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A tensor A ∈ S[m,n] is called positive definite if Axm > 0 for all x ̸= 0. Clearly, when m is
odd, there is no positive definite tensors.

In this paper, we consider the tensor eigenvalue complementarity problem (TEiCP): for
given tensors A,B ∈ T[m,n], finding a scalar λ ∈ R, and x ∈ Rn\{0} such that

x ≥ 0, (λB −A)xm−1 ≥ 0, ⟨x, (λB −A)xm−1⟩ = 0. (1.1)

When m = 2, TEiCP is reduced to the classical matrix eigenvalue complementarity problem
which has wide applications in mechanical systems [14]. TEiCP also has wide applications
such in higher-order Markov chains [19], magnetic resonance imaging [20]. The solution of
TEiCP (λ, x) is called Pareto eigenpair of (A,B). In pariticular, its solution could be called
Pareto H-eigenpair or Pareto Z-eigenpair when the tensor B has some special form [21].
Replacing the nonnegative cones in (1.1) by a closed convex cone and its dual cone, Ling,
He and Qi investigated the cone eigenvalue complementarity problem for higher-order ten-
sor in [16]. As shown in [16], the TEiCP has at least one solution under the assumption
that Bxm ̸= 0 for all x ∈ Rn

+\{0}. Moreover, in [17], they studied the high-degree eigen-
value complementarity problem for tensors as a natural extension of quadratic eigenvalue
complementarity problem for matrices. TEiCP is also closely related to the optimality
conditions for polynomial optimization [21], a class of differential inclusions with noncovex
processes [16], and a kind of nonlinear differential dynamical system [7]. The properties of
Pareto eigenvalues and their connection to polynomial optimization are studied in [21].

Recently, as a special type of nonlinear complementarity problems, the tensor comple-
mentarity problems is inspiring more and more research in the literature [3, 5–8, 10, 16, 18,
22, 23]. One popular approach is to reformulate the TEiCP equivalently as a polynomial
optimization problem [7,9,16]. A shifted projected power method for TEiCP was proposed
in [7], in which they need an adaptive shift to force the objective to be (locally) convex to
guarantee the convergence of power method. In [16], Ling, He and Qi presented a scaling-
and-projection algorithm (SPA) for TEiCP. One main shortcoming of SPA is the stepsize
will approach to zero as the sequence gets close to a solution of TEiCP [16]. These methods
are based on first order gradient information. So, these methods can only find a local sta-
tionary point for TEiCP. Recently, Fan, Nie and Zhou [9] proposed a Lasseree’s hierarchy
of semidefinite relaxation method for finding all solutions of TEiCP. On the other hand,
by introducing an NCP-function, Chen and Qi [5] reformulated the TEiCP as a system of
nonlinear equations. And then, they proposed a semismooth Newton method for solving the
system of nonlinear equations [5]. Since the objection function is not necessary continuously
differentiable, they need a subalgorithm to evaluate an element of the generalized Jacobian
of objection function. This may bring some numerical troubles in practice.

In this paper, we will investigate a smoothing Newton method for computing TEiCP.
Numerical experiments show that the proposed smoothing Newton method will be more
robust than semismooth Newton method and it could detect more solutions than some
existing optimization-based methods. The rest of this paper is organized as follows. In
Section 2, we first reformulated the TEiCP as a system of smooth equations. Then, a
smoothing Newton method was presented. Some numerical results are reported in Section
3. Finally, we have a conclusion section.

Throughout this paper, we assume that m is even and B ∈ S[m,n] is positive definite. Let
small bold letters x, y, · · · , denote vectors, calligraphic A,B, · · · , denote tensors. All the
tensor discussed here are real. Rn (respectively,R) denotes the space of n dimensional real
column vectors (respectively,real number), Rn

+ and Rn
++ denote the nonnegative and positive

orthant of Rn, R+ (respectively,R++) denotes the nonnegative (respectively,positive) line in
R.
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2 Preliminaries and Algorithm

In this section, we present our smoothing Newton method and some preliminaries. For
convenience, let z = (x, y, λ) ∈ Rn × Rn × R.

Suppose that m is even and A ∈ S[m,n]. In [5], using the penalized Fischer-Burmeister
NCP function

ϕτ (x, y) := τϕFB(x, y) + (1− τ)x+y+, (2.1)

where τ ∈ (0, 1), ϕFB(x, y) = (x+ y)−
√
x2 + y2, a+ = max{a, 0} for a ∈ R,

TEiCP (1.1) can be reformulated as the following semismooth system of equations:

H(z) := H(x, y, λ) =

 Φτ (x, y)
(λB −A)xm−1 − y

xTx− 1

 = 0, (2.2)

where

Φτ (x, y) =


ϕτ (x1, y1)
ϕτ (x2, y2)

...
ϕτ (xn, yn)

 . (2.3)

Since the NCP function ϕτ in (2.1) are not continuously differentiable at (0, 0), Chen
and Qi [5] proposed a semismooth Newton method for (2.2). In this paper, we will introduce
the smoothing approximation function of the Fischer-Burmeister NCP function

ϕ(µ, x, y) = (x+ y)−
√
x2 + y2 + 2µ2, µ ∈ R++. (2.4)

Let ω = (µ, z), TEiCP can be reformulated as the following smoothing system of equa-
tions:

H(ω) = H(µ, z) = H(µ, x, y, λ) =


µ

Φ(µ, x, y)
(λB −A)xm−1 − y

xTx− 1

 = 0, (2.5)

where

Φ(µ, x, y) =

 ϕ(µ, x1, y1)
...

ϕ(µ, xn, yn)

 . (2.6)

Define the following merit function associated with H(·) given in (2.5),

Ψ(ω) =
1

2
∥H(ω)∥2, (2.7)

TEiCP(1.1) is also equivalent to the following unconstrained optimization problem

minΨ(ω), (2.8)

with object function value zero.
Denote the Jacobian matrix of H(ω) by H ′(ω), then we have following Lemma.

Lemma 2.1. Let H : R2n+2 → R2n+2 be defined by (2.5), then
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H is continuously differentiable at any w = (µ, x, y, λ) ∈ R++ × Rn × Rn × R with its
Jacobian

H ′(ω) =


1 0 0 0

ν(ω) Da(ω) Db(ω) 0
0 (m− 1)(λB −A)xm−2 −I Bxm−1

0 2xT 0 0

 , (2.9)

where

ν(ω) := (ν1(ω), · · · , νn(ω))T ,

Da(ω) := diag{a1(ω), · · · , an(ω)},

Db(ω) := diag{b1(ω), · · · , bn(ω)},

with

νi(ω) = − 2µ√
x2
i + y2i + 2µ2

,

ai(ω) = 1− xi√
x2
i + y2i + 2µ2

,

bi(ω) = 1− yi√
x2
i + y2i + 2µ2

,

the i = 1, 2, · · ·n.

Before giving smoothing Newton method, we define a nonnegative function β(ω). Let
γ ∈ (0, 1), µ ∈ R++ and z := (x, y, λ) ∈ Rn × Rn × R. Denote ω = (µ, z) and a real-value
function β : R++ × Rn × Rn × R → R+ by

β(ω) := γ∥H(ω)∥min{1, ∥H(ω)∥}. (2.10)

The relationship between H(ω) and β(ω) can be seen in [13].

Lemma 2.2. The following relations hold

H(ω) = 0 ⇔ β(ω) = 0 ⇔ H(ω) = β(ω)µ̄,

where µ̄ = (µ, 0) ∈ R++ × R2n+1.

In the following, we will show that functions (2.5) and (2.6) are all strongly semismooth.

Lemma 2.3. The function Φ is strongly semismooth, where Φ is defined by (2.6). Moreover,
the function H(ω) is strongly semismooth, where H(ω) is defined by (2.5).

Proof. It is well known that the function Φ strongly semismooth. Note that for any
(x, y, λ) ∈ Rn × Rn × R, the function (λB − A)xm−1 − y is continuously differentiable and
its Jacobian is locally Lipschitz continuous. It is clear that xTx − 1 and u is continuously
differentiable. It follows that H(ω) is strongly semismooth since all their components are
strongly semismooth.

Now we present a smoothing Newton method for tensor eigenvalue complementarity
problem.
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Algorithm1 : A Smoothing Newton algorithm for TEiCP, SNM

Step 0: Given ε > 0. Choose parameters δ, σ ∈ (0, 1), µ0 > 0. Let ū := (µ0, 0, 0, 0) ∈
R++ ×Rn ×Rn ×R and z0 := (x0, y0, λ0) ∈ Rn ×Rn ×R be an arbitrary initial point. Take
w0 = (µ0, z0) and choose parameter γ ∈ (0, 1) such that γ∥H(w0)∥ < 1 and γµ0 < 1. Set
k = 0.
Step 1: Stop, if ∥H(ωk)∥ ≤ ε. Otherwise, compute βk := β(ωk), where the β(•) is defined
by (2.10).
Step 2: Solve the following equation to obtain △ωk := (△µk,△xk,△yk,△λk)

H(ωk) +H ′(ωk)△ωk = βkū. (2.11)

Let mk be the smallest nonnegative integer m such that

∥H(wk + δm△wk)∥ ≤ [1− σ(1− γµ0)δ
m]∥H(ωk)∥. (2.12)

Set αk := δmk and go to Step 4.
Step 3: If the equation (2.11) is unsolvable, set △ωk = −∇Ψ(ωk). Let mk be the smallest
nonnegative integer m such that

Ψ(ωk + δm∆ωk)−Ψ(ωk) ≤ −σδm∥∆ωk∥2. (2.13)

Set αk := δmk and go to Step 4.
Step 4: Set ωk+1 = ωk + αk△ωk, k :=k+1. Go to step 1.

When (2.11) is solvable, by the Theorem 6.5.9 of [13] or Theorem 2.5 of [24], we can obtain
that there exists a suitable stepsize α such that ∥H(ωk)+α△ωk∥ ≤ [1−σ(1−γµ0)α]∥H(ωk∥.
In the case of that (2.11) is unsolvable, the negative gradient is used. It is well-known that
(2.13) will be satisfied for some integer m.

The global convergence could be guaranteed by the following theorem.

Theorem 2.4. Suppose that the solution set σ(A,B) is nonempty. Let ωk = (µk, xk, yk, λk)
be generated by smoothing Newton. Then:

(i) ∥H(ωk+1)∥ ≤ ∥H(ωk)∥;

(ii) Each accumulation point of the sequence {ωk} generated by the Algorithm 1 is a sta-
tionary point of Ψ.

Proof. First, by (2.12), ∥H(ωk)∥ will satisfies (i). Next, we prove (ii).
Suppose that {ωk}K → ω∗, {ωk}K is a subsequence of {ωk}, and k = 1, 2, . . .. If there

exists an infinite set of indices K such that △ωk = −∇Ψ(ωk) for all k ∈ K, then ω∗ is
a stationary point of Ψ by the Proposition 1.16 in [4]. Hence, without loss of generality,
to prove the theorem we only need to consider the case in which the direction is always
computed by (2.11). Then, by the Theorem 6.5.9 in [13], we obtain that any accumulation
point ω∗ of the sequence ωk satisfies H(ω∗) = 0. Thus, we have ∇Ψ(ω∗) = 0. We complete
the proof.

Furthermore, if the equation (2.11) is always solvable, i.e. this means that the system
of linear equation (2.11) is well-posed with a good condition number, then we can establish
the convergence rate of proposed algorithm by following theorem.
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Theorem 2.5. If the equation (2.11) is always solvable. Let ωk = (µk, xk, yk, λk) be gener-
ated by algorithm 1, then the {ωk} converges to ω∗ quadratically.

Proof. By the lemma 3, we know that the function H(ω) defined by (2.5) is strongly semis-
mooth. Then, by the Theorem 6.5.10 in [13], we have

∥ωk+1 − ω∗∥ = O(∥ωk − ω∗∥2). (2.14)

The proof is completed.

3 Numerical experiments

In this section, we present some numerical results to verify the effectiveness of the smooth-
ing Newton method (SNM). We compare it with Scaling-and-Projection Algorithm (SPA)
proposed by Ling, He and Qi [16], shifted projected power (SPP) method in [7] and semis-
mooth Newton method(SSNM) proposed by Chen, Qi [5]. All codes were written in Matlab
(R2015b) and the Tensor Toolbox Version 2.1 [1].

In the implementation of our algorithm, we choose parameters ε = 10−6, µ0 = 0.05, δ =
0.6, σ = 0.15, ρ = 0.4 and γ = 0.01 and using the stop condition ∥H(ω)∥ ≤ ε and k < 300
for SNM and SSNM methods. On the other hand, the stop condition is ∥xk+1 −xk∥ ≤ ε for
SPA and SPP.

3.1 Numerical experiments for computing Pareto H-eigenpairs

In this subsection, we test SSNM, SNM, SPP and SPA methods for finding Pareto H-
eigenpairs of irreducible nonnegative A. The tensor A ∈ S6,4 is described in Table 4 of [5].
As shown in [7], there exists a unique solution for TEiCP when A ∈ Tm,n is irreducible
nonnegative and B = I ∈ Sm,n, where I is the diagonal tensor with diagonal entries 1 and

0 otherwise. The initial point is chosen as x0 = e/∥e∥, λ0 =
Axm

0

Bxm
0
, y0 = (λB − A)xm−1

0 , and

e = (1, 1, . . . , 1) ∈ Rn. Numerical results are listed in Table 1, in which Its denotes the
average number of iteration for each solution, Time denotes the average time of iteration.
As we can see from Table 1, all of the methods could reach the unique H-eigenpair. SNM is
competitive to SSNM and they are much faster than SPP method.

Table 1. Comparison results for computing Pareto H-eigenvalues of A from [5]

Alg. λ Eigenvector Its. Time (sec.)

SSNM 515.5227 (0.4995 0.4988 0.5006 0.5011) 5 0.1025
SNM 515.5227 (0.4995 0.4988 0.5006 0.5011) 5 0.0860
SPP 515.5227 (0.4995 0.4988 0.5006 0.5011) 13 0.2872

Table 2. SNM for computing Parteo-H eigenvalue of 100 random nonnegative tensors
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m n Suc Its. Time(sec.) λ∗

4 3 100 4.10 0.0324 0.1353+e02
4 10 100 5.26 0.0471 0.4997+e03
4 20 100 5.92 0.1152 3.9992+e03
4 30 100 6.00 0.3542 1.3499+e04
4 40 100 6.00 0.9548 3.2000+e04
4 50 100 6.00 2.3075 6.2490+e04
6 3 100 4.04 0.0324 0.1214+e03
6 4 100 4.24 0.0456 0.5115e+03
6 6 100 4.62 0.0597 3.8877e+03
6 8 100 4.87 0.2004 1.6380e+04
6 10 100 5.05 0.5015 4.9996e+04
8 3 100 6.00 0.0549 1.0941e+03
8 4 100 7.00 0.1015 8.1916e+03
8 6 100 8.00 1.4298 0.1399e+06

Table 3. SSNM for computing Parteo-H eigenvalue of 100 random nonnegative tensors
m n Suc Its. Time(sec.) λ∗

4 3 100 5.00 0.0398 0.1353+e02
4 10 100 6.28 0.0612 0.4997+e03
4 20 100 7.00 0.1773 3.9992+e03
4 30 100 8.00 0.6601 1.3499+e04
4 40 100 9.00 1.9694 3.2000+e04
4 50 100 9.00 4.9866 6.2490+e04
6 3 100 5.00 0.0324 0.1214+e03
6 4 100 5.01 0.0554 0.5115e+03
6 6 100 6.00 0.0863 3.8877e+03
6 8 100 7.00 0.3710 1.6380e+04
6 10 100 7.00 0.9256 4.9996e+04
8 3 100 3.93 0.0450 1.0941e+03
8 4 100 4.09 0.0778 8.1916e+03
8 6 100 4.50 0.6053 0.1399e+06

In the second numerical experiment, our object is to use some randomly generated tensors
to test the performance of SNM with comparisons to SSNM. We first select random entries
from the interval (0, 1), then symmetrize it by using A = symmetrize(A). The initial point
is chosen as same as in the first numerical experiment. The numerical results are reported
in Table 2 and Table 3. For each case, we use a sample of 100 random tensors to record
the the number of success (Suc) and the average value of H-eigenvalues (λ∗). As we can
see, both SNM and SSNM can converge to the unique solution, and SNM is competitive to
SSNM.

3.2 Numerical experiments for computing Pareto Z-eigenpairs

In this subsection, our goal is to compute Pareto Z-eigenpairs for the following Example 3
and Example 4.

Example 3. Let A ∈ S[4,3] be the symmetric tensor defined by: Firstly, set A =
tensor(zeros(3, 3, 3, 3)), and

a1222 = 1, a1333 = 1,

a2111 = 1, a3111 = 1,
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Figure 1: Comparison with SPA, SPP, SSNM,SPP algorithms for computing Pareto Z-
eigenvalues of A in Example 3, and the starting point is x0 = [1.0; 1.0; 1.0]

and then using A = symmetrize(A) to symmetrize it.

Table 4 lists the numerical results for computing Pareto Z-eigenvalues of A in Example 3
from the starting point is x0 = [1.0; 1.0; 1.0]. In this case, all of the test algorithms can reach
the same Pareto Z-eigenvalue 0.5566. SNM need to run 5 iterations in 0.1328 seconds while
SPA method need 229 iterations in 2.0233 seconds. SPP method need to run 9 iterations in
0.2817 seconds. According to the CPU time, SSNM cost much more time than SNM.

Table 4. Comparison results for computing Pareto Z-eigenvalues of A from Example 3.
Alg. λ Eigenvector Its. Time (sec.)

SSNM 0.5566 (0.8002,0.4240,0.4240) 5 0.5437
SNM 0.5566 (0.8002,0.4240,0.4240) 5 0.1328
SPA 0.5566 (0.7948,0.4291,0.4291) 229 2.0233
SPP 0.5566 (0.8004 0.4239 0.4239) 9 0.2817

The fourth numerical example is originally from [15] and was used in evaluating the
SS-HOPM algorithm in [12] and the GEAP algorithm in [11].

Example 4 (Kofidis and Regalia [15]). Let A ∈ S[4,3] be the symmetric tensor defined by

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,

a1223 = 0.1862, a1133 = 0.3847, a1222 = 0.2972, a1123 = −0.2939,

a1233 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,

a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

In order to get all possible solutions, 100 random initial points are used for all methods.
The initial point is generated by the following rule: firstly generate a random vector ξ ∈ Rn

with uniform distribution in [0, 1]n, and then set x0 = ξ/∥ξ∥, λ0 = Axm/Bxm, y0 = (λ0B −
A)xm−1. The numerical results are reported in Table 5, in which No denotes number of
each solution detected by the method within 100 random initial points. As we can see, SNM
and SSNM are able to detect 7 Pareto Z-eigenpairs and 5 Pareto Z-eigenpairs, respectively,
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whereas the SPA method and SPP method can only find 3 Pareto Z-eigenpairs. Especially,
the SNM is much faster than the SPA method. We also find that SSNM has 18% points
which can’t detect the Pareto Z-eigenvalue and SNM only has 4% points which can’t find
the Pareto Z-eigenvalue.

On the other hand, in order to compare the convergence in terms of the number of the
iterations. Table 6 presents the results for computing Pareto Z-eigenvalues of A in Example
4, and the starting point is x0 = [1.0; 1.0; 1.0]. In this case, both SSNM and SNM can reach
the Pareto Z-eigenvalue λ = 0.2682 while the other two methods reach the Z-eigenvalue
λ = 0.3632. SSNM, SNM need 6/5 iterations while SPA need to run 260 iterations, and
SPP need 7 iterations in this case.

Table 5. All possible solutions detected by SSNM, SNM, SPA, SPP for tensor A in Example 4
from 100 random initial points.

Alg. No λ∗ x∗ Its. Time(sec)

SSNM 31 0.3633 (0.2676,0.6447,0.7160) 4.9677 0.0991
25 0.2682 (0.6099,0.4362,0.6616) 5.0004 0.1602
9 0.1735 (0.3357,0.9073,0.2531) 4.0333 0.0871
11 0.6798 (0.8843,0.0000,0.4669) 5.1818 0.1034
6 0.2938 (0.2742,0.9617,0.0000) 5.333 0.1046
18 failure

SNM 22 0.3633 (0.2676,0.6447,0.7160) 5.3181 0.1156
38 0.2682 (0.6099,0.4362,0.6616) 4.7894 0.1022
16 0.1735 (0.3357,0.9073,0.2531) 4.8750 0.1053
7 0.6798 (0.8843,0.0000,0.4669) 5.0000 0.1167
6 -0.0451 (0.7797,0.6135,0.1250) 5.0000 0.1071
5 -0.0077 (0.8003,0.5995,0.0000) 5.0000 0.1120
2 0.2938 (0.2742,0.9617,0.0000) 5.4000 0.1251
4 failure

SPA 57 0.3632 (0.2771,0.6461,0.7112) 233.4150 2.0934
12 0.2938 (0.2742,0.9617,0.0000) 40.25 0.3711
31 0.6798 (0.8845,0.0000,0.4666) 20.74 0.2016

SPP 57 0.3633 (0.2679,0.6448,0.7159) 9.1578 0.1748
17 0.2938 (0.2742,0.9617,0.0000) 4.6470 0.0958
26 0.6798 (0.8843,0.0000,0.4669) 4.6470 0.0958

Table 6. Comparison results for computing Pareto Z-eigenvalues of A in Example 4 from the
initial point x0 = [1.0; 1.0; 1.0].

Alg. λ Eigenvector Its. Time (sec.)

SSNM 0.2682 (0.6099,0.4362,0.6616) 6 0.0860
SNM 0.2682 (0.6099,0.4362,0.6616) 5 0.0832
SPA 0.3632 (0.2771,0.6461,0.7112) 260 2.0137
SPP 0.3632 (0.2648,0.6445,0.7162) 7 0.1120

4 Conclusion

In this paper, we study the numerical behaviors of the smoothing Newton method for solv-
ing tensor eigenvalue complementarity problem (TEiCP). By introducing the smoothing
approximation fuction of the Fischer-Burmeister NCP function, the tensor eigenvalue com-
plementarity problem can be converted into an equivalent system of smooth equations.
Then, a smoothing Newton method is investigated for TEiCP. Numerical experiments show
that smoothing Newton method is efficient and competitive to some existing methods.
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