be
any polynomial map with f∞ = F. Then, SOL(f∞, 0) = {0} = SOL(f∞, d). From the

above theorem, deg(A) := deg (F̂ , 0) = deg
(
f̂∞, 0

)
= 1. The additional statement about

the strong Q-property now comes from Theorem 3.2.

Remarks 4. The class of R-tensors is quite broad. It includes the following tensors.

(a) Nonnegative tensors with positive ‘diagonal’. These are tensors A = [ai1 i2 ··· im ] with
ai1 i2 ··· im ≥ 0 for all i1, i2, . . . , im and ai i ··· i > 0 for all i.

(b) Copositive R0-tensors. These are tensors A = [ai1 i2 ··· im ] satisfying the property
⟨Axm−1, x⟩ ≥ 0 for all x ≥ 0 and SOL(A, 0) = {0}.

(c) Strictly copositive tensors. These are tensors A = [ai1 i2 ··· im ] satisfying the property
⟨Axm−1, x⟩ > 0 for all 0 ̸= x ≥ 0.

(d) Strong M-tensors. A tensor A = [ai1 i2 ··· im ] is said to be a Z-tensor if all the off-
diagonal entries of A are nonpositive. It is a strong M-tensor [8] if it is a Z-tensor and
there exists d > 0 such that Adm−1 > 0.

(e) Any tensor A induced by an R-matrix A and an odd exponent k.

Note: By Corollary 5.2, all the tensors mentioned above will have the strong Q-property.

Example 1. We now provide an example of an R0-tensor with a nonzero degree which is
not an R-tensor. Consider the 2× 2 matrix

A =

[
−1 1
3 −2

]
.

This is anN-matrix of first category (which means that all principle minors ofN are negative
and A has some nonnegative entries). Kojima and Saigal [10] have shown that such a matrix
is an R0-matrix with degree −1. Now, for any odd number k, consider the tensor induced
by A, that is, for which Axm−1 = (Ax)[k]. Then, A is an R0-tensor with degree −1. By
Theorem 3.2, this A has the strong Q-property; it cannot be an R-tensor by Corollary 5.2.

6 Global Uniqueness in PCPs

In the NCP theory, a nonlinear map f on Rn is said to have the GUS-property if for every
q ∈ Rn, NCP(f, q) has a unique solution. One sufficient condition for this property is the
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‘uniform P-property’ of f on Rn
+ ( [4], Theorem 3.5.10): There exists a positive constant α

such that
max
1≤i≤n

(x− y)i[f(x)− f(y)]i ≥ α||x− y||2 ∀ x, y ∈ Rn
+.

Another is the ‘positively bounded Jacobians’ condition of Megiddo and Kojima [14]. The
GUS-property in the context of tensor complementarity problems has been addressed re-
cently in [1], [2], and [8]. In this section, we address the global uniqueness property in
PCPs.

Theorem 6.1. Suppose f is a polynomial map such that SOL(f∞, 0) = {0}. Then the
following are equivalent:

(a) f has the GUS-property.

(b) PCP(f, q) has at most one solution for every q.

Moreover, condition (b) holds when f satisfies the P-property on Rn
+:

max
i

(x− y)i

[
f(x)− f(y)

]
i
> 0 for all x, y ≥ 0, x ̸= y. (6.1)

Proof. Clearly, (a) ⇒ (b). Suppose (b) holds. As f(0) = 0, SOL(f, d) = {0} for every d > 0.
Since (by assumption) SOL(f∞, 0) = {0}, by Theorem 5.1, for every q, PCP(f, q) has a
solution, which is unique by (b). Thus f has the GUS-property.
Now suppose f satisfies the additional condition (6.1). We verify condition (b). If possible,
suppose x and y are two solutions of PCP(f, q) for some q. Then, for some i,

0 < (x− y)i [f(x)− f(y)]i = −
[
xi(f(y) + q)i + yi(f(x) + q)i

]
≤ 0

yields a contradiction. Thus (b) holds and hence (a) holds.

We remark that when f is homogeneous (in which case, f = f∞), the condition SOL(f∞, 0) =
{0} in the above theorem is superfluous. It is not clear if this is so in the general case.

Proposition 6.2. For a tensor A, the following are equivalent:

(a) A has the GUS-property.

(b) TCP(A, q) has at most one solution for all q.

Moreover, when these conditions hold, A has the strong Q-property.

Proof. Obviously, (a) ⇒ (b). When (b) holds, SOL(A, 0) = {0} = SOL(A, d) for any d > 0.
Thus, A is an R-tensor. By Corollary 5.2, A has the strong Q-property. In particular,
TCP(A, q) has a solution for all q and by (b), the solution is unique. Thus (b) ⇒ (a) and
we also have the strong Q-property.

Remarks 5. Consider a tensor A with the GUS-property. The above result shows that
for every polynomial map f with f∞(x) = Axm−1 and for all q, PCP(f, q) has a solution.
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Can we demand that all these PCP(f, q)s have unique solution(s)? The following argument
shows that this can never be done when the order is more than 2. Let A be any tensor
of order m > 2 and F (x) = Axm−1. With e denoting the vector of ones in Rn, define
the vector d := −Aem−1 − e and let D be the diagonal matrix with d as its diagonal. Let
f(x) := Axm−1 +Dx. Then, it is easy to see that 0 and e are two solutions of PCP(f, e).
This shows that when the order is more than 2, one can never get uniqueness in all perturbed
problems.

The following result gives us a way of constructing tensors with the GUS-property.

Proposition 6.3. Suppose A is an P-matrix and k is an odd natural number. Then, the
tensor defined by Axm−1 = (Ax)[k] has the GUS-property as well as the strong Q-property.

Proof. We have, from (4.1), SOL(A, q) = SOL(A, q[
1
k ]). As A is a P-matrix, all related LCPs

will have unique solutions. Thus, TCP(A, q) has exactly one solution for all q and so, A has
the GUS-property. Since a P-matrix is an R-matrix, the strong Q-property of A comes
from Corollary 5.2.

7 Copositive PCPs

We say that a polynomial map f is copositive if

⟨f(x), x⟩ ≥ 0 for all x ≥ 0.

For example, f is copositive in the following situations:

(i) f is monotone, that is, ⟨f(x)−f(y), x−y⟩ ≥ 0 for all x, y ∈ Rn (recall our assumption
that f(0) = 0).

(ii) In the polynomial representation (1.1), each tensor Ak is nonnegative.

(iii) In the polynomial representation (1.1), the leading tensor Am is nonnegative and
other (lower order) homogeneous polynomials are sums of squares.

We remark that testing the copositivity of a polynomial map or more generally that
of nonnegativity of a real-valued polynomial function on a semi-algebraic set is a hard
problem in polynomial optimization. These generally involve SOS polynomials, certificates of
positivity (known as positivestellensatz) and are related to some classical problems (example,
Hilbert’s 17th problem) in algebraic geometry [11].

Our first result in this section gives the solvability for (individual) qs when f is copositive.
We let

S := SOL(f∞, 0).

Theorem 7.1. ( [6], Theorem 2) Suppose the polynomial map f is copositive. If q ∈ int(S∗),
then, PCP(f, q) has a nonempty compact solution set. Moreover, when the set D := {q ∈
Rn : SOL(f, q) ̸= ∅} is closed, PCP(f, q) has a solution for all q ∈ S∗.

It is easy to see that f∞ is copositive when f is copositive. This raises the question
whether the above result continues to hold if the copositivity of f is replaced by that of f∞.
The following example (modification of Example 5 in [6]) shows that this cannot be done.
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Example 2. Let

A =

[
0 −1
1 0

]
, q =

[
2

−2

]
,

and
f(x) = ||x||2 Ax− 2

√
2x.

Clearly, f∞(x) = ||x||2 Ax. Since A is skew-symmetric, ⟨x, f∞(x)⟩ = 0 for all x. Thus, f∞

is copositive. An easy calculation shows that S is the nonnegative real-axis in R2, so that
S∗ is the closed right half-plane and q ∈ int(S∗). We claim that PCP(f, q) has no solution.
Suppose that x ∈ SOL(f, q). Since A is skew-symmetric, the complementarity condition
⟨f(x) + q, x⟩ = 0 becomes ⟨q, x⟩ = 2

√
2||x||2, which, by Cauchy-Schwarz inequality, gives

||x|| ≤ 1. Further, the nonnegativity condition f(x)+q ≥ 0 implies that ||x||2x1−2
√
2x2−2 ≥

0 where x1 and x2 are the first and the second components of x respectively. But this cannot
hold since x2 ≥ 0 and ||x||2 x1 ≤ ||x||3 ≤ 1. Hence the claim.

The following result shows that Theorem 7.1 continues to hold if the copositivity of f is
replaced by that of f∞ provided we assume S = {0}.

Corollary 7.2. For a polynomial map f , suppose f or f∞ is copositive, and S = {0}.
Then, for all q ∈ Rn, PCP(f, q) has a nonempty compact solution set.

Proof. As observed previously, f∞ is copositive when f is copositive. So we assume that
f∞ is copositive. Then, for any d > 0, we claim that SOL(f∞, d) = {0}. To see this, suppose
x ∈ SOL(f∞, d). Then x ≥ 0 and 0 = ⟨x, f∞(x) + d⟩ = ⟨x, f∞(x)⟩ + ⟨x, d⟩ ≥ ⟨x, d⟩ due to
the copositity condition. Since d > 0 and x ≥ 0, we see that x = 0. As SOL(f∞, 0) = {0} =
SOL(f∞, d), from Theorem 5.1, we see that PCP(f, q) has a nonempty compact solution
set.

We now state Theorem 7.1 for tensors.

Corollary 7.3. Suppose A is a copositive tensor, that is, ⟨Axm−1, x⟩ ≥ 0 for all x ≥ 0.
Let S = SOL(A, 0). If q ∈ int(S∗), then, TCP(A, q) has a nonempty compact solution set.
Moreover, when the set D := {q ∈ Rn : SOL(A, q) ̸= ∅} is closed, TCP(A, q) has a solution
for all q ∈ S∗.

8 On the Closedness of the Set of All Solvable qs

For a polynomial map f , consider the set D := {q ∈ Rn : SOL(f, q) ̸= ∅}. When f is linear,
this set is closed as it is a finite union of polyhedral cones. It is also closed in some special
situations (see e.g., Proposition 4.2). As the following example shows, this need not be the
case for a general (homogeneous) polynomial map.

Example 3. On R2, consider the map

F (x, y) =
(
x2 − y2 − (x− y)2, x2 − y2 + 2(x− y)2

)
.

We show that

(i) The image of Rn
+ under F is not closed, and

(ii) the set D := {q ∈ Rn : SOL(F, q) ̸= ∅} is not closed.
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Item (i) follows from the observations(
1, 1 +

3

4k2

)
= F

(
k +

1

2k
, k
)
∈ F (Rn

+) and (1, 1) ̸∈ F (Rn).

To see Item (ii), let

qk := −F
(
k +

1

2k
, k
)
=

(
− 1,−1− 3

4k2

)
and q = (−1,−1).

Clearly, (k + 1
2k , k) ∈ SOL(F, qk) and qk → q as k → ∞. We claim that SOL(F, q) =

∅. Assuming the contrary, let (x, y) ∈ SOL(F, q). Since F (x, y) + q ≥ 0, we must have
x2 − y2 − (x − y)2 − 1 ≥ 0. Hence, neither x nor y can be zero. When both x and y
are nonzero, by complementarity conditions, we must have x2 − y2 − (x − y)2 − 1 = 0 and
x2 − y2 + 2(x − y)2 − 1 = 0. Upon subtraction, we get (x − y)2 = 0, that is, x = y. But
then, −1 = 0 yields a contradiction. Hence, for the given map F , the set of all solvable qs
is not closed.
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