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are frequently collected in a large variety of research areas such as genomics, functional mag-
netic resonance imaging, tomography, economics, and finance. Analysis of high-dimensional
data poses many challenges and has attracted much recent interests in a number of fields
such as applied math, electronic engineering, and statistics. Since we are considering a high
dimensional linear regression problem, a key assumption is the sparsity of the true coeffi-
cient. This is the so-called the high-dimensional sparse linear model. The ordinary least
squares method is not consistent in this setting since using least squares will not lead to a
sparse solution in this context. In recent years, many new methods have been proposed to
solve this problem. Methods based on L1 penalization or constrained L1 minimization have
been extensively studied, see, e.g., [4, 14, 32, 35], where they demonstrated the fundamental
result that L1-penalized least squares estimators achieve the rate O(

√
s(log p)/n), which

is very close to the oracle rate O(
√

s/n). The lasso method has nice properties under the
Gaussian assumption and a known variance. However, the Gaussian assumption may not
hold in practice and the estimation of the standard deviation is not easy.

Quantile regression introduced by Koenker and Bassett [26] has become a popular and
important tool in statistical analysis, which includes the well-known median regression or
least absolute deviation (LAD) as a special case. A comprehensive review can be found in
Koenker [25] and a general overview of many interesting recent developments in He [22].
More recently, LAD regression and quantile regression have been used for dealing with the
cases where the error distribution is unknown or may have a heavy tail, see, e.g., [2, 6, 20,
35, 36]. Belloni and Chernozhukov [2] studied the L1-penalized quantile regression in high-
dimensional sparse models where the dimensionality could be larger than the sample size.
We refer to their method as robust Lasso (R-Lasso). They showed that the R-Lasso estimate
is consistent at the near-oracle rate, and gave conditions under which the selected model
includes the true model, and derived bounds on the size of the selected model, uniformly
in a compact set of quantile indices. Bradic et al. [6] introduced the penalized composite
likelihood method for robust estimation in ultra-high dimensions with focus on the efficiency
of the method. They still assumed sub-Gaussian tails. Wang et al. [36] considered the
nonconvex penalized quantile regression in the ultra-high dimensional setting and showed
that the oracle estimate belongs to the set of local minima of the nonconvex penalized
quantile regression, under mild assumptions on the error distribution. Wang [35] studied
the L1-penalized LAD regression and showed that the estimate achieves near oracle risk
performance with a nearly universal penalty parameter and established a sure screening
property for such an estimator. Fan et al. [20] studied the penalized quantile regression with
the weighted L1-penalty (WR-Lasso) and proposed a two-step procedure, called adaptive
robust Lasso (AR-Lasso). Our theoretical results also reveal that adaptive choice of the
weight vector is justified theoretically to possess the oracle property and the asymptotic
normality. Note that properties of the estimator in [2] were presented under restricted
eigenvalue type conditions and smooth assumptions on the density function of the noise,
while in [20] different conditions on the model error distribution and adaptive choice of the
weight vector are needed. However, in [35] they allowed for new interesting general noise
structure and also the noiseless case.

Motivated by the above arguments and the uncertainty of the role of traditional Chinese
medicine, we want to find out some valuable information which may support the important
role of integrative traditional Chinese medicine in clinic study. In order to do so, in this paper
we provide a high-dimensional L1-penalized Quantile Regression for traditional Chinese
medicine syndrome manifestation. In mathematics and statistics, an interesting question is
whether the results in [35] can be extended from L1-penalized LAD to L1-penalized quantile
regression for the fixed design case.
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This paper will focus on this issue and we give an affirmative answer. We consider
the selection of the penalty level for the L1-penalized quantile regression, which does not
depend on any unknown parameters or the noise distribution. Our analysis shows that the
L1-penalized quantile regression has near oracle properties as given in [35] for L1-penalized
LAD. Similarly, we do not have any assumptions on the moments of the noise and we only
need a scale parameter to control the tail probability of the noise. The result is true for a
wide range of noise distributions, even for Cauchy distributed noise, where the first order
moment does not exist.

Moreover, the L1-penalized quantile regression is a convex optimization problem, and
it looks computationally efficient. However, the practical computational methods for quan-
tile regression estimation now mainly cover three algorithms: simplex, interior point, and
smoothing, for details, see, e.g., [15,25]. In view of the high-dimensional data analysis, this
paper will apply another kind of algorithms to find the L1-penalized QRE. We introduce an
alternating direction method to find the estimator of the L1-penalized QR model, and the
global convergence result is maintained for the proposed method.

This paper is organized as follows. We introduce the L1-penalized quantile regression
for high-dimensional linear models and discuss the choice of the penalty level in Section 2.
Then, we present the main results about the L1-penalized quantile regression estimation
error and several critical lemmas in Section 3. We propose an alternating direction method
to find the estimator and report numerical results to demonstrate the efficacy of our method
in Section 4. Technical lemmas and proofs of theorems are given in Appendix.

2 L1-penalized Quantile Regression

We will introduce the L1-penalized quantile regression for high-dimensional linear mod-
els and then discuss the choice of the penalty level. We begin with the following high-
dimensional linear regression model

Y = Xβ + ε (2.1)

where X = (x1, x2, · · · , xn)
T = (X1, X2, · · · , Xp) is an n × p fixed design matrix, Y =

(y1, y2, · · · , yn)T is an n-dimensional response/observation vector, β = (β1, β2, · · · , βp)
T is

a p-dimensional regression coefficient vector, and ε = (ε1, ε2, · · · , εn)T is an n-dimensional
measurement error/noise vector. Throughout the paper, we assume X = (X1, X2, · · · , Xp)
with each vector Xi being normalized such that ∥Xi∥2 =

√
n for i = 1, 2, · · · , p, and ε =

(ε1, ε2, · · · , εn)T with all components εi(i = 1, 2, · · · , n) are independently distributed and
satisfy P (εi ≤ 0) = τ for some known constant τ ∈ (0, 1). Under this model, xT

i β is
the conditional τth-quantile of yi given xi. We will focus on the high dimensional case
where the number of observations n is much less than the number of unknown coefficients
p. For the high-dimensional linear regression problem, a key assumption is the sparsity of
the true coefficient β∗, which guarantees the model identifiability and enhances the model
fitting accuracy and interpretability, see, e.g, [21, 34]. We assume T = supp(β∗) with the
cardinality of T , |T | = s < n. The set T of nonzero coefficients or significant variables of
β∗ is unknown. In what follows, the parameters β, p and s are implicitly dependent of the
sample size n, but we omit the index n in our notation whenever there is no confusion.

To reconstruct the high-dimensional linear model and estimate the sparse vector β∗, we
consider the following L1-penalized quantile regression problem

min
β

Qτ (Y −Xβ) + λ∥β∥1 (2.2)
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where Qτ (Y −Xβ) =
∑n

i=1 ρτ (yi − xT
i β) with ρτ (u) = u(τ − 1{u ≤ 0}) is the quantile loss

function, ∥β∥1 =
∑p

i=1 |βi| is the L1 norm of β, and λ ≥ 0 is the penalty/regularization
parameter. When τ = 1

2 , it is the median regression and the so-called L1-penalized least
absolute deviation (L1-penalized LAD). The use of quantile loss function in (2.2) is to deal
with the cases where the error distribution is unknown or may have a heavy tail. Since
P (ε ≤ 0) = τ , the solution of (2.2) can be interpreted as the sparse estimation of the
conditional τth quantile. Then the L1-penalized quantile regression estimator can be defined
as

β̂ ∈ argminβQτ (Y −Xβ) + λ∥β∥1. (2.3)

When τ = 1
2 , the above becomes the L1-penalized LAD estimator. Recently, the L1-

penalized LAD was studied in several papers, where the variable selection and estima-
tion properties were discussed, see, e.g., [2, 27, 35]. Especially, Wang [35] proved that the
L1-penalized LAD estimator achieves near oracle risk performance with a nearly univer-
sal penalty parameter, while they allowed for new interesting general noise structure and
also the noiseless case. We will extend these results from the L1-penalized LAD to the
L1-penalized quantile regression estimator.

We below consider the choice of the penalty level for the L1-penalized quantile regression
estimator. We will choose a penalty λ that dominates the estimation error with large
probability. Following the general principle of choosing the penalty introduced in [2–4], we
know that the subdifferential of Qτ evaluated at the point of true coefficient β∗ measures the
estimation error in the linear regression model. For the L1-penalized quantile regression, we
choose a penalty λ such that it is greater than the maximum absolute value of subdifferential
of Qτ at β∗ with high probability. That is, we need to find a penalty level λ for a given
constant c > 1 and a given small probability α such that

P (λ ≥ c∥S∥∞) ≥ 1− α (2.4)

where the subdifferential of Qτ (Y −Xβ) at the point of true coefficient β = β∗ is specified
by S = XTw = XT (w1, w2, · · · , wn)

T with wi = 1{yi − xT
i β

∗ ≤ 0} − τ . Note that when
εi = yi − xT

i β
∗ = 0 we can take the ith partial subdifferential of Qτ as wi = 1 − τ , see,

e.g., [33]. Since all εi are independently distributed and satisfy P (εi ≤ 0) = τ , we have
P (wi = 1−τ) = P (εi ≤ 0) = τ and P (wi = −τ) = P (εi > 0) = 1−τ . Then the distribution
of w is known and hence the distribution of ∥S∥∞ is easy to know for any given X, which
does not depend on any unknown parameters. Thus, the 1 − α quantile of ∥S∥∞ is known
for any given X and then the inequality (2.4) holds when we take this 1 − α quantile of
∥S∥∞ as λ/c. Note that this penalty is considered in [2]. As in [35], to approximate this
value, we employ the following choice of penalty.

λ = c
√

2A(α)n log p, (2.5)

where A(α) > 0 is a constant with 2p1−A(α) ≤ α.
The following proposition states that the inequality (2.4) holds for the above choice of

penalty.

Proposition 2.1. The choice of penalty λ = c
√

2A(α)n log p with A(α) > 0 and 2p1−A(α) ≤
α satisfies the inequality (2.4).

The proof of the above proposition is similar to that in the L1-penalized LAD case in [35].
The main idea is to bound the tail probability of XT

j w for j = 1, 2, · · · , p with the help of
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Hoeffding inequality and union bounds. From its proof and taking A(α) = 2, we can easily
obtain that the special choice of penalty λ = 2c

√
n log p satisfies the inequality

P (λ ≥ c∥S∥∞) ≥ 1− 2

p
. (2.6)

Note that the above result on the choice of penalty for the L1-penalized quantile regres-
sion is independent of τ . Clearly, the above penalties are simple and they do not require any
assumptions on matrix X or value of p and n, and the distribution of measurement errors
εi. As long as all εi are independent random variables, the choices satisfy our requirement.
This is a big advantage over the traditional Lasso method, which significantly relies on the
Gaussian assumption and the variance of the errors. As mentioned in [35], these choices
are from union bound and concentration inequalities, and they are not very tight when the
sample size n is relatively small. Hence in practice, these penalty levels tend to be relatively
large and can cause additional bias to the estimator. From practical point of view, we will
need a smaller penalty level if the sample size is not large. For the L1-penalized quantile re-
gression, we can choose the following refined asymptotic penalty level as in the L1-penalized
LAD, which relies on moment conditions of X and relative size of p and n. This choice could
be smaller than the previous ones and it will cause less bias in practice.

Proposition 2.2. Suppose Φ−1(1− α/(2p)) ≤ (q − 2)
√
log n, and for some constant q > 2

B = sup
n

sup
1≤j≤p

1

n
∥Xj∥qq < ∞.

Then the choice of penalty λ = c
√
nΦ−1(1− α/(2p)) satisfies the inequality

P (λ ≥ c∥S∥∞) ≥ 1− α(1 + zn)

where zn → 0(n → ∞).

3 Near Oracle Property

This section deals with the properties of the L1-penalized quantile regression estimator β̂
in (2.3). We will establish the upper bound for estimation error and consider the variable
selection properties for both noisy and noiseless cases. For simplicity, in this section we will
use λ = 2c

√
n log p as the default choice of penalty, and we assume that this penalty satisfies

λ ≥ c∥S∥∞ for some fixed constant c > 1. This implies the following important property of

the L1-penalized quantile regression estimator β̂. Setting h = β∗ − β̂ and c̄ = c−1
c+1 , we have

h ∈ ∆c̄ where the restricted set ∆c̄ is specified as

∆c̄ = {δ ∈ Rp : ∥δT ∥1 ≥ c̄∥δTC∥1,where T ⊂ {1, 2, · · · ,p} and |T| ≤ s}.

Here, δT denotes the p-dimensional vector such that (δT )i = (δ)i if i ∈ T and otherwise

(δT )i = 0. In fact, it holds by (2.3) and h = β∗ − β̂ that

Qτ (Y −Xβ̂) + λ∥β̂∥1 = Qτ (Xh+ ε) + λ∥β̂∥1 ≤ Qτ (ε) + λ∥β∗∥1.

Let T = supp(β∗). Clearly, h = hT + hTC with hT = β∗
T − β̂T and hTC = −β̂TC . Then

Qτ (Xh+ ε)−Qτ (ε) ≤ λ(∥hT ∥1 − ∥hTC∥1). (3.1)
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From the convex property of Qτ (Y −Xβ) and XTw is in its subdifferential at the point of
β = β∗, we obtain that

Qτ (Xh+ ε)−Qτ (ε) ≥ ⟨XTw,−h⟩ ≥ −∥h∥1∥XTw∥∞ ≥ −λ

c
(∥hT ∥1 + ∥hTC∥1).

It is easy to derive that ∥hT ∥1 ≥ c̄∥hTC∥1 with c̄ = c−1
c+1 .

It is interesting to mention that the fact h ∈ ∆c̄ is not only important for L1-penalized
quantile regression but also for the arguments of the classical lasso and the square-root lasso
analysis, see, e.g., [2–4].

3.1 Conditions on design matrix

In order to study the near oracle property of the L1-penalized quantile regression estimator,
we first introduce some concepts on the design matrix X, which is related to the sparse
recovery conditions in the compressed sensing (CS). CS is an interesting and novel area of
research with many applications, see the papers by Donoho [18] and Candès, Romberg and
Tao [12, 13]. In particular, Candès and Tao [13] introduced a restricted isometry property
(RIP) of a sensing/design matrix which guarantees to recover a sparse solution of sparse
signal recovery via L1-norm relaxation. After that, several other sparse recovery conditions
were introduced, such as null space properties [16] and s-goodness [23,24]. For more details,
see the recent papers [7, 8, 10] and a new monograph [19].

For simplicity, we follow the description as in [35]. First, we define two important
constants λu

s and λl
s as

λu
s = sup

d∈Rp,0<∥d∥0≤s

∥Xd∥22
n∥d∥22

, λl
s = inf

d∈Rp,0<∥d∥0≤s

∥Xd∥22
n∥d∥22

.

Here ∥d∥0 ≤ s says that the vector d has at most s nonzero entries, which is also called
s-sparse vector. The definition of the above constants is related to the restricted isometry
constant (RIC), which is just the maximum value of λu

s − 1 and 1 − λl
s. We also need

another important concept called the restricted orthogonal constant θs1,s2 , which is the
smallest number such that for any s1 and s2 sparse vectors d1 and d2 with disjoint supports

|⟨Xd1, Xd2⟩| ≤ nθs1,s2∥d1∥2∥d2∥2.

It is well-known from [12, 18] that for i.i.d. Gaussian random design matrix, i.e. Xij ∼
N(0, 1), for any 0 < c < 1, there exist constants C1, C2 > 0 such that when s ≤ C1n/(log p),

P (max{λu
s − 1, 1− λl

s} ≤ c) ≥ 1−O(e−C2p). (3.2)

This means that if s log p = o(n) for large enough n, λl
s will be bounded away from zero by

any given constant c ∈ (0, 1), and λu
s be bounded above by any given constant greater than

1 with high probability. Moreover, it holds from the proof of Lemma 12 in [31] that the
normalizing constant in our setting will not affect the above results in the case of Gaussian
random design.

We below recall the following restricted eigenvalue of design matrix X, see [2, 4, 35] for
details. That is,

κl
s(c̄) = min

h∈∆c̄

∥Xh∥1
n∥hT ∥2

.

To show the near oracle property of the L1-penalized quantile regression estimator, we
should ensure that κl

s(c̄) is bounded away from 0 or approaches 0 slowly enough as in the L1

penalized LAD case. For simplicity, we will write κl
s(c̄) as κ

l
s whenever there is no confusion.
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3.2 Conditions on measurement error

Before giving our main results, we first present some useful lemmas. From (3.1), we obtain
that

Qτ (Xh+ ε)−Qτ (ε) ≤ λ∥hT ∥1. (3.3)

Then we try to bound the estimation error via investigating the random variable 1√
n
(Qτ (Xh+

ε)−Qτ (ε)). To do so, we define a random variable B(d) for any vector d ∈ Rp as

B(d) =
1√
n
|(Qτ (Xd+ ε)−Qτ (ε))− E(Qτ (Xd+ ε)−Qτ (ε))|.

Then we have the following important property of B(d), which is very useful in the proof of
our main result.

Lemma 3.1. Suppose all εi are independent random variables. For p > n and p > 3
√
s, we

have

P

(
sup

∥d∥0=s,∥d∥2=1

B(d) ≥ (1 + 2C2

√
λu
s )
√
2s log p

)
≤ 2p−4s(C2

2−1) (3.4)

where C2 > 1 is a constant.

This lemma tells us that with probability at least 1−2p−4s(C2
2−1), for any s sparse vector

d ∈ Rp,

1√
n
|(Qτ (Xd+ ε)−Qτ (ε))− E(Qτ (Xd+ ε)−Qτ (ε))| ≤ (1 + 2C2

√
λu
s )
√
2s log p∥d∥2.(3.5)

This means that the value of the random variable 1√
n
(Qτ (Xh+ε)−Qτ (ε)) is very close to its

expectation with high probability. Clearly, the expectation is not random and much easier
to analyze than the random variable itself. We now consider the properties of E(Qτ (Xh+
ε)−Qτ (ε)), or its component E(ρτ (εi + x)− ρτ (εi)).

Lemma 3.2. For any continuous random variable εi, the following equation holds

dE(ρτ (εi + x)− ρτ (εi))

dx
= τ − P (εi ≤ −x). (3.6)

In order to give the lower bound of E(ρτ (εi + x)− ρτ (εi)), we need some conditions on
the measurement errors εi. For the error distribution of εi, we assume there is a positive
constant a > 0 such that

P (εi ≥ x) ≤ (1− τ)
1

1 + ax
for all x ≥ 0

P (εi ≤ x) ≤ τ
1

1 + a|x|
for all x < 0. (3.7)

The above is the scale assumption on the measurement errors with a scale parameter a, which
is from Wang [35]. This is a very weak condition and even Cauchy distribution satisfies it.
Based on this assumption, we give the following lemma. Here a∧ b := min{a, b} for a, b ∈ R.
Lemma 3.3. Assume the random variable εi satisfies the scale assumption (3.7). For any
given real number x ∈ R, the following inequality holds

E(ρτ (εi + x)− ρτ (εi)) ≥
a

8
(τ ∧ (1− τ))|x|(|x| ∧ 3

a
). (3.8)

For simplicity in subsequent analysis, we just employ the above weak bound, which
clearly can be improved.
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3.3 Main results

We will present our main result based on the following conditions.

(C1) : λl
s > θs,s(

1

c̄
+

1

4
),

(C2) :
3
√
n

16
(τ ∧ (1− τ))κl

s > λ
√

s/n+ C1

√
2s log p(1.25 + 1/c̄).

Theorem 3.4. Consider the high-dimensional linear regression model (2.1). Assume ran-
dom variables εi(i = 1, 2, · · · , n) are independent and distribution satisfying (3.7), and con-

ditions (C1) and (C2) hold. Then with probability at least 1−2p−4s(C2
2−1)+1, the L1-penalized

quantile regression estimator β̂ satisfies

∥β̂ − β∗∥2 ≤ C

√
2s log p

n
,

where C =
8λu

s (c
√
2+1.25C1+C1/c̄)

a(τ∧(1−τ))(λl
s−θs,s( 1

c̄+
1
4 ))

2

√
1 + 1

c̄ with constants C1 = 1 + 2C2

√
λu
s and C2 > 1.

From the above theorem we easily obtain that with high probability,

∥β̂ − β∗∥2 = O(

√
s log p

n
). (3.9)

This claims that asymptotically, the L1-penalized quantile regression estimator has near
oracle performance and hence it matches the asymptotic performance of the Lasso method
with a known variance.

Remark Actually, θs,s can be bounded by λl
s and λu

s and the condition (C1) can be
replaced by some similar RIP conditions; see for example [8, 10]. We keep it here just to
simplify the arguments. Condition (C2) states that the columns of X cannot be too sparse.
Otherwise, if the columns of X are sparse, then the L1 norm of columns of X will be small.
Thus, the value κl

s will be small.
It is not hard to know from the above theorem that the L1-penalized quantile regression

estimator will select most of the significant variables with high probability. This implies
that the L1-penalized quantile regression method will select a model that contains all the
variables with large coefficients of β∗. Thus, if all the nonzero coefficients are large enough
in terms of absolute value, then the L1-penalized quantile regression method can select all
of them into the model. We summarize it as the following theorem.

Theorem 3.5. Consider the high-dimensional linear regression model (2.1). Let β̂ be the L1-

penalized quantile regression estimator and T̄ = supp(β̂). Then under the same conditions

as in Theorem 3.4, with probability at least 1−2p−4s(C2
2−1)+1, the support of the L1-penalized

quantile regression estimator β̂ satisfies{
i : |β∗

i | ≥ C

√
2s log p

n

}
⊂ T̄ ,

where C is specified in Theorem 3.4.

When there is no noise in the high dimensional linear regression model, i.e., Y = Xβ,
we can show that the L1-penalized quantile regression estimator still has a nice variable
selection property.
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Theorem 3.6. In the noiseless case for the high dimensional linear regression model (2.1),

if we take a penalty level λ such that λ < (τ ∧ (1 − τ))
nκl

s(1)
s , then L1-penalized quantile

regression estimator satisfies β̂ = β∗.

Suppose κl
s(1) are bounded away from 0 for all n and the penalty level λ is specified

by 2
√
n log p. From the above theorem, if

√
log p = o(n) and n is large enough, then the

L1-penalized quantile regression estimator satisfies β̂ = β∗.

4 Numerical Study

In this section, we will use an alternating direction method of multipliers (ADMM) to solve
(2.2), and present some numerical experiments to demonstrate its efficacy. In the simulation
we consider the linear models Y = Xβ+ε with sample matrixX = (x1, x2, · · · , xn)

T ∈ Rn×p

being from Gaussian matrices, and the noise contents E(ε) = 0, Var(ε) = σ2 .

4.1 Alternating direction method of Multipliers

We investigate the proximal mapping of function ρτ first. Note that ρτ (u) = u(τ−1{u ≤ 0}).
It is easy to show that for given α > 0 and ξ ∈ R, the optimal solution of the following
problem

min
u

ρτ (u) +
α

2
∥u− ξ∥2, (4.1)

i.e., the proximal mapping of ρτ , is given by

Proxρτ
(ξ, α) =

 ξ − τ
α , if ξ > τ

α
ξ + 1−τ

α , if ξ ≤ − 1−τ
α

0, if − 1−τ
α < ξ ≤ τ

α .
(4.2)

By introducing a new variable γ := Y −Xβ, (2.2) can be rewritten as

minβ,γ Qτ (γ) + λ∥β∥1
s.t. Xβ + γ − Y = 0.

(4.3)

The augmented Lagrangian function for (4.3) is

Lµ(β, γ; θ) = Qτ (γ) + λ∥β∥1 − ⟨θ,Xβ + γ − Y ⟩+ 1

2µ
∥Xβ + γ − Y ∥2. (4.4)

A typical iteration of ADMM for solving (4.3) is
βk+1 := argminβ Lµ(β, γ

k; θk)
γk+1 := argminγ Lµ(β

k+1, γ; θk)
θk+1 := θk − (Xβk+1 + γk+1 − Y )/µ.

(4.5)

The solution to the second subproblem of (4.5) corresponds to the proximal mapping of
function ρτ . More specifically, the solution γk+1 is given by

γk+1
i = Proxρτ

((Y + µθk −Xβk+1)i, 1/µ), i = 1, . . . , n. (4.6)

The solution to the first subproblem of (4.5) actually is not in closed-form. We thus modify
the first subproblem by a proximal gradient step, which leads to the following subproblem
instead:

βk+1 := argminβ λ∥β∥1 +
1

2ν
∥β − (βk − ν

µ
X⊤(Xβk + γk − Y − µθk))∥2, (4.7)
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where ν < 1/λmax(X
⊤X) is the step size for the proximal gradient step. The optimal

solution of (4.7) is given by the ℓ1 shrinkage operation:

βk+1 := Shrink(βk − ν

µ
X⊤(Xβk + γk − Y − µθk), λν). (4.8)

To summarize, the (linearized) ADMM for solving (4.3) is given by
βk+1 := Shrink(βk − ν

µX
⊤(Xβk + γk − Y − µθk), λν)

γk+1
i := Proxρτ

((Y + µθk −Xβk+1)i, 1/µ), i = 1, . . . , n
θk+1 := θk − (Xβk+1 + γk+1 − Y )/µ.

(4.9)

Theorem 4.1. For given µ > 0, and ν < 1/λmax(X
⊤X), the sequence {(βk, γk, θk)} gen-

erated by the above ADMM from any starting point converges to (β∗, γ∗, θ∗), where (β∗, γ∗)
is a solution of (4.3).

It is a typical alternating direction method of multipliers for minimizing the sum of two
convex functions, so we omit the proof for simplicity. See, e.g., [5, 17, 28, 37, 38] for more
details.

4.2 Example I: Simulated Experiment

Firstly, by considering synthetic data sets, we randomly generate 100 stimulations with noise
ξ ∼ N(0, σ2) (the Normal distribution) and ξ ∼ LN(0, σ2) (Log-Normal distribution which
is one of heavy-tailed distributions ) respectively. We design the true regression quantiles
estimator β∗ from the generated measurements X. By exploiting ADMM to compute the
approximately optimal solution, we denote it as β. The comparison of the estimation error
∥β−β∗∥22, the prediction error 1

n∥Xβ−Xβ∗∥22 and the average CPU time of the two different
noise distributions will show the performance of our approach.

For each data set, the random matrix X, observations vector Y and the true regression
quantiles estimator β∗ are generated by the following MATLAB codes:

s = round(p ∗ 0.05), b = randperm(p),

β∗ = zeros(p, 1), β∗(b(1 : s)) = randn(s, 1),

X = randn(m,n),

Y 1 = Xβ∗ + σ ∗ randn(0, 1),
Y 2 = Xβ∗ + σ ∗ lognrnd(0, 1, n, 1),

where the sparsity s of the true regression quantiles estimator β∗ is always settled as s =
5% × p. The parameter σ will be taken as σ = 0.01 or 0.25. Other related parameters are
given as µ = 1, ν = 1/λmax

(
XTX

)
and the stopping criteria ∥Xβk + γk − Y ∥22 ≤ 10−6.

From Table 1, one can check that λ1 ≈ 0.05
√
n log p and λ2 ≈ 0.1

√
n log p. Compared

with the error and CPU time from the noise of Log-Normal distribution, those of Normal
distributed noise are relatively lower regardless of the parameters λ and τ . Evidently for
any of these parameters, the estimation error and prediction error from Normal noise are
identical, with 2 × 10−4 and 1 × 10−4 respectively, which means the ADMM approach
to estimate the regression quantiles performs quite stably under such noise circumstance.
Moreover, in terms of the data of Log-Normal noise, there is a slight upward trend of the
estimation error and prediction error when the τ is increasing.

Next, by altering the dimension p with n = p/2 and λ = 0.1
√
n log p, we implement

100 replicators for each data set to generate the estimation error, prediction error and CPU



L1-PENALIZED QUANTILE REGRESSION 289

Table 1: The average of estimation error ∥β − β∗∥22, the prediction error 1
n∥Xβ − Xβ∗∥22

and CPU time over 100 simulations under different penalty levels λ, quantiles τ and two
error distributions. Here, the dimension n = 500, p = 1000, λ = O(

√
n log p) and σ = 0.01,

the values outside of ’(·)’ stand for the data from noise N(0, σ2) and inside values stand for
results from noise LN(0, σ2).

τ ∥β − β∗∥22 1
n∥Xβ −Xβ∗∥22 CPU time

λ1 = 2

0.1 2e-04 (3e-04) 1e-04 (2e-04) 15.15 (14.69)

0.3 2e-04 (15e-04) 1e-04 (6e-04) 15.21 (15.92)

0.5 2e-04 (13e-04) 1e-04 (6e-04) 15.08 (16.38)

0.7 2e-04 (11e-04) 1e-04 (7e-04) 18.00 (18.80)

0.9 2e-04 (15e-04) 1e-04 (8e-04) 14.06 (16.76)

λ2 = 5

0.1 2e-04 (1e-04) 1e-04 (1e-04) 14.09 (12.63)

0.3 2e-04 (4e-04) 1e-04 (3e-04) 12.89 (11.86)

0.5 2e-04 (7e-04) 1e-04 (4e-04) 14.29 (12.80)

0.7 2e-04 (10e-04) 1e-04 (5e-04) 13.57 (15.25)

0.9 2e-04 (18e-04) 1e-04 (12e-04) 14.38 (16.28)

time from two noise patterns. From Figure 1, the two types of the error stemmed from
Normal noise are basically smaller than those from Log-Normal noise, although there is
not an apparent distinction of the CPU time between these two noise, see Figure 2. To
be more exact, for the information of Normal noise, when the τ centering at the proximity
of 0.5 the errors tend to be lower than τ = 0.1 and τ = 0.9. The phenomenon probably
can be illustrated by the fact that the linear least absolutely deviation, where τ = 0.5,
has the advantage of estimating the linear regression. By contrast, referring to the data
from the Log-Normal noise, both of the estimation error and prediction error are ascending
with the increasing of τ , which is mainly from the fact that the Log-Normal distribution is
non-centrally symmetrical and has a heavy tail. In addition, one can see that the error has
not been enlarged with the p becoming larger, which manifests ADMM approach performs
robustly indeed.

4.3 Example II: Toeplitz Correlation Matrix

The second modified example is from literature [35] which aims at considering the estimator
β∗ = (3, 3, · · · , 3,
3, 0, · · · , 0)T with s (being taken s = 2.5%p in this example) none zero entries 3 in β∗. In
the simulation study, each row of the design matrix X is generated by N(0,Σ) distribution
with Toeplitz correlation matrix Σij = (1/2)|i−j| , i.e., xi ∼ Σ1/2N(0, 1), i = 1, 2, · · · , n;
and then normalize the columns of X such that each column has L2 norm

√
n. We use three

noise patterns: (a) N(0, σ2) noise, (b) LN(0, σ2) noise, and (c) Student distribution T (2)
noise which belongs to the heavy two-tailed distribution. Corresponding MATLAB codes
are as below:

Y 1 = Xβ∗ + σ ∗ randn(0, 1),
Y 2 = Xβ∗ + σ ∗ lognrnd(0, 1, n, 1),
Y 3 = Xβ∗ + σ ∗ trnd(2, n, 1).
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Figure 1: Average error from Normal and Log-Normal noise yielded by ADMM with λ =
0.1

√
n log p.

Apart from the average L2 norm square of the estimation errors ∥β−β∗∥22 and the prediction
errors 1

n∥Xβ −Xβ∗∥22, we add to consider another two types of errors which are

FPR :=
Card

{
j : β∗

j ̸= 0 & βj = 0
}

Card { j : βj = 0 }
, TPR :=

Card
{
j : β∗

j ̸= 0 & βj ̸= 0
}

Card { j : βj ̸= 0 }
,

where FPR stands for the false positive rate, which means the rate of significant variables
that are unselected over the whole zero entries, and TPR denotes the ture positive rate,
which implies the ratio of significant variables that are selected over the entire none zero
elements. It is worth mentioning that the smaller FPR and the larger TPR are, the better
our approach would perform.

It can be seen from Table 2, the most obvious property is all the FPRs are equal to zero,
which signifies all the significant variables are selected by the method. Since the noise is
enhanced ( from σ = 0.01 to σ = 0.25), the prediction errors increase dramatically compared
with the corresponding data from Table 1. Corresponding properties can be shown in the
following figures.

Moreover, one can discern from Figure 3, data from Normal distributed noise and Student
T (2) distributed noise have the symmetrical patterns primarily due to the symmetry of
these two distributions, and because of this, the estimation and prediction errors reach the
bottom while TRPs hit the peak when τ = 0.5. By contrast, the errors stemmed from Log-
Normal distribution have a monotonicity, which results in the estimation and prediction
errors arriving the lowest points, and TPRs reaching the highest point when τ = 0.1.
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Figure 2: Average CPU Time from Normal noise and Log-Normal noise yielded by ADMM
with λ = 0.1

√
n log p.
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Figure 3: Average errors from three types of noise over 100 simulations yielded by ADMM
with n = 500, p = 1000, s = 25, λ = 0.5

√
n log(p) and σ = 0.25.

5 Concluding remarks

This paper focuses on the L1-penalized quantile regression estimator for the high-dimensional
linear regression model for Traditional Chinese medicine syndrome manifestation. We have
shown the near oracle properties of the L1-penalized quantile regression estimator and estab-
lished the upper bound for estimation error and considered the variable selection properties
for both noisy and noiseless cases under weak assumptions, where we do not have any as-
sumptions on the moments of the noise and we only need a scale parameter to control the
tail probability of the noise. These results are true for a wide range of noise distributions,
even for Cauchy distributed noise.

Moreover, we have proposed an alternating direction method to find the L1-penalized
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Table 2: The average of estimation error ∥β − β∗∥22, the prediction error 1
n∥Xβ − Xβ∗∥22,

FPR and TPR over 100 simulations under several τ and three error distributions with
λ = 0.5

√
n log(p), where n = 500, p = 1000, s = 25 and σ = 0.25.

τ Noise ∥β − β∗∥22 1
n∥Xβ −Xβ∗∥22 FPR TPR

τ1 = 0.1

N(0, σ2) 0.0300 0.0274 0 49.78%

LN(0, σ2) 0.0281 0.0486 0 100.0%

T (2) 0.0345 0.0394 0 51.50%

τ1 = 0.3

N(0, σ2) 0.0244 0.0243 0 73.71%

LN(0, σ2) 0.0348 0.0486 0 98.46%

T (2) 0.0284 0.0330 0 72.70%

τ1 = 0.5

N(0, σ2) 0.0173 0.0222 0 80.24%

LN(0, σ2) 0.0447 0.0493 0 75.88%

T (2) 0.0313 0.0373 0 80.07%

τ1 = 0.7

N(0, σ2) 0.0221 0.0257 0 75.06%

LN(0, σ2) 0.0645 0.0668 0 47.37%

T (2) 0.0325 0.0380 0 78.19%

τ1 = 0.9

N(0, σ2) 0.0256 0.0309 0 55.43%

LN(0, σ2) 0.1065 0.1207 0 29.72%

T (2) 0.0611 0.0633 0 53.61%

quantile regression estimator and reported the numerical results to demonstrate the efficacy
of our method. The proposed method is different from the common computational methods
for quantile regression estimation [15, 25], and our method can deal with the big data and
more efficient as shown in numerical experiments.

6 Appendix

Proof of Proposition 2.1. We will prove Proposition 2.1 by applying union bound and Ho-
effding’s inequality. It holds by the union bound

P (c
√

2A(α)n log p ≤ c∥S∥∞) ≤
p∑

i=1

P (
√
2A(α)n log p ≤ |XT

i w|).

It is easy to see and the value of XT
i w in the [−max{τ, 1− τ}∥Xi∥2,max{τ, 1− τ}∥Xi∥2].

For each i, it holds by Hoeffding’s inequality

P (
√

2A(α)n log p ≤ |XT
i w|) ≤ 2 exp(− 4A(α)n log p

4(max{τ, 1− τ}∥Xi∥2)2
).

Since max{τ, 1 − τ} ≤ 1 and ∥Xi∥22 = n, we have exp(− 4A(α)n log p
4(max{τ,1−τ}∥Xi∥2)2

) ≤
exp(− 4A(α)n log p

4n ) = p−A(α). Thus, we obtain

P (c
√
2A(α)n log p ≤ c∥S∥∞) ≤

p∑
i=1

2p−A(α) ≤ α.
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The desired result follows immediately.

Proof of Proposition 2.2. As in the proof of Proposition 2.1, it holds by the union bound

P (c
√
2A(α)n log p ≤ c∥S∥∞) ≤

p∑
i=1

P (
√
2A(α)n log p ≤ |XT

i w|).

For each i, from the assumption and Corollary 1 in [35], we obtain

P (c
√
nΦ−1(1− α

2p
)) ≤ 2(1− Φ(Φ−1(1− α

2p
)))(1 + zn) =

α

p
(1 + zn),

where zn → 0 as n → ∞. Therefore, we get

P (c
√

2A(α)n log p ≤ c∥S∥∞) ≤ α(1 + zn).

fProof of Lemma 3.1. The idea of this proof is similar as that of Lemma 3 in [35]. First, it
is easy to show that for real numbers a, b ∈ R,

|ρτ (a)− ρτ (b)| ≤ |max{τ, τ − 1}(a− b)| ≤ |a− b|. (6.1)

Thus, |ρτ (xT
i d+εi)−ρτ (εi)| ≤ |xT

i d| ≤ ∥Xd∥2 for any i = 1, 2, · · · , n. This means |ρτ (xT
i d+

εi)−ρτ (εi)| is a bounded random variable for any given d ∈ Rp. Hence for any fixed s sparse
vector d, by Hoeffding’s inequality, we have for any t > 0,

P (B(d) ≥ t) ≤ 2 exp{− nt2

2∥Xd∥22
}.

From the definition of λu
s , we easily get

P (B(d) ≥ t) ≤ 2 exp{− t2

2λu
s∥d∥22

}.

Taking t = C
√
2s log p∥d∥2, we obtain that for all C > 0,

P (B(d) ≥ C
√
2s log p∥d∥2) ≤ 2p−sC2/λu

s .

Below we will establish an upper bound for sup∥d∥0=s,∥d∥2=1 B(d). We will apply the ϵ-net
method and covering number result. Consider the ϵ-net of the set {d ∈ Rp : ∥d∥0 = s, ∥d∥2 =
1}. From the standard results of covering number, we know that the covering number of
{d ∈ Rp : ∥d∥2 = 1} by ϵ-balls (i.e. {y ∈ Rs : ∥y − x∥2 ≤ ϵ}) is at most (3/ε)s for ε < 1.
Then the covering number of {d ∈ Rp : ∥d∥0 = s, ∥d∥2 = 1} by ϵ-balls is at most (3p/ϵ)s for
ϵ < 1. Suppose N is such a ϵ-net of {d ∈ Rp : ∥d∥0 = s, ∥d∥2 = 1}. It holds by union bound,

P (B(d)d∈N ≥ C
√

2s log p) ≤ 2(3p/ϵ)sp−sC2/λu
s . (6.2)

By (6.1), it holds

sup
∥d1−d2∥0≤s,∥d1−d2∥2≤ϵ

|B(d1)−B(d2)|

≤ 2√
n
∥X(d1 − d2)∥1

≤ 2√
n
max

i
{∥Xi∥2}∥d1 − d2∥1

≤ 2
√
nsϵ.
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Then we get

sup
∥d∥0=s,∥d∥2=1

B(d) ≤ sup
d∈N

B(d) + 2
√
nsϵ.

Setting ϵ =
√
2s log p
2
√
ns

, we obtain from (6.2) that

P

(
sup

∥d∥0=s,∥d∥2=1

B(d) ≥ C
√
2s log p

)

≤ P

(
sup
d∈N

B(d) ≥ (C − 1)
√

2s log p

)
≤ 2(3p/ϵ)sp−s(C−1)2/λu

s ≤ 2(
3p

√
ns

p(C−1)2/λu
s
)s.

Choosing C = 1 + 2C2

√
λu
s with C2 > 1, from the assumption, we obtain that

P

(
sup

∥d∥0=s,∥d∥2=1

B(d) ≥ (1 + 2C2

√
λu
s )
√
2s log p

)
≤ 2p−4s(C2

2−1).

The proof is completed.

Proof of Lemma 3.2. As in the proof of Lemma 3.1, |ρτ (x + εi) − ρτ (εi)| ≤ |x|. Then the
random variable |ρτ (x+ εi)− ρτ (εi)| is bounded, and hence the expectation always exists.
Suppose f(t) is the density function of εi. Note that E(ρτ (εi)) is a constant with respect to
x. We easily derive

E(ρτ (εi + x)− ρτ (εi)) = E(ρτ (εi + x))− E(ρτ (εi))

=

∫ −x

−∞
(τ − 1)(t+ x)f(t)dt+

∫ ∞

−x

τ(t+ x)f(t)dt− E(ρτ (εi))

= τx− xP (εi ≤ −x)−
∫ −x

−∞
tf(t)dt+ τ − E(ρτ (εi)).

Thus, direct calculation yields

dE(ρτ (εi + x)− ρτ (εi))

dx
= τ − P (εi ≤ −x).

fProof of Lemma 3.3. From the scale assumption and Lemma 3.2, we obtain that for x > 0,

E(ρτ (εi + x)− ρτ (εi)) =

∫ x

0

(τ − P (εi ≤ −t))dt

≥ τx−
∫ x

0

τ
1

1 + at
dt

= τ(x− 1

a
log(1 + ax)).
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Similarly, for x < 0, we have

E(ρτ (εi + x)− ρτ (εi)) =

∫ x

0

(τ − P (εi ≤ −t))dt

= (τ − 1)x+

∫ x

0

P (εi ≥ −t)dt

≥
∫ x

0

τ
1

1 + at
dt

= (τ − 1)(x+
1

a
log(1− ax))

= (1− τ)(−x− 1

a
log(1 + a(−x))).

Combining the above arguments, we obtain that

E(ρτ (εi + x)− ρτ (εi)) ≥ (τ ∧ (1− τ))(|x| − 1

a
log(1 + a|x|)). (6.3)

We can easily obtain that when |x| ≥ 3/a,

|x| − 1

a
log(1 + a|x|) ≥ |x| − 1

a

a|x|
2

=
|x|
2
,

and when |x| ≥ 3/a,

|x| − 1

a
log(1 + a|x|) ≥ |x| − 1

a

(
a|x|
2

− 1

8
(a|x|)2

)
=

ax2

8
.

This together with (6.3) completes the proof.

Proof of Theorem 3.4. Consider the high-dimensional linear regression model (2.1), and let

β̂ be its L1-penalized quantile regression estimator and β∗ the true s-sparse coefficient.
Note that h = β∗ − β̂ and h ∈ ∆c̄. Without loss of generality, let the entries of h satisfy
|h1| ≥ |h2| ≥ · · · ≥ |hp|. We partition the index set {1, 2, · · · , p} into the following subsets

S0 = {1, 2, · · · , s}, S1 = {s+ 1, s+ 2, · · · , 2s}, · · · , S⌊(p−1)/s⌋

= {⌊(p− 1)/s⌋s+ 1, ⌊(p− 1)/s⌋s+ 2, · · · , p}.

For brevity, let SC
0 =

∪
i≥1 Si. Then it follows from inequality (6) in [9] (or Lemma 8 in [35])

that ∑
i≥1

∥hSi∥2 ≤
∑
i≥1

∥hSi
∥1√
s

+

√
s

4
|hs+1|

≤
∥hSC

0
∥1√
s

+
1

4
√
s
∥hS0∥1

≤
(

1√
sc̄

+
1

4
√
s

)
∥hS0∥1 ≤

(
1

c̄
+

1

4

)
∥hS0∥2. (6.4)

Moreover, it is easy to derive that

1√
n
(Qτ (Xh+ ε)−Qτ (ε)) ≥ 1√

n
(Qτ (XhS0

+ ε)−Qτ (ε)) (6.5)

+
∑
i≥1

1√
n

Qτ (X

i∑
j=0

hSj + ε)−Qτ (X

i−1∑
j=0

hSj + ε)

 .
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For simplicity, we define

M(d) =
1√
n
E(Qτ (Xd+ ε)−Qτ (ε))

for any given d ∈ Rp. It holds by Lemma 3.1 that with probability at least 1− 2p−4s(C2
2−1),

1√
n
(Qτ (XhS0

+ ε)−Qτ (ε)) ≥ M(hS0
)− C1

√
2s log p∥hS0

∥2,

where C1 = 1+2C2

√
λu
s with C2 > 1. Likewise, we obtain that for any i ≥ 1 with probability

at least 1− 2p−4s(C2
2−1),

1√
n
(Qτ (X

i∑
j=0

hSj
+ ε)−Qτ (X

i−1∑
j=0

hSj
+ ε)) ≥ M(hSi

)− C1

√
2s log p∥hSi

∥2.

Combining the above arguments, we obtain from (6.5) that with probability at least 1 −
2p−4s(C2

2−1)+1,

1√
n
(Qτ (Xh+ ε)−Qτ (ε)) ≥ M(h)− C1

√
2s log p

∑
i≥0

∥hSi
∥2. (6.6)

This together with (3.1) and (6.4) yields that with probability at least 1− 2p−4s(C2
2−1)+1,

M(h) ≤ λ
√
s√
n
∥hS0∥2 + C1

√
2s log p

(
1

c̄
+

5

4

)
∥hS0∥2. (6.7)

We below discuss two cases. On one hand, if ∥Xh∥1 ≥ 3n/(2a), from Lemma 7 in [35]
and Lemma 3.3, we obtain that

M(h) =
1√
n
E(Qτ (Xh+ ε)−Qτ (ε))

≥ 3

16
√
n
(τ ∧ (1− τ))∥Xh∥1 ≥ 3

√
n

16
(τ ∧ (1− τ))κl

s∥hS0
∥2. (6.8)

This combining with assumption (C2) yields that ∥hS0
∥2 = 0. So, h = 0 and β̂ = β∗.

On the other hand, if ∥Xh∥1 < 3n/(2a), we similarly obtain that

M(h) =
1√
n
E(Qτ (Xh+ ε)−Qτ (ε)) ≥

a

8
√
n
(τ ∧ (1− τ))∥Xh∥22. (6.9)

Moreover, by applying the common arguments in CS area (see, e.g., [8, 11,19], we get

|⟨XhS0 , Xh⟩| = |⟨XhS0 , X(hS0 +
∑
i≥1

hSi)⟩|

≥ nλl
s∥hS0

∥22 − nθs,s∥hS0
∥2
∑
i≥1

∥hSi
∥2

≥ n

(
λl
s − θs,s

(
1

c̄
+

1

4

))
∥hS0

∥22,
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and

|⟨XhS0
, Xh⟩| ≤ ∥XhS0

∥2∥Xh∥2 ≤
√
nλu

s∥hS0
∥2∥Xh∥2.

It immediately follows

∥Xh∥22 ≥ n

λu
s

(
λl
s − θs,s

(
1

c̄
+

1

4

))2

∥hS0
∥22.

Thus, it holds by (6.7) and (6.9) that with probability at least 1− 2p−4s(C2
2−1)+1,

∥hS0
∥2 ≤ 8λ

√
s

nab
+

8C1√
nab

√
2s log p

(
1

c̄
+

1

4

)
, (6.10)

where b = (τ ∧ (1− τ))
(
λl
s − θs,s

(
1
c̄ + 1

4

))2
/λu

s . Since we can take λ = 2c
√
n log p, then we

yield

∥hS0
∥2 ≤ 8(c

√
2 + 1.25C1 + C1/c̄)

ab

√
2s log p

n
. (6.11)

Noting that ∑
i≥1

∥hSi
∥22 ≤ |hs+1|

∑
i≥1

∥hSi
∥1 ≤ 1

c̄
∥hS0

∥22,

we obtain that with probability at least 1− 2p−4s(C2
2−1)+1,

∥β̂ − β∗∥2 ≤ 8(c
√
2 + 1.25C1 + C1/c̄)

ab

√
1 +

1

c̄

√
2s log p

n
.

We complete the proof.

Proof of Theorem 3.6. In the noiseless case, from ε = 0 and (3.1), we easily obtain that

Qτ (Xh) = Qτ (Xh)−Qτ (0) ≤ λ(∥hT ∥1 − ∥hTC∥1).

This shows ∥hT ∥1 ≥ ∥hTC∥1 and then h ∈ ∆1. Therefore ∥Xh∥1 ≥ nκl
s(1)∥hT ∥2 ≥

nκl
s(1)∥hT ∥1/s. Observe that

Qτ (Xh) ≥ (τ ∧ (1− τ))∥Xh∥1.

From the assumption, it follows ∥hT ∥1 = 0 and hence β̂ = β∗ in the noiseless case.
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