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where I+(x) = {i : xi(Mx)i > 0} and I−(x) = {i : xi(Mx)i < 0} are two index sets. It is
equivalent to the following inequality

xTMx ≥ −4κ
∑

i∈I+(x)

xi(Mx)i, ∀x ∈ Rn.

The union of all the P∗(κ)-matrices is defined by

P∗ =
∪
κ≥0

P∗(κ),

i.e., M is a P∗-matrix if M ∈ P∗(κ) for some κ ≥ 0.
In this paper, we consider LCPs with M being a P∗(κ)-matrix, namely P∗(κ)-LCPs,

which contains monotone LCPs (i.e., P∗(0)-LCPs) as a special case when κ = 0. There
are many approaches for P∗(κ)-LCPs. Among them, interior-point methods (IPMs) gain
much more attention. Due to the fact that LCPs is closely related to LO, several IPMs
designed for LO have been extended to P∗(κ)-LCPs. Kojima et al. [16] first proved the
existence of the central path for P∗(κ)-LCPs and generalized the primal-dual IPMs for LO
to P∗(κ)-LCPs. Consequently, several efficient IPMs have been proposed for P∗(κ)-LCPs [1]
[22] [26] [30] [32] and nonlinear P∗ complementarity problems [38]. In the meantime, many
researchers considered some other effective methods for symmetric cone complementarity
problems [13] [14], which includes second-order cone complementarity problems [6] [7] and
semidefinite complementarity problems [12] as special cases.

Peng et al. [23] presented primal-dual IPMs for LO, second-order cone optimization
(SOCO), semidefinite optimization (SDO), and also extended to P∗(κ)-LCPs based on the
self-regular proximities. Later on, Bai et al. [3], Cho and Kim [8], Wang et al. [27], Peyghami
and Amini [24], and Lee et al. [17] analyzed IPMs for P∗(κ)-LCPs based on some special
eligible kernel functions, which are not necessarily self-regular. Lesaja and Roos [18] and
El Ghami and Steihaug [10] provided a unified approach and comprehensive treatment of
kernel-based IPMs for P∗(κ)-LCPs. All these kernel-based IPMs for P∗(κ)-LCPs depend
explicitly on the handicap κ of the problem. For some other related kernel-function based
IPMs we refer to the references [19] [25] [34] [37].

Recently, El Ghami et al. [9] considered a trigonometric kernel function for primal-dual
IPMs for LO. They established the worst case iteration bounds for large- and small-update
methods, namely, O(n

3
4 log n

ε ) and O(
√
n log n

ε ), respectively. Subsequently, Peyghamia et
al. [25] considered a new kernel function with a trigonometric barrier term. Based on this
kernel function, they proved that large-update method for LO has the worst case iteration
bound, namely, O(n

2
3 log n

ε ), which improves the obtained iteration bound for large-update
methods based on the trigonometric kernel function proposed in [9]. Some well known
trigonometric kernel function and the corresponding iteration bounds for large-update meth-
ods are collected in Table 1. In most cases, the complexity results for small-update IPMs are
essentially the same small-update methods based on the classic logarithmic barrier function,
which is O(

√
n log n

ε ).
Motivated by their work, the aim of this paper is to propose a class of primal-dual IPMs

based on the following new kind of parametric kernel function with a trigonometric barrier
term, i.e.,

ψ(t) =
t2 − 1

2
− log t+ λtan2(h(t)), t > 0, (1.1)

where

h(t) =
πu(1− t)

t+ 2u
, 0 < u ≤ 1

3
, (1.2)
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i The kernel functions ψi(t) Large-update methods Ref.

1 t2−1
2

+ 6
π
tan

(
π(1−t)
2+4t

)
O
(
n

3
4 log n

ε

)
[9]

2 t2−1
2

+ 4
π
cot

(
πt
1+t

)
O
(
n

3
4 log n

ε

)
[15]

3 t2−1
2

− log t+ 1
8
tan2

(
π(1−t)
2+4t

)
O
(
n

2
3 log n

ε

)
[25]

4 (t−1)2

2
+ (t−1)2

2t
+ 1

8

(
tan2

(
π(1−t)
2+4t

))
O
(
n

2
3 log n

ε

)
[19]

5 t2−1
2

− log t+ λtan2
(

π(1−t)
2+3t

)
, 0 < λ ≤ 8

25π
O
(
n

3
4 log n

ε

)
[5]

6 t2−1
2

− 4
πp

(
tanp

(
π

2+2t

)
− 1

)
, p ≥ 2 O

(
pn

p+2
2(p+1) log n

ε

)
[4]

Table 1. Iteration bounds for the kernel functions with trigonometric barrier terms

and 0 < λ ≤ λ(u), here λ(u) is a function of u given by

λ(u) =
(1 + 2u)

3

4πu(10π2u2 − 3πu+ 3)
. (1.3)

It should be noted that if u = 0, then ψ(t) = t2−1
2 − log t, this is the kernel function of the

classic barrier function. Particularly, if one takes u = 1
4 , then

λ

(
1

4

)
=

27

π(5π2 − 6π + 24)
≈ 0.1577.

This means that our parametric kernel function includes the kernel function considered
in [25] as a special case, where λ = 1

8 . The properties of the proposed kernel functions
and the corresponding barrier functions are investigated. By utilizing the feature of the
parametric kernel function, we derive the iteration bound for large-update methods, namely,
O((1+2κ)n

2
3 log n

ε ), which improves the classical iteration complexity with a factor n
1
3 , and

for small-update methods, we obtain the iteration bound, namely O((1+2κ)
√
n log n

ε ), which
matches the currently best known iteration bound for small-update methods.

The remainder of this paper is organized as follows: In Section 2, we introduce the
new parametric kernel function with a trigonometric barrier term and develop some useful
properties of the new kernel function, as well as the corresponding barrier function. In
Section 3, we present the framework of kernel-based IPMs for P∗(κ)-LCPs. The analysis
and the complexity of the algorithms for large- and small-update methods are presented in
Section 4. Finally, the paper will end with some concluding remarks follow in Section 5.

Some notations used throughout the paper are as follows. Rn, Rn
+ and Rn

++ denote
the set of vectors with n components, the set of nonnegative vectors and the set of positive
vectors, respectively. ∥x∥ denotes the 2-norm of the vector x. e denotes the identity vector,
that is, a vector whose entries take value 1. For any x ∈ Rn, xmin and xmax denote the
smallest and the largest value of the components of x, respectively. Finally, if g(x) ≥ 0 is
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a real valued function of a real nonnegative variable, the notation g(x) = O(x) means that
g(x) ≤ c̄x for some positive constant c̄ and g(x) = Θ(x) that c1x ≤ g(x) ≤ c2x for two
positive constants c1 and c2.

2 The new parametric kernel function

In this section, we consider the new parametric kernel function ψ(t) given by (1.1). Some
useful properties of the new kernel function and the corresponding barrier function are
provided.

The first three derivatives of ψ(t) are listed as follows:

ψ′(t)= t− 1

t
+ 2λh′(t) tan(h(t)) sec2(h(t)), (2.1)

ψ′′(t)=1 +
1

t2
+ 2λ sec2(h(t))φ1(t), (2.2)

ψ′′′(t)=− 2

t3
+ 2λ sec2(h(t))φ2(t). (2.3)

where

φ1(t)=h
′′(t) tan(h(t)) + h′(t)2(3tan2(h(t)) + 1),

φ2(t)=3h′(t)h′′(t)(3tan2(h(t)) + 1) + 4h′(t)3 tan(h(t))(3tan2(h(t)) + 2) + h′′′(t) tan(h(t)),

and

h′(t) = −πu(1 + 2u)

(t+ 2u)
2 , h′′(t) =

2πu(1 + 2u)

(t+ 2u)
3 , h′′′(t) = −6πu(1 + 2u)

(t+ 2u)
4 .

It is obvious that
ψ(1) = ψ′(1) = 0. (2.4)

Furthermore, we have

ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ)dζdξ. (2.5)

Some technical lemmas related to the proposed parametric kernel function ψ(t) given by
(1.1) are presented.

Lemma 2.1. One has

g(u) := tan

(
π(1− 2u)

4

)
− 2

3π(1 + 2u)
> 0, 0 < u ≤ 1

3
.

Proof. It follows from 0 ≤ x < π
2 that cos(x) = sin(π2 − x) ≤ π

2 − x. We have

g′(u)=−π
2
sec2

(
π(1− 2u)

4

)
+

4

3π(1 + 2u)
2

=sec2
(
π(1− 2u)

4

)(
−π
2
+

4

3π(1 + 2u)
2 cos

2

(
π(1− 2u)

4

) )

≤sec2
(
π(1− 2u)

4

)(
−π
2
+

4

3π(1 + 2u)
2

π2(1 + 2u)
2

16

)

=−5π

12
sec2

(
π(1− 2u)

4

)
<0.
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Thus g(u) is decreasing in
(
0, 13

]
, and from g( 13 ) = tan( π

12 )−
2
5π ≈ 0.1406 > 0, this implies

that g(u) > 0 for 0 < u ≤ 1
3 . Hence, the proof of the lemma is finished.

Lemma 2.2. Let h(t) be given by (1.2). Then

f(t, u) := tan(h(t))− 4u

3π(1 + 2u)t
> 0, 0 < t ≤ 2u , 0 < u ≤ 1

3
.

Proof. For 0 < t ≤ 1, one has 0 ≤ h(t) < π
2 , therefore cos(h(t)) ≤ π

2 − h(t). Differentiating
the function f(t, u) with respect to t, we have

∂f(t, u)

∂t
=

1

cos2(h(t))
h′(t) +

4u

3π(1 + 2u)t2

=
1

3πt2cos2(h(t))

(
3πt2h′(t) +

4u

1 + 2u
cos2h(t)

)
≤ 1

3πt2cos2(h(t))

(
3πt2h′(t) +

4u

1 + 2u

(π
2
− h(t)

)2)
=

1

3πt2cos2(h(t))

(
−3πt2

πu(1 + 2u)

(t+ 2u)
2 +

4u

1 + 2u

π2(1 + 2u)
2
t2

4(t+ 2u)
2

)

=− 2πu(1 + 2u)

3(t+ 2u)
2
cos2(h(t))

<0.

This implies that f(t, u) with respect to t is decreasing in (0, 2u]. From Lemma 2.1, we have

f(2u, u) = tan

(
(1− 2u)π

4

)
− 2

3π(1 + 2u)
> 0, 0 < u ≤ 1

3
.

This means that f(t, u) > 0. Hence, the proof of the lemma is finished.

Lemma 2.3. Let c be a constant, and

w(t;u, λ) = Ln(u, λ)t
n + Ln−1(u, λ)t

n−1 + · · ·+ L1(u, λ)t+ L0(u, λ),

where the parameters u and λ are in R, and Li(u, λ) are the functions of u and λ for

i = 0, 1, . . . , n. If Ln(u, λ) > 0, w(c;u, λ) > 0 and ∂iw(t;u,λ)
∂ti |t=c > 0 for i = 1, . . . , n − 1,

then we have w(t;u, λ) > 0 for all t > c.

Proof. It is obvious that ∂nw(t;u,λ)
∂tn |t=c = n!Ln(u, λ) > 0, for all t ∈ R. This implies that

∂n−1w(t;u,λ)
∂tn−1 is monotone increasing. Since ∂n−1w(t;u,λ)

∂tn−1 |t=c > 0, we have w(n−1)(t;u, λ) > 0
for all t > c. And so on, we can conclude that w(t;u, λ) for all t > c. This finishes the proof
of the lemma.

Lemma 2.4. Let t > 0. Then

ψ′′(t)>1; (2.6)

tψ′′(t) + ψ′(t)>0; (2.7)

tψ′′(t)− ψ′(t)>0; (2.8)

ψ′′′(t)<0. (2.9)
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Proof. See Appendix A.
The barrier function Ψ(v) : Rn

++ → R+ based on the parametric kernel function given
by (1.1) is defined by

Ψ(v) :=

n∑
i=1

ψ(vi). (2.10)

Furthermore, we define the norm-based proximity measure δ(v) : Rn
++ → R+ as follows:

δ(v) :=
1

2
∥ ▽Ψ(v) ∥ . (2.11)

Due to the properties of the parametric kernel function ψ(t), we can conclude that Ψ(v) is
a strictly convex function and attains minimal value at v = e and Ψ(e) = 0, i.e.,

∇Ψ(v) = 0 ⇔ Ψ(v) = 0 ⇔ v = e. (2.12)

The property described below is exponential convexity, which has been proven to be very
useful in the analysis of primal-dual IPMs based on the kernel functions [2] [23].

Lemma 2.5. Let t1, t2 > 0. Then

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)).

Proof. The result of the lemma follows immediately from Lemma 1 in [23], which states that
the above inequality holds if and only if tψ′′(t) + ψ′(t) > 0 for all t > 0. Hence, from (2.7)
in Lemma 2.4, the proof of the lemma is finished.

From (i) of Lemma 2.4 (i.e., ψ′′(t) > 1), we say that ψ(t) is strongly convex. The
following lemma provides an important consequence of this property. These results can be
directly obtained from the corresponding results in the LO case [2].

Lemma 2.6. Let t > 0. Then

1

2
(t− 1)2 ≤ ψ(t) ≤ 1

2
ψ′(t)2.

As the consequences of Lemma 2.6, we have the following two important corollaries.

Corollary 2.7. Let Ψ(v) ≥ 1. Then

δ(v) ≥ 1

2

√
Ψ(v).

Corollary 2.8. Let Ψ(v) ≥ 1. Then

∥v∥ ≤
√
n+ 2δ(v).

Lemma 2.9. Let β ≥ 1. Then

ψ(βt) ≤ ψ(t) +
1

2
(β2 − 1)t2.

Proof. See Appendix B.
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Theorem 2.10. Let 0 < θ < 1 and v+ = v√
1−θ

. Then

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)

(
2Ψ(v) + 2

√
2nΨ(v) + n

)
.

Proof. Let β = 1√
1−θ

. We have, by Lemma 2.9,

Ψ(βv) ≤ Ψ(v) +
1

2

n∑
i=1

(β2 − 1)v2i = Ψ(v) +
θ∥v∥2

2(1− θ)
.

It follows from Corollary 2.8 that

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)

(
2Ψ(v) + 2

√
2nΨ(v) + n

)
.

The proof of the theorem is finished.

3 The kernel-based IPMs for P∗(κ)-LCPs

In this section, we briefly recall the outline of primal-dual IPMs for P∗(κ)-LCPs, which
includes the central path, the new search directions and the generic primal-dual IPMs for
P∗(κ)-LCPs.

3.1 The central path for P∗(κ)-LCPs

Throughout the paper, we assume that P∗(κ)-LCPs satisfy the interior-point condition
(IPC), i.e., there exists a pair (x0, s0) > 0 such that s0 = Mx0 + q, which implies the
existence of a solution for P∗(κ)-LCPs. In fact, the IPC can be assumed without loss of
generality. For this and some other properties mentioned below, we refer to Kojima et
al. [16].

Finding an approximate solution of P∗(κ)-LCPs is equivalent to solving the following
system −Mx+ s

xs

 =

q
0

 , x, s ≥ 0. (3.1)

The standard approach is to replace the second equation in (3.1), the so-called complemen-
tarity condition for P∗(κ)-LCPs, by the parameterized equation xs = µe, with µ > 0. This
leads to the following system−Mx+ s

xs

 =

 q

µe

 , x, s ≥ 0. (3.2)

From Lemma 4.3 in [16], the parameterized system (3.2) has a unique solution for each µ > 0
due to the fact that M is a P∗(κ)-matrix and the IPC holds. We denote this solution as
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(x(µ), s(µ)) and call it the µ-center of P∗(κ)-LCPs. The set of µ-centers (with µ running
through all positive real numbers) gives a homotopy path, which is called the central path
of P∗(κ)-LCPs. If µ→ 0, then the limit of the central path exists and since the limit points
satisfy the complementarity condition, i.e., xs = 0, the limit yields a solution for P∗(κ)-LCPs
(cf. Theorem 4.4 in [16]).

3.2 The new search directions for P∗(κ)-LCPs

IPMs follow the central path approximately and find an approximate solution of P∗(κ)-LCPs
as µ goes to zero. A natural way to define a search direction is to follow Newton’s approach
and linearize the second equation in (3.2). This yields to the following system−M∆x+∆s

s∆x+ x∆s

 =

 0

µe− xs

 . (3.3)

It follows from Lemma 4.1 in [16] that the modified Newton-system (3.3) has a unique
solution.

Let

v :=

√
xs

µ
, (3.4)

and

dx :=
v∆x

x
, ds :=

v∆s

s
. (3.5)

It follows from (3.4) and (3.5) that−Mdx + ds

dx + ds

 =

 0

v−1 − v

 , (3.6)

where M := DMD with D := X
1
2S− 1

2 , X := diag (x) and S := diag (s). It is obvious that
the right-hand side v−1 − v in the second equation of the system (3.6) equals minus the
derivative of the classic barrier function Ψc(v), i.e.,

Ψc(v) :=

n∑
i=1

ψc(vi), v ∈ Rn
++, (3.7)

where

ψc(t) :=
t2 − 1

2
− log t

is the kernel function of the classic barrier function Ψc(v). Thus, the system (3.6) can be
rewritten as the following system.−Mdx + ds

dx + ds

 =

 0

−∇Ψc(v)

 . (3.8)
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By replacing the right-hand side of the second equation in (3.8) by −∇Ψ(v), we have−Mdx + ds

dx + ds

 =

 0

−∇Ψ(v)

 . (3.9)

This system also has a unique search direction. Furthermore, we can conclude that ∆x and
∆s both vanish if and only if v = e, i.e., if and only if x = x(µ), s = s(µ). Otherwise, we
will use (∆x,∆s) as the new search direction. Then, we have

x+ := x+ α△x, and s+ := s+ α△s, (3.10)

where α is the default step size defined by some line search rules. Furthermore, we can easily
verify that

dx = ds = 0 ⇔ ∇Ψ(v) = 0 ⇔ δ(v) = 0 ⇔ Ψ(v) = 0 ⇔ v = e. (3.11)

This implies that the value of Ψ(v) can be considered as a measure for the distance between
the given pair (x, s) and the corresponding µ-center (x(µ), s(µ)).

3.3 The generic IPMs for P∗(κ)-LCPs

Now we can outline the generic IPMs that uses the barrier function defined by (2.10).
Suppose that (x(µ), s(µ)) is known for some positive µ and is in the τ -neighborhood of
the corresponding µ-center, i.e., Ψ(v) ≤ τ . For example, due to the above assumption we
may assume this for µ = 1, with x(1) = s(1) = e. Then, we decrease µ to µ := (1 − θ)µ
with θ ∈ (0, 1), which changes the value of v according to (3.4) and defines a new µ-center
(x(µ), s(µ)). This may cause the increase of the value of the barrier function above the
threshold value of τ , i.e., Ψ(v) > τ . Now we start the inner iteration by solving the scaled
Newton system (3.9) and through (3.5) to get the new search direction (∆x,∆s). The new
iterate (x+, s+) is calculated by (3.10). If necessary, we repeat the procedure until we find
iterates that are in the neighborhood of (x(µ), s(µ)). During the inner iteration the value
of µ is kept constant. At this point we start a new outer iteration by reducing the value of
µ again. Then we apply Newton’s method targeting at the new µ-centers, and so on. This
process is repeated until µ is small enough, say until nµ < ε , at this stage we have found
an ε-solution of P∗(κ)-LCPs. The generic form of this algorithm is shown in Fig. 1.

4 The analysis and the complexity of the algorithms

In this section, we first choose a default step size. Then, we derive an upper bound for the
decrease of the barrier function during an inner iteration. Finally, the iteration bounds for
large- and small-update methods are established.

4.1 The default step size

In each inner iteration, we first compute the search direction (dx, ds) from the system (3.9).
Then through (3.5), we obtain the search direction (∆x,∆s). After a step with size α the
new iteration is given by (3.10). Note that during an inner iteration the parameter µ is
fixed. Hence, after the step the new v-vector is

v+ =

√
x+s+
µ

.



264 L. LI, J.Y. TAO, M. El GHAMI, X.Z. CAI AND G.Q. WANG

Generic IPMs for P∗(κ)-LCPs

Input:
A threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;

begin
x := e; s := e; µ := 1;
while nµ ≥ ε do
begin
µ := (1− θ)µ;
while Ψ(v) > τ do
begin

calculate the search direction (∆x,∆s);
determine the default step size α;
update (x, s) := (x, s) + α(∆x,∆s).

end
end

end

Figure 1: Algorithm

Since

x+ = x

(
e+ α

∆x

x

)
=
x

v
(v + αdx) , s+ = s

(
e+ α

∆s

s

)
=
s

v
(v + αds) ,

we have, by xs = µv2,
v+ =

√
(v + αdx)(v + αds).

In what follows, we consider the decrease in Ψ as a function of α and define

f(α) := Ψ(v+)−Ψ(v). (4.1)

However, working with f(α) may not be easy because in general f(α) is not convex. Thus,
we are searching for the convex function f1(α) that is an upper bound of f(α) and whose
derivatives are easier to calculate than those of f(α).

We have, by Lemma 2.5,

Ψ(v+) = Ψ(
√
(v + αdx)(v + αds)) ≤

1

2
(Ψ(v + αdx) + Ψ(v + αds)).

Let

f1(α) :=
1

2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v). (4.2)

Then f(0) = f1(0) = 0 and f(α) ≤ f1(α), which means that f1(α) is an upper bound of
f(α). Furthermore, we have

f ′1(α) =
1

2

n∑
i=1

(ψ′(vi + α(dx)i)(dx)i + ψ′(vi + α(ds)i)(ds)i) , (4.3)
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and

f ′′1 (α) =
1

2

n∑
i=1

(ψ′′(vi + α(dx)i)(dx)
2
i + ψ′′(vi + α(ds)i)(ds)

2
i ). (4.4)

It follows from the second expression of the system (3.8) that

f ′1(0) =
1

2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ(v)2. (4.5)

Below we use the shorthand notation: δ := δ(v). The following lemma provides an upper
bound of f ′′1 (α), which can be found in Lemma 3.3 in [27].

Lemma 4.1. One has

f ′′1 (α) ≤ 2(1 + 2κ)δ2ψ′′(vmin − 2α
√
1 + 2κδ).

Following the strategy considered in [27], we briefly recall how to choose the default step
size. Suppose that the step size α satisfies

−ψ′(vmin − 2α
√
1 + 2κδ) + ψ′(vmin) ≤

2δ√
1 + 2κ

. (4.6)

Then f1(α) ≤ 0. The largest possible value of the step size of α satisfying (4.6) is given by

ᾱ :=
1

2
√
1 + 2κδ

(
ρ(δ)− ρ

((
1 +

1√
1 + 2κ

)
δ

))
. (4.7)

where ρ(s) : [0,∞) → (0, 1] is the inverse function of − 1
2ψ

′(t) for t ∈ (0, 1]. Furthermore,
we can conclude that

ᾱ ≥ 1

(1 + 2κ)ψ′′
(
ρ
((

1 + 1√
1+2κ

)
δ
)) . (4.8)

According to the properties of the kernel function ψ(t) given by (1.1), we have the
following result.

Lemma 4.2. One has

ᾱ ≥ 1

(1 + 2κ)C(λ, u)δ
4
3

,

where C(λ, u) is given below in (5.6)

Proof. See Appendix C.

In the sequel we use

α̃ :=
1

(1 + 2κ)C(λ, u)δ
4
3

, (4.9)

as the default step size.
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4.2 The decrease of the value of Ψ(v) during an inner iteration

In what follows, we will show that the barrier function Ψ(v) in each inner iteration with
the default step size α̃, as defined by (4.9), is decreasing. For this, we need the following
technical result.

Lemma 4.3 (Lemma 12 in [23]). Let h(t) be a twice differentiable convex function with
h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t) is increasing
for t ∈ [0, t∗], then

h(t) ≤ th′(0)

2
, 0 ≤ t ≤ t∗.

Lemma 4.4. Let the step size α be such that α ≤ α̃. Then

f(α) ≤ −αδ2.

Proof. Since f1(α) is a twice differentiable convex function with f1(0) = 0, and f ′1(0) =
−2δ2 < 0, we have, by Lemma 4.3,

f(α) ≤ f1(α) ≤ −αδ2.

This finishes the proof of the lemma.

The following theorem shows that the default step size (4.9) yields the sufficient decrease
of the barrier function value during each inner iteration.

Theorem 4.5. Let α̃ be the default step size given by (4.9). Then

f(α̃) ≤ − 1
3
√
2(1 + 2κ)C(λ, u)

Ψ(v)
1
3 .

Proof. From Lemma 4.4, (4.9) and Corollary 2.7, we have

f(α̃) ≤ −α̃δ2 ≤ − 1

(1 + 2κ)C(λ, u)
δ

2
3 ≤ − 1

3
√
2(1 + 2κ)C(λ, u)

Ψ(v)
1
3 .

This finishes the proof of the theorem.

4.3 The iteration bounds for large- and small-update methods

From Theorem 2.10, after decreasing the parameter µ to (1− θ)µ with 0 < θ < 1, we have

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)

(
2Ψ(v) + 2

√
2nΨ(v) + n

)
. (4.10)

At the start of an outer iteration and just before updating of the parameter µ, we have
Ψ(v) ≤ τ . Due to (4.10), the value of Ψ(v) exceeds from the threshold τ after updating
of µ. Therefore, we need to count how many inner iterations are required to return to the
situation where Ψ(v) ≤ τ . We denote the value of Ψ(v) after the µ-update as Ψ0, the
subsequent values in the same outer iteration are denoted as Ψk, k = 1, 2, · · · ,K, where K
denotes the total number of inner iterations in the outer iteration. Hence, we have

Ψ0 ≤ τ +
θ

2(1− θ)

(
2τ + 2

√
2nτ + n

)
. (4.11)
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According to decrease of f(α̃) in Lemma 4.5, we have

Ψk+1 ≤ Ψk − β(Ψk)
1−γ , k = 0, 1, . . . ,K − 1, (4.12)

where β = 1
3√2(1+2κ)C(λ,u)

, and γ = 2
3 .

Lemma 4.6 (Lemma 14 in [23]). Suppose t0, t1, . . . , tK be a sequence of positive numbers
such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, . . . ,K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤ ⌈ tγ0
βγ ⌉.

The following lemma provides an estimate for the number of inner iterations between
two successive barrier parameter updates, in terms of Ψ0 and C(λ, u).

Lemma 4.7. One has

K ≤ 3 3
√
2(1 + 2κ)C(λ, u)

2
(Ψ0)

2
3 .

Proof. Using (4.12), and also applying Lemma 4.6, the result of the lemma follows. This
finishes the proof of the lemma.

It is well known that the number of outer iterations is bounded above by 1
θ log

n
ε (cf. [33]

Π.17, page 116). Then, we get an upper bound for the total number of iterations, namely,

3 3
√
2(1 + 2κ)C(λ, u)

2θ

(
τ +

θ

2(1− θ)

(
2τ + 2

√
2nτ + n

)) 2
3

log
n

ε
. (4.13)

Remark 4.1. The parameters λ and u will not improve the order of the theoretical com-
plexity of the algorithm due to the properties of C(λ, u), but it will affect the practical
performance of the algorithm. See also the discussions in [29]. In theory, the bigger values
of u and the smaller values of λ give the better complexity bound.

The following theorem provides the best iteration bound for large-update methods based
on the parametric kernel function ψ(t) is given by (1.1).

Theorem 4.8. For large-update methods, one takes for θ a constant (independent on n),
namely θ = Θ(1), and τ = O(n). The iteration bound then becomes

O
(
(1 + 2κ)n

2
3 log

n

ε

)
,

which improves the classical iteration bound with a factor n
1
3 .

Similar to the analysis in [2], the iteration bound for small-update methods is straight
and we leave it for the interested readers.

Theorem 4.9. For small-update methods, one takes for θ = Θ( 1√
n
) and τ = O(1). The

iteration bound then becomes

O
(
(1 + 2κ)

√
n log

n

ε

)
,

which matches the currently best known iteration bound for small-update methods.
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5 Conclusions and remarks

In this paper, we presented a new parametric kernel function with a trigonometric barrier
term for the development of large- and small-update IPMs for P∗(κ)-LCPs. By utilizing the
feature of the parametric kernel function, we derived the iteration bounds for large-update
methods, O((1+2κ)n

2
3 log n

ε ) and small-update methods, O((1+2κ)
√
n log n

ε ), respectively.
Some interesting topics for further research remain. Firstly, the generalization of sym-

metric optimization [31] [35] [36], symmetric cone complementarity problems [13] [14] and
the Cartesian P∗(κ)-LCPs over symmetric cones [20] [21] [28] deserve to be investigated.
Secondly, numerical results may help us to compare the behavior of the algorithms proposed
in this paper with the existing methods.
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Appendix A. Proof of Lemma 2.4

Proof. Firstly, we consider two cases to prove (2.6).
Case 2.6.1: Let 0 < t < 1. In this case, 0 < h(t) < π

2 , h
′′(t) > 0. It follows from (2.2)

that ψ′′(t) > 1, for λ > 0 and t ∈ (0, 1).
Case 2.6.2: Let t ≥ 1. Define

ξ(t) :=
1

t2
+ 2λ sec2(h(t))φ1(t).
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We need to prove that when 0 < u ≤ 1
3 and 0 < λ ≤ λ(u), ξ(t) > 0 holds. Since h(t) ∈

(−πu , 0] for all t ≥ 1, we have

ξ(t)=2λ sec2(h(t))

(
1

2λt2 sec2(h(t))
+ h′′(t) tan(h(t)) + h′(t)2(3tan2(h(t)) + 1)

)
≥2λ sec2(h(t))

(
1

2λt2 sec2(πu)
− 2π(u+ 2u2) tan(πu)

(t+ 2u)
3 +

π2(u+ 2u2)
2

(t+ 2u)
4

)

=
sec2(h(t))

sec2(πu)t2(t+ 2u)
4 ω1(t;u, λ),

where

ω1(t;u, λ)

:= (t+ 2u)4 − λπ(u+ 2u2) sec2(πu)
(
4 tan(πu)t2(t+ 2u)−2πu(1 + 2u)t2

)
.

By solving ω1(1;u, λ) > 0 and ∂iω1(t;u,λ)
∂ti |t=1 > 0 for i = 1, 2, 3, we can get the upper

bounds of λ, denoted by λ1i(u) for i = 0, 1, 2, 3, respectively. Here

λ10(u) :=
(1 + 2u)

2

2πusec2(πu)(2 tan(πu)− πu)
, (5.1)

λ11(u) :=
(1 + 2u)

2

πu sec2(πu)((3 + 4u) tan(πu)− π(u+ 2u2))
, (5.2)

λ12(u) :=
3(1 + 2u)

πu sec2(πu)((6 + 4u) tan(πu)− π(u+ 2u2))
, (5.3)

λ13(u) :=
1

πusec2(πu) tan(πu)
. (5.4)

From Lemma 2.3, we can infer that when λ < min{λ11(u), λ12(u)}, ξ(t) > 0 holds.
Due to the fact that tan(x) > x for all x > 0, one can easily verify that λ1i(u) > 0, for

i = 0, 1, 2, 3 and u > 0. To prove (2.6), we need to prove that λ(u) < min{λ11(u), λ12(u)}
for 0 < u ≤ 1

3 . We first prove that λ(u) < λ11(u) holds. One has

λ(u)− λ11(u) =
(1 + 2u)

2

πu sec2(πu) ((3 + 4u) tan(πu)− π(u+ 2u2)) (40π2u2 − 12πu+ 12)
f1(u),

where

f1(u) := 40π2u2 − 12πu+ 12− (1 + 2u) sec2(πu)
(
(3 + 4u) tan(πu)− π(u+ 2u2)

)
.

We can easily verify that the minimum value of f1(u) in (0, 13 ] is

f1

(
1

3

)
=

40π2

9
− 8π

27
− 260

√
3

9
+ 12 ≈ 4.8970 > 0,

which implies that λ(u) < λ11(u) holds for all 0 < u ≤ 1
3 . Similarly, we can prove that

λ(u) < λ12(u) holds for all 0 < u ≤ 1
3 . This implies that (2.6) holds in this case. The two

cases together prove (2.6).
Then we consider three cases to prove (2.7). One has

tψ′′(t) + ψ′(t) = 2t+ 2λ sec2(πu)
(
(th′′(t) + h′(t)) tan(h(t)) + th′(t)2(3tan2(h(t)) + 1)

)
.
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Case 2.7.1: Let t ≥ 1. Since λ ≥ 0, we have ψ′(t) > 0 and ψ′′(t) > 0, therefore
tψ′′(t) + ψ′(t) > 0 holds for this case.

Case 2.7.2: Let 2u < t < 1. Then th′′(t) + h′(t) = π(u+2u2)(t2−4u2)

(t+2u)4
> 0, therefore

tψ′′(t) + ψ′(t) > 0 also holds for this case.
Case 2.7.3: Let 0 < t ≤ 2u. We have, by Lemma 2.2,

(th′′(t) + h′(t)) tan(h(t)) + th′(t)2(3tan2(h(t)) + 1))

=
π(u+ 2u2)(t2 − 4u2)

(t+ 2u)
4 tan(h(t)) + 3t tan2(h(t))

(u+ 2u2)
2
(t2 − 4u2)

(t+ 2u)
4 th′(t)2

≥ π(u+ 2u2)(t2 − 4u2)

(t+ 2u)
4 tan(h(t)) + 3t tan(h(t))

4u

3(1 + 2u)πt

(u+ 2u2)
2
(t2 − 4u2)

(t+ 2u)
4 + th′(t)2

=
π(u+ 2u2)t2 tan(h(t))

(t+ 2u)
4 + th′(t)2

>0.

This implies that tψ′′(t) + ψ′(t) > 0, for all 0 < t ≤ 2u.
From three cases above we conclude that when 0 < u ≤ 1

3 and 0 < λ ≤ λ(u), (2.7) holds.
Next, we discuss two cases to prove that (2.8) holds.
Case 2.8.1: Let 0 < t < 1. We have ψ′(t) < 0 and ψ′′(t) > 0, therefore tψ′′(t)−ψ′(t) > 0

holds for this case.
Case 2.8.2: Let t ≥ 1. Due to the fact that th′′(t) − h′(t) > 0 and tan(h(t)) ∈

(− tan(πu), 0], we have

tψ′′(t)− ψ′(t)

=
2

t
+ 2λ sec2(h(t))

(
(th′′(t)− h′(t)) tan(h(t)) + th′(t)2(3tan2(h(t)) + 1)

)
≥ 2

t
+ 2λ sec2(h(t))

(
−t tan(πu)h′′(t) + tan(πu)h′(t) + th′(t)2

)
=2λ sec2(h(t))

(
1

λt sec2(h(t))
− 2π(u+ 2u2)t tan(πu)

(t+ 2u)
3 − π(u+ 2u2) tan(πu)

(t+ 2u)
2 +

π2(u+ 2u2)
2
t)

(t+ 2u)
4

)

≥2λ sec2(h(t))

(
1

λt sec2(πu)
− 2π(u+ 2u2)t tan(πu)

(t+ 2u)
3 − π(u+ 2u2) tan(πu)

(t+ 2u)
2 +

π2(u+ 2u2)
2
t)

(t+ 2u)
4

)

=
2 sec2(h(t))

sec2(πu)t(t+ 2u)
4 ω2(t ; u, λ),

where

ω2(t ; u, λ) :=

(t+ 2u)4 − λπ(u+ 2u2) sec2(πu)
(
2 tan(πu)t2(t+ 2u) + tan(πu)t(t+ 2u)2 − π(u+ 2u2)t2

)
.

By solving ω2(1;u, λ) > 0 and ∂iω2(t;u,s)
∂ti |t=1 > 0 for i = 1, 2, 3, we can get the upper

bounds of λ, denoted by λ2i(u) for i = 0, 1, 2, 3, respectively. From Lemma 2.3, we can infer
that when λ < min{λ20(u), λ21(u)}, ξ(t) > 0 holds, where

λ20(u) :=
(1 + 2u)

2

πu sec2(πu) ((3 + 2u) tan(πu)− πu)
,

λ21(u) :=
4(1 + 2u)2

πu sec2(πu) ((9 + 16u+ 4u2) tan(πu)− 2π(u+ 2u2))
.
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Also we can find that λ20(u) > 0 and λ21(u) > 0 for u > 0. Now we prove that for all
0 < u ≤ 1

3 , λ(u) < λ20(u) holds. One has

λ20(u)− λ(u) =
(1 + 2u)

2

πu sec2(πu) ((3 + 2u) tan(πu)− πu) (40π2u2 − 12πu+ 12)
f2(u),

where

f2(u) := 40π2u2 − 12πu+ 12− (1 + 2u) sec2(πu) ((3 + 2u) tan(πu)− πu) .

We can easily verify that the minimum value of f2(u) in (0, 13 ] is

f2

(
1

3

)
=

4

9
(10π2 − 4π − 55

√
3) + 12 ≈ 7.9408 > 0,

which implies that λ(u) < λ20(u) holds for all 0 < u ≤ 1
3 . Similarly, we can prove that

λ(u) < λ21(u) holds for all 0 < u ≤ 1
3 . This implies that (2.8) holds in this case. The two

cases together prove (2.8).
Next, we consider three cases to prove that (2.9) holds. One has

ψ′′′(t) = − 2

t3
+ 2λ sec2(h(t))φ2(t) = −2 sec2(h(t))ζ(t), (5.5)

where

ζ(t) :=
1

t3 sec2(h(t))
− λφ2(t).

Case 2.9.1: Let 0 < t ≤ 1. In this situation, we have tan(h(t)) > 0, together with
h′(t) < 0, h′′(t) > 0 and h′′′(t) < 0, one can easily prove that ζ(t) > 0. Therefore (2.9) holds
for this case.

We first assume that u > 1
4 while discussing Case 2.9.2 and Case 2.9.3 (that is t > 1).

Case 2.9.2: Let 1 < t ≤ 6u
4u−1 . Then −π

4 ≤ h(t) < 0, −1 ≤ tan(h(t)) < 0. We have

ζ(t)≥ 1

2t3
+ λ(−3h′(t)h′′(t) + 20h′(t)3 + h′′′(t))

=
1

2t3
− λ

(
20π3(u+ 2u2)

3

(t+ 2u)
6 +

6πu(1 + 2u)

(t+ 2u)
4 − 6π2u2(1 + 2u)

2

(t+ 2u)
5

)

=
1

2t3(t+ 2u)
6ω3(t;u, λ),

where

ω3(t;u, λ)

:= (t+ 2u)6 − 4λπ(u+ 2u2)
(
10π2(u+ 2u2)

2
t3 + 3t3(t+ 2u)

2 − 3π(u+ 2u2)t3(t+ 2u)
)
.

By solving ω3(1;u, λ) > 0 and ∂iω3(t;u,λ)
∂ti |t=1 > 0 for i = 1, . . . , 5, we can get the upper

bounds of λ, denoted by λ3i(u) for i = 0, 1, . . . , 5, respectively. From Lemma 2.3, we can
infer that when λ < λ30(u), ζ(t) > 0 holds, where

λ30(u) :=
(1 + 2u)

3

40π3u3 − 12π2u2 + 12πu
.
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It should be pointed out that λ30(u) actually is λ(u). Therefore (2.9) holds for this case.
Case 2.9.3: Let t > 6u

4u−1 . Then − tan(πu) < tan(h(t)) < −1. We have

ζ(t)≥ 1

t3 sec2(πu)
− λ

(
12h′(t)h′′(t)− 4 tan(πu)(3tan2(πu) + 2)h′(t)

3 − h′′′(t) tan(πu)
)

=
1

t3sec2(πu)
− λ

(
4π3(u+ 2u2)

3
tan(πu)(3tan2(πu) + 2)

(t+ 2u)
6

+
6πu(1 + 2u) tan(πu)

(t+ 2u)
4 − 24π2u2(1 + 2u)

2

(t+ 2u)
5

)

=
1

t3sec2(πu)(t+ 2u)
6ω4(t;u, λ),

where

ω4(t;u, λ) := (t+ 2u)6 − λπ sec2(πu)
(
4π2 tan(πu)(3tan2(πu) + 2)(u+ 2u2)

3
t3

+6 tan(πu)(u+ 2u2)t3(t+ 2u)
2 − 24π(u+ 2u2)

2
t3(t+ 2u)

)
.

By solving ω4(
6u

4u−1 ;u, λ) > 0 and ∂iω4(t;u,λ)
∂ti | 6u

4u−1
> 0 for i = 1, . . . , 5, we can get the

upper bounds of λ, denoted by λ4i(u) for i = 0, 1, . . . , 5, respectively. From Lemma 2.3, we
can infer that λ < λ40(u), ζ(t) > 0 holds, where

λ40(u) :

=
128(1 + 2u)

3

27π sec2(πu)
(
π2(4u− 1)

3
(3tan2(πu) + 2) tan(πu) + 24(4u− 1) tan(πu)− 24π(4u− 1)

2
) .

It follows from (5.5) that ψ′′′(t) < 0. Also we can find that λ40(u) > 0 for all 1
4 < u ≤ 1

3 .

For any u ∈ ( 14 ,
1
3 ], we have tan(πu) ∈ (1,

√
3]. Then

λ40(u)≥
32(1 + 2u)

3

27π(4u− 1)
(
11
√
3π2(4u− 1)

2
+ 24

√
3− 24π(4u− 1)

)
≥ (1 + 2u)

3

π(4u− 1)
(
11

√
3π2(4u− 1)

2
+ 24

√
3− 24π(4u− 1)

) .
Let

f3(u) := 4u(10π2u2 − 3πu+ 3)− (4u− 1)
(
11
√
3π2(4u− 1)2 + 24

√
3− 24π(4u− 1)

)
.

We can easily verify that the minimum value of f3(u) in ( 14 ,
1
3 ] is

f3

(
1

3

)
=

(40− 11
√
3)π2

27
+

4π

3
+ 4− 8

√
3 ≈ 1.9895 > 0.
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This implies that f3(u) > 0 for u ∈ ( 14 ,
1
3 ]. Hence, we have

4πu(10π2u2 − 3πu+ 3) > π(4u− 1)
(
11

√
3π2(4u− 1)2 + 24

√
3− 24π(4u− 1)

)
.

Furthermore, we can conclude that λ40(u) > λ(u), which implies that (2.9) holds in this
case.

Now we come to the situation that 0 < u ≤ 1
4 . For any t > 1, we have

−π
4
≤ −πu < h(t) < 0, − 1 < tan(h(t)) < 0,

the proof of (2.9) in this situation is similar to the proof in Case 2.9.2.
From the above discussions, the proof of the lemma is finished.

Appendix B. Proof of Lemma 2.9

Proof. Let

v(t) := − log(t) + λtan2(h(t)) , 0 < u ≤ 1

3
, 0 < λ ≤ λ(u).

Then

ψ(t) =
t2 − 1

2
+ v(t),

and

ψ(βt)− ψ(t) =
1

2
(β2 − 1)t2 + v(βt)− v(t).

As β ≥ 1, to prove the lemma, it is sufficient to show that the function v(t) is a decreasing
function. For this purpose, we have

v′(t)=−1

t
+ 2λh′(t) tan(h(t)) sec2(h(t))

=−1

t
− 2λπ(u+ 2u2)

(t+ 2u)
2 tan(h(t)) sec2(h(t)).

If 0 < t ≤ 1, then tan(h(t)) ≥ 0, so v′(t) < 0.
If t > 1, using the fact that − tan(πu) < tan(h(t)) < 0, we have

v′(t)≤−1

t
+

2λπ(u+ 2u2)

(t+ 2u)
2 tan(πu) sec2(πu)

=− 1

t(t+ 2u)
2ω5(t;u, λ),

where

ω5(t;u, λ) := (t+ 2u)2 − 2λ(u+ 2u2) tan(πu) sec2(πu)t.

Since 0 < λ ≤ λ(u), we have

ω5(1;u, λ)≥(1 + 2u)2 − 2λ(u)(u+ 2u2) tan(πu) sec2(πu)

=
(1 + 2u)

2

2(10π2u2 − 3πu+ 3)
f4(u),
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where

f4(u) := 2(10π2u2 − 3πu+ 3)− (1 + 2u)2 tan(πu) sec2(πu).

We can easily verify that the minimum value of f4(u) in (0, 13 ] is

f4

(
1

3

)
=

20π2 − 100
√
3

9
+ 6− 2π ≈ 2.4043 > 0,

which implies that ω5(1;u, λ) > 0, for all u ∈ (0, 13 ]. Similarly, we can deduce that
∂ω5(t;u,λ)

∂u |t=1 > 0 for all u ∈ (0, 13 ]. From Lemma 2.3, we can easily verify that ω5(t;u, λ) > 0
for all 0 < u ≤ 1

3 and 0 < λ ≤ λ(u), which implies that v′(t) < 0 for t > 1. This finishes the
proof of the lemma.

Appendix C. Proof of Lemma 4.2

Proof. Let ρ(s) be the inverse function of − 1
2ψ

′(t). Then

−t+ 1

t
− 2λh′(t) tan(h(t)) sec2(h(t)) = 2s.

For all t ∈ (0, 1], we have

tan(h(t)) sec2(h(t)) = − 1

2λh′(t)

(
2s+ t− 1

t

)
=

(t+ 2u)
2

2λπu(1 + 2u)

(
2s+ t− 1

t

)
≤ (1 + 2u)s

λπu
.

Hence, putting t = ρ
((

1 + 1√
1+2κ

)
δ
)
, we have −ψ′(t) = 2

(
1 + 1√

1+2κ

)
δ ≤ 4δ. Then

tan3(h(t)) ≤ tan(h(t)) sec2(h(t)) ≤ 4(1 + 2u)δ

λπu
⇒ tan(h(t)) ≤

(
4(1 + 2u)

λπu

) 1
3

δ
1
3 .

We have, by Lemma 2.2,

1 + tan(h(t)) >
4u

3π(1 + 2u)t
, 0 < t ≤ 1.

This means that

1

t
<

3π(1 + 2u)

4u
(1 + tan(h(t))) , 0 < t ≤ 1.

Note that h′′(t) = 2πu(1+2u)

(t+2u)3
< π(1+2u)

4u2 and h′(t)2 = π2u2(1+2u)2

(t+2u)4
< π2(1+2u)2

16u2 for all 0 < t ≤
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1. We have

ᾱ≥ 1

(1 + 2κ)ψ′′(t)

=
1

(1 + 2κ)

1

1 + 1
t2 + 2λ sec2(h(t))(h′′(t) tan(h(t)) + h′(t)

2
(3tan2(h(t)) + 1))

=
1

(1 + 2κ)

1

1 + 1
t2 + 2λh′′(t) tan(h(t)) sec2(h(t)) + 2λh′(t)

2 (
3tan2(h(t)) sec2(h(t)) + sec2(h(t))

)
≥ 1

(1 + 2κ)

1 +
9π2(1 + 2u)

2

16u2

(
1 +

(
4(1 + 2u)

λπu

) 1
3

δ
1
3

)2

+2λh′′(t)
4(1 + 2u)δ

λπu
+ 2λh′(t)

2

(
3

(
4(1 + 2u)

λπu

) 4
3

δ
4
3 +

(
4(1 + 2u)

λπu

) 2
3

δ
2
3 + 1

))−1

≥ 1

(1 + 2κ)

1 +
9π2(1 + 2u)

2

16u2

(
1 +

(
4(1 + 2u)

λπu

) 1
3

δ
1
3

)2

+
2(1 + 2u)

2
δ

u3
+
λπ2(1 + 2u)

2

8u2

(
3

(
4(1 + 2u)

λπu

) 4
3

δ
4
3 +

(
4(1 + 2u)

λπu

) 2
3

δ
2
3 + 1

))−1

Furthermore, we have, by Corollary 2.7 (i.e., 2δ ≥
√
Ψ(v) ≥ 1),

ᾱ≥ 1

(1 + 2κ)

(2δ)
4
3 +

9π2(1 + 2u)
2

16u2

(
(2δ)

2
3 +

(
4(1 + 2u)

λπu

) 1
3

δ
1
3 (2δ)

1
3

)2

+
2(1 + 2u)

2
δ

u3
(2δ)

1
3

+
λπ2(1 + 2u)

2

8u2

(
3

(
4(1 + 2u)

λπu

) 4
3

δ
4
3 +

(
4(1 + 2u)

λπu

) 2
3

δ
2
3 (2δ)

2
3 + (2δ)

4
3

))−1

Let

C(λ, u) :=2
4
3

1 +
9π2(1 + 2u)

2

16u2

(
1 +

(
2(1 + 2u)

λπu

) 1
3

)2

+
(1 + 2u)

2

u3

+
λπ2(1 + 2u)

2

8u2

(
3

(
2(1 + 2u)

λπu

) 4
3

+

(
2(1 + 2u)

λπu

) 2
3

+ 1

))
. (5.6)

Then

ᾱ ≥ 1

(1 + 2κ)C(λ, u)δ
4
3

.

This finishes the proof of the lemma.
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