
2017

302 Y.-J. LIU AND Y. WEN

ak = 0, then the optimal value of xk is the minimizer of min{ 12 (xk − ck)
2 + wk|xk| : lk ≤

xk ≤ uk} which has an analytic expression (see Section 2) and hence xk may be removed
from problem (P).

In the absence of ℓ1 regularization term, problem (P) is referred to as the continuous
quadratic knapsack problem (abbreviated as CQKP) which is well known to appear in
a wide variety of applications such as resource allocation [21], support vector machine [8],
portfolio selection [1], and so on. Much research and a large number of algorithms have been
developed to study CQKP. The existing algorithms mainly fall into three broad categories:
(i) bisection or median search methods, see, e.g., Helgason et al. [11], Brucker [4], Calamai
and Moré [5], Cosares and Hochbaum [7], Hochbaum and Hong [12], Kiwiel [14,15], Maculan
and de Paula [17], Maculan et al. [18], Pardalos and Kovoor [20]; (ii) pegging/variable fixing
methods, see, e.g., Bitran and Hax [2], Bretthauer and Shetty [3], Kiwiel [16], Maculan et
al. [18], Robinson et al. [22]; and (iii) Newton-type methods, see, e.g., Dai and Fletcher [8],
Cominetti et al. [6], Davis et al. [9]. We should remark that the literature on developments
and algorithms for solving CQKP is vast and here we only mention some of them. For more
applications, algorithms and developments of CQKP, we refer the reader to an excellent
survey paper of Patriksson [21] and the second chapter of Jeong’s PhD dissertation [13], and
the references therein.

Due to the demand of many practical applications such as kernel density learning [19],
sparse portfolio selection [1], and index tracking [26,27], the corresponding sparse optimiza-
tion has received increasing attention, see, e.g., Xu et al. [25, 26] for the cardinality or ℓ0
constrained optimization problem. As broad applications of the ℓ1 regularization in the
fields of machine learning, compressive sensing, signal and image processing convince us
that the ℓ1 regularization induces the sparsity of optimization problems, we are motivated
to consider CQKP with ℓ1 regularization (i.e., CQKPL1) intending to find a sparse solution.

It should be noted that CQKPL1 can equivalently reformulated as the convex quadratic
programming (QP) of the following form:

min
1

2
∥x− c∥2 +

n∑
i=1

(wixi + 2yi)

s.t. aTx = b,

Wx+ y ≥ 0,

l ≤ x ≤ u, y ≥ 0.

(1.1)

Thus one may apply efficient algorithms in the literature, which have been proposed for gen-
eral convex QP problems, to solve (1.1). However, as far as we can see, the QP reformation
(1.1) is computationally expensive because it has more 2n linear inequalities and one more
n-dimensional variable than the original problem (P). The computational cost and memory
requirement of the QP reformation (1.1) are especially unnecessarily high when n is large.
Unlike the QP reformation (1.1), in this paper we propose an algorithm which does not
destroy the specific structure of CQKPL1. In particular, we first derive the simple compu-
tation of min{ 12∥x− x0∥

2 + ∥Wx∥1 : l ≤ x ≤ u} and then propose an efficient algorithm in
which we only need to deal with an univariate equation.

With nonsmooth ℓ1 term, CQKPL1 becomes more complicated than CQKP. One may
doubt that the algorithms developed for solving CQKP are not applicable to CQKPL1. Our
study reveals that the algorithms for CQKP can be also extended to solve CQKPL1 with
some modifications. The purpose of this paper is to consider the median search based linear
time algorithm proposed by Brucker [4] and Calamai et al. [5] among others to find the
closed-form of optimal solution to CQKPL1. The work of this paper is built upon a key

A LINEAR TIME ALGORITHM FOR CQKP ℓ1 303

result that problem (P) without linear equality constraint admits an analytic expression of
the optimal solution within O(n) operations (see Proposition 2.1). After using dual refor-
mulation, we may apply median search algorithm to find a zero point of a one-dimensional
monotone piecewise linear function. Our analysis shows that the median search algorithm
for solving CQKPL1 has the linear time complexity of O(n) which is the same as for CQKP.
We efficiently implement our algorithm in MATLAB Language and perform numerical ex-
periments for randomly generated CQKPL1 in order to test the complexity and performance
of our algorithm. Numerical results not only validate the theoretical results on linear time
complexity of our algorithm and the sparsity of the optimal solution to CQKPL1, but also
demonstrate that our algorithm is able to efficiently solve CQKPL1 with the problem sizes
up to ten million within about two minutes that outperforms favourably in terms of the
CPU time the state-of-the-art standard solver Gurobi [10] via the QP reformulation (1.1).

The remainder of this paper are organized as follows. In Section 2, we shall develop some
preliminary results which play a crucial role in designing an efficient algorithm. Section 3 is
devoted to presenting a linear time complexity of algorithm for solving CQKPL1. Numerical
tests are performed in Section 4 to validate the feature of our algorithm as well as to evaluate
the performance of our algorithm. We make final conclusions in Section 5.

Notation. The following notations will be used throughout this paper. For an index set I,
we use |I| to denote the cardinality of I and xI ∈ ℜ|I| to denote the sub-vector of x obtained
by removing all the components of x not in I. We denote mid(l, x, u) as the component-wise
median of three vectors. Similarly, for given w > 0, we let mid(l, x + w, 0, x − w, u) stand
for the vector whose i-th component is defined by

mid(li, xi + wi, 0, xi − wi, ui) =

li, xi + wi ≤ li,
xi + wi, li < xi + wi < 0,

0, −wi ≤ xi ≤ wi,

xi − wi, 0 < xi − wi < ui,

ui, xi − wi ≥ ui.

For a vector or set x, we use the conventional notation median(x) to denote the median
value of the elements in x.

2 Preliminaries

In this section, we shall develop some preliminary results which are crucial to design an
efficient algorithm. We begin with the study on analytic expression of the optimal solu-
tion to problem (P) without linear equality constraint. We then consider Lagrangian dual
reformulation of CQKPL1.

2.1 Problem without linear constraint

In this subsection, we aim to derive the analytic expression of the optimal solution to problem
(P) without linear equality constraint.

For any y ∈ ℜn, we consider the optimal solution to problem (P) without linear equality
constraint, i.e.,

min
1

2
∥x− y∥2 + ∥Wx∥1

s.t. l ≤ x ≤ u.
(2.1)

304 Y.-J. LIU AND Y. WEN

For a special case of problem (2.1) without ℓ1 regularization, it is well known that the unique
optimal solution is the metric projection operator onto the box sets {x ∈ ℜn : l ≤ x ≤ u},
which is given by mid(l, x, u). For another special case of problem (2.1) without lower and
upper bound constraints, it is also known that the unique optimal solution is referred to as
the soft thresholding operator computed by sign(y)max{|y|−w, 0}, which is commonly used
in developing efficient algorithms in the fields of compressive sensing, signal processing, and
statistical learning.

Next, we would like to show that the optimal solution to general case of problem (2.1)
surprisingly admits an analytic expression. Due to the separability of problem (2.1), one
only needs to consider the following univariate problem:

min
1

2
(s− t)2 + τ |s|

s.t. α ≤ s ≤ β,
(2.2)

where the real numbers t, α, β, τ > 0 are given. Let s∗ be the optimal solution to problem
(2.2). Then, by considering the following three cases: (i) α ≥ 0, (ii) β ≤ 0, and (iii) α < 0
and β > 0, after simple manipulations we can readily derive the following analytic expression
of the unique optimal solution s∗ to problem (2.2):

s∗ =

mid{α, t− τ, β}, α ≥ 0,

mid{α, t+ τ, β}, β ≤ 0,

mid{α, t+ τ, 0, t− τ, β}, otherwise.

(2.3)

Since problem (2.1) is equivalent to finding the solutions to each of univariate problems
(2.2) separately, i.e.,

min
1

2
(xi − yi)2 + wi|xi|

s.t. li ≤ xi ≤ ui
, i = 1, 2, . . . , n,

from (2.3) we easily obtain the results on analytic expression of the unique optimal solution
to problem (2.1) in the following proposition.

Proposition 2.1. Assume that y, l, u ∈ ℜn and w ∈ ℜn
++ are given. Then, the unique

optimal solution to problem (2.1) can be explicitly computed by x∗ = (x∗1, x
∗
2, . . . , x

∗
n)

T , where
for any i = 1, 2, . . . , n, x∗i is defined as

x∗i =

mid{li, yi − wi, ui}, li ≥ 0,

mid{li, yi + wi, ui}, ui ≤ 0,

mid{li, yi + wi, 0, yi − wi, ui}, otherwise.

(2.4)

2.2 Lagrangian dual reformulation

In this subsection, we shall consider Lagrangian dual reformulation of CQKPL1 and present
some useful properties associated with the optimal solution of CQKPL1 and its dual.

The Lagrangian function of CQKPL1 is defined as

L(x;λ) :=
1

2
∥x− c∥2 + ∥Wx∥1 + λ(aTx− b).

A LINEAR TIME ALGORITHM FOR CQKP ℓ1 305

Thus, it follows from the dual theory (see, e.g., [23, 24]) that the Lagrangian dual problem
associated with problem (P) is as follows:

max
λ∈ℜ

d(λ), (D)

where the objective d(·) is defined as the optimal value function of the following strongly
convex optimization problem:

inf
l≤x≤u

{
L(x;λ) =

1

2
∥x− c∥2 + ∥Wx∥1 + λ(aTx− b)

}
,

or equivalently,

min
1

2
∥x− (c− λa)∥2 + ∥Wx∥1 + λaT c− 1

2
λ2∥a∥2 − λb

s.t. l ≤ x ≤ u.
(2.5)

Let us denote x∗(λ) as the unique optimal solution to problem (2.5). Then, from Proposition
2.1, we obviously obtain the following results on the characterization of x∗(λ).

Proposition 2.2. Let c, l, u ∈ ℜn and a,w ∈ ℜn
++ be given. Then, for any given λ ∈ ℜ,

x∗i (λ), i = 1, 2, . . . , n are given by

x∗i (λ) =

mid{li, ci − wi − λai, ui}, li ≥ 0,

mid{li, ci + wi − λai, ui}, ui ≤ 0,

mid{li, ci + wi − λai, 0, ci − wi − λai, ui}, otherwise.

(2.6)

Remark 2.3. From Proposition 2.2, we can easily see that for any i = 1, 2, . . . , n, the
function x∗i (·) is piecewise linear. Moreover, it is also monotonically nonincreasing on ℜ due
to a > 0.

Let us define three index subsets of {1, 2, . . . , n} as

I1 := {i : li ≥ 0}, I2 := {i : ui ≤ 0}, I3 := {i : li < 0 and ui > 0}. (2.7)

It follows from Proposition 2.2 that the function ψ has at most 2|I1|+ 2|I2|+ 4|I3| break-
points, which are indicated as follows:

tUi :=
ci − wi − ui

ai
, tLi :=

ci − wi − li
ai

, i ∈ I1,

tUi :=
ci + wi − ui

ai
, tLi :=

ci + wi − li
ai

, i ∈ I2,

tUi :=
ci − wi − ui

ai
, sUi :=

ci − wi

ai
, sLi :=

ci + wi

ai
, tLi :=

ci + wi − li
ai

, i ∈ I3.

We remark that CQKPL1 has more 2|I3| breakpoints compared to CQKP. From (2.6), we
note that for any λ within each interval containing no breakpoints, the structure of x∗(λ) is
unchanged.

We now turn to characterize the condition about λ ∈ ℜ under which the optimal solution
x∗(λ) of problem (2.5) with λ is also optimal for CQKPL1. To achieve this aim, we define
the function ψ : ℜ → ℜ by

ψ(λ) := aTx∗(λ)− b. (2.8)

By the Saddle Point Theorem (see, e.g., [23, Theorem 28.3]), one easily obtain the following
proposition.

306 Y.-J. LIU AND Y. WEN

Proposition 2.4. Let c, l, u ∈ ℜn and a,w ∈ ℜn
++ be given. Let the function ψ be defined

by (2.8). Then, x∗(λ∗) is the unique optimal solution to CQKPL1 for any λ∗ ∈ ℜ such that
ψ(λ∗) = 0.

Proposition 2.4 tells us that the optimal solution to CQKPL1 can be computed by solving
a one-dimensional equation ψ(λ) = 0. Thus, to solve CQKPL1, our main task is to develop
efficient algorithm to solve ψ(λ) = 0. Before continuing, we present some related properties
of the function ψ(·).

Proposition 2.5. The function ψ defined as in (2.8) is piecewise linear and monotonically
nonincreasing.

Proof. We note that the function ψ can be rewritten as ψ(λ) =
∑n

i=1 aix
∗
i (λ) − b. Since

x∗i (·), i = 1, 2, . . . , n are piecewise linear functions, it follows from the definition of ψ that ψ is
a piecewise linear function. Moreover, due to the monotonically nonincreasing properties of
x∗i (·), i = 1, 2, . . . , n, combining with a > 0, we know that ψ is a monotonically nonincreasing
function. This completes the proof.

Let us define:

λmin := min{tUi : i = 1, 2 . . . , n}, λmax := max{tLi : i = 1, 2, . . . , n}. (2.9)

Then, it must hold that ψ(λmin) ≥ 0 and ψ(λmax) ≤ 0 because otherwise, by Proposition
2.5 we would know that problem (P) is infeasible. If ψ(λmin) = 0 or ψ(λmax) = 0, we
fortunately get the desired value λ∗. Otherwise, the continuity of the function ψ implies
that the bracket (λmin, λmax) contains a solution λ∗ of the equation ψ(λ) = 0. In the next
section we will propose a strategy for updating λmin or λmax so that the bracket (λmin, λmax)
is uniformly reduced, which leads to linear time algorithm for solving CQKPL1.

3 Linear time algorithm

This section is devoted to giving the detailed description of a linear time algorithm for solving
CQKPL1, which is based on median search method. It should be emphasized here that the
algorithm described below is essentially modifications of the one proposed by Brucker [4] for
CQKP.

Details of the algorithm can be roughly depicted as follows. Let λmin and λmax be
defined as in (2.9). We assume that ψ(λmin) > 0 and ψ(λmax) < 0 (otherwise, λ∗ = λmin or
λ∗ = λmax). Then, it holds that

λ∗ ∈ [λmin, λmax]. (3.1)

In the algorithm, the bracket [λmin, λmax] is uniformly reduced by updating λmin or λmax so
that the property (3.1) is always satisfied until it contains no breakpoints. It then follows
that ψ is linear on the final bracket [λmin, λmax] and hence the solution λ∗ of the equation
ψ(λ) = 0 is easily computed by

λ∗ = λmin − (ψ(λmin)− b)
λmax − λmin

ψ(λmax)− ψ(λmin)
.

It still remains vague how the algorithm updates λmin and λmax. We incorporate the
median search strategy into the algorithm. In particular, at each stage of the algorithm,
we choose λ as the median value of the breakpoints in [λmin, λmax] and calculate ψ(λ). We

A LINEAR TIME ALGORITHM FOR CQKP ℓ1 307

then update λmin and λmax as follows: If ψ(λ) > 0, then set λmin := λ; If ψ(λ) < 0, then
set λmax := λ; Otherwise, λ∗ = λ.

We are in the position to formally state a linear time algorithm for solving CQKPL1,
which has the following template.

Algorithm MSLTA: A median search based linear time algorithm for solving
CQKPL1.

0. If aT l < b or aTu > b, then stop and CQKPL1 is infeasible. Otherwise, set I :=
{1, 2, . . . , n} and IC := ∅. Let λmin := min(tUI) and λmax := max(tLI).

1. If I ̸= ∅, compute tL := median({tLI}), tU := median({tUi : tLi ≥ tL, i ∈ I}).
Otherwise, compute tL := median({sLIC}), tU := median({sUi : sLi ≥ tL, i ∈ IC}).

2. For λ = tL, tU . If λmin < λ < λmax, then calculate ψ(λ). If ψ(λ) = 0, then stop; else,
if ψ(λ) > 0, set λmin := max(λmin, λ); if ψ(λ) < 0, set λmax := min(λmax, λ).

3. Eliminate the index i from I ∪ IC if the structure of x∗i (λ) is unchanged for all
λ ∈ [λmin, λmax]. Add the index i in I ∩ I3 into IC if [λmin, λmax] ⊂ [tUi , t

L
i] but the

structure of x∗i (λ) is not determined for all λ ∈ [λmin, λmax].

4. If I = ∅ and IC = ∅, then stop. Otherwise, go to step 1.

To understand the procedure of Algorithm MSLTA, we below give some more detailed
descriptions on step 3.

For given I ̸= ∅, we define some index subsets of I by

IL := {i ∈ I : tLi ≤ λmin},
IU := {i ∈ I : λmax ≤ tUi },
IM := {i ∈ I : tUi < λmin, λmax < tLi }

and three index subsets of IM by

IM1 := IM∩ I1, IM2 := IM∩ I2, IM3 := IM∩ I3,

where I1, I2, I3 are defined as in (2.7). Then, by virtue of Proposition 2.2, we can eliminate
elements from the index set I by:

(1) I := I \ IL, because x∗i (λ) = li, i ∈ IL for all λ ∈ [λmin, λmax];

(2) I := I \ IU , because x∗i (λ) = ui, i ∈ IU for all λ ∈ [λmin, λmax];

(3) I := I \ IM, because

(i) x∗i (λ) = ci − wi − λai, i ∈ IM1 for all λ ∈ [λmin, λmax];

(ii) x∗i (λ) = ci + wi − λai, i ∈ IM2 for all λ ∈ [λmin, λmax];

(iii) IC := IC ∪ IM3.

308 Y.-J. LIU AND Y. WEN

For each i in the index set IC, we have to make additional effort to identify the structure
of x∗i (λ) for all λ ∈ [λmin, λmax]. To see this, we define the following index subsets of IC:

ICL := {i ∈ IC : sLi ≤ λmin},
ICU := {i ∈ IC : λmax ≤ sUi },
ICM := {i ∈ IC : sUi < λmin, λmax < sLi }.

Similarly, again by virtue of Proposition 2.2, we can eliminate elements from the index set
IC by considering the following three cases:

(1) IC := IC \ ICL, because x∗i (λ) = ci + wi − λai, i ∈ ICL for all λ ∈ [λmin, λmax];

(2) IC := IC \ ICU , because x∗i (λ) = ci − wi − λai, i ∈ ICU for all λ ∈ [λmin, λmax];

(3) IC := IC \ ICM, because x∗i (λ) = 0, i ∈ ICM for all λ ∈ [λmin, λmax].

Concerning step 2, we wish to show that one can evaluate ψ(λ) efficiently with order
|I|+ |IC| operations. Indeed, by setting the initial values sLU = 0, sIm = 0, sImt = 0, we
update them by

sLU = sLU +
∑
i∈IL

aili +
∑
i∈IU

aiui,

sIm = sIm+
∑

i∈IM1∪ICL
ai(ci + wi) +

∑
i∈IM2∪ICU

ai(ci − wi),

sImt = sImt+
∑

i∈IM1∪IM2∪ICL∪ICU
a2i .

Then, we can obtain that for any λ ∈ [λmin, λmax],

aTx∗(λ) = sLU + sIm− λ · sImt+
∑

i∈I∪IC
aix

∗
i (λ). (3.2)

This shows that we can evaluate ψ(λ) efficiently with order |I|+ |IC| operations.

Remark 3.1. At each stage of Algorithm MSLTA, the sums aix
∗
i (λ) over i ∈ ICM are

omitted because x∗i (λ) = 0 for all λ ∈ [λmin, λmax]. Numerical experiments show that this
helps us to save much time especially when the optimal solution to CQKPL1 is very sparse.

We finally remark that Algorithm MSLTA terminates when ψ(λ) = 0 for some λ at step
2, or when I = ∅, IC = ∅ at step 4. In the latter case, λ∗ can be computed by

λ∗ = (sLu+ sIm− b)/sImt.

Before closing this section, we shall analyze the complexity of Algorithm MSLTA which
has linear time complexity. We only carry out simple analysis here since the details can be
found in several papers (see, e.g., [4, 5]).

Theorem 3.2. Algorithm MSLTA has a linear time complexity of O(n).

Proof. At step 1, the median element of I (or IC) can be achieved in at most O(|I|) (or
O(|IC|)) operations since median(S) can be calculated in at most O(|S|) steps. At step 2, it
follows from (3.2) that the evaluation of ψ(λ) requires order |I|+ |IC| operations. At step
3, each iteration reduces |I| (if I ̸= ∅) or |IC| (if I = ∅) at least by half. Thus, Algorithm
MSLTA admits linear time complexity. This completes the proof.

A LINEAR TIME ALGORITHM FOR CQKP ℓ1 309

4 Numerical experiments

In this section, we perform our numerical experiments to verify the linear time complexity
of Algorithm MSLTA and explore the sparsity of the optimal solution to CQKPL1.

Algorithm MSLTA for solving CQKPL1 is implemented in MATLAB language. All numer-
ical experiments are performed on a Laptop of Intel Core i7-3520M CPU 2.9GHz with 8GB
RAM memory, running Windows 10 and MATLAB R2013b.

The first test we shall perform is to confirm the linear time complexity of Algorithm
MSLTA and compare it with the state-of-the-art standard solver, called Gurobi [10]. To
perform this test, we randomly generate all the parameters of CQKPL1 at uniform distri-
bution in the following way.

Example 4.1. The parameters c, w, a ∈ ℜn are randomly generated at uniform distribution
with all entries in the interval [−2, 2], [0.5, 1.5], [−1, 1], respectively. The parameters l, u ∈ ℜn

are also randomly generated with all entries uniformly distributed between [−0.3, 0.7], [1, 2]
respectively such that l < u. The scalar b is generated by (aT l+aTu)/2 to ensure feasibility.

In this test, we compare Algorithm MSLTA with the standard solver Gurobi [10] via
the QP reformulation (1.1). The parameters for Gurobi are set to be default values. We
perform numerical experiments with problem sizes varying from one thousand up to one
million. For each problem size, we test 10 instances and record the average running times.
It should be noted that we transform these problems into the form of CQKPL1 with a > 0
before running our algorithm. The running times are inclusive of times spent in problem
transformation.

Figure 1: Numerical results for Example 4.1.

Figure 1 reports the average running times (avgtime) of ten runs in second format. As
shown in Figure 1, Algorithm MSLTA is able to find the analytic solution to each instance
with the problem sizes up to one million less than 8 seconds in terms of the CPU time.
An analysis of the results highlights that the average running times grow linearly with the
problem sizes in accordance with the results of Theorem 3.2 on the linear time complexity
of Algorithm MSLTA. From Figure 1, we can also see that Algorithm MSLTA outperforms
favourably Gurobi in terms of the CPU time taken to solve the instances with problem size
greater than 5000, while Algorithm MSLTA finds the exact solutions and Gurobi achieves
the approximate solutions.

From this experiment, we further observe that Algorithm MSLTA solves the instance
with n = 5× 106 in only about 45 seconds, while Gurobi takes about 72 seconds to solve it.
When n is set to be 107, our algorithm is able to solve it in about 100 seconds, but Gurobi
fails to solve it due to excessive computer memory required.

310 Y.-J. LIU AND Y. WEN

Table 1: Numerical results for Example 4.2.

The second test we consider in the numerical experiments is to explore the sparsity
of the optimal solution to CQKPL1 with respect to w. The parameters in CQKPL1 are
described in the following that are almost the same as in Example 4.1 only after some small
modifications for our purpose of numerical tests.

Example 4.2. All the parameters are generated as in Example 4.1 except that the parame-
ters l and w0 in ℜn are randomly generated at a uniform distribution with each entry in the
interval [−0.7, 0.3] and [0, 1] respectively, and the parameter w ∈ ℜn is set to be wc+w0 for
given scalar wc > 0. We consider wc = 0.1, 1, 5 and test three cases of each instance with
problem sizes n = 1000, 104, 105, 106, 107.

In Table 1, we report the performance of Algorithm MSLTA for solving randomly gener-
ated CQKPL1 ranging in size from n = 1000 to n = 107, in which the minimum, maximum
and average of the number of zeros in the optimal solution optx and the running times (in
second format) over 20 randomly generated tests for each problem size are listed. To better
explore the sparsity of the optimal solution, we also report the average of cardinality of the
index set {i : li ≤ 0, ui ≥ 0} over 20 randomly generated tests by nr. The running times of
Table 1 are also inclusive of times spent in problem transformation.

The results, depicted in Table 1, show that Algorithm MSLTA in all the instances is able
to efficiently find the optimal solution to CQKPL1 with n from one thousand to ten million
which at the same time favors sparsity. As can be observed from Table 1, for n = 10000000,
Algorithm MSLTA averagely takes about 115 seconds to solve problem with wc = 5, while
it averagely takes about 96 seconds to solve problem with wc = 0.1. We also see that the
sparsity of the optimal solution to CQKPL1 for each dimension grows as the parameter
w increases, especially for each instance with wc = 5, each element of optimal solutions
whose index in {i : li ≤ 0, ui ≥ 0} is almost forced to be zero. Moreover, for problem size
n ≥ 100000, the average running times for problems with wc = 5 are faster than the average
running times for problems with wc = 1, but slower than the average running times for
problems with wc = 0.1. This behavior is expected because larger wc would lead to a larger
number of iterations for determining the structure of the optimal solution and also lead to

A LINEAR TIME ALGORITHM FOR CQKP ℓ1 311

cheaper calculations due to more sparsity of the optimal solution (see Remark 3.1).

5 Conclusions

In this paper, we have developed an algorithm to efficiently find the sparse optimal solution
of the continuous quadratic knapsack problem with ℓ1 regularization. Our algorithm that
is based on dual reformulation combined with median search strategy has a linear time
complexity. Numerical experiments on randomly generated test problems validate the linear
time complexity of our algorithm and also demonstrate the effective performance of our
algorithm.

Acknowledgements

The first author is deeply indebted to Dr. Zaiwen Wen for his invitation and generous
hospitality during his visit to Beijing International Center for Mathematical Research. The
authors would like to thank Dr. Yu-Hong Dai at Chinese Academy of Sciences and Dr.
Fengmin Xu at Xi’an Jiaotong University for providing us their manuscript [25].

References

[1] D. Bertsimas and R. Shioda, Algorithm for cardinality-constrained quadratic optimiza-
tion, Comput. Optim. Appl. 43 (2009) 1–22.

[2] G. R. Bitran and A. C. Hax, Disaggregation and resource allocation using convex
knapsack problems with bounded variables, Manag. Sci. 27 (1981) 431–441.

[3] K. M. Bretthauer and B. Shetty, A pegging algorithm for the nonlinear resource allo-
cation problem, Comput. Oper. Res. 29 (2001) 505–527.

[4] P. Brucker, An O(n) algorithm for quadratic knapsack problems, Oper. Res. Lett. 3
(1984) 163–166.

[5] P. H. Calamai and J. J. Moré, Quasi–Newton updates with bounds, SIAM J. Numer.
Anal. 24 (1987) 1434–1441.

[6] R. Cominetti, W. F. Mascarenhas and P. J. S. Silva, A Newton ’s method for the
continuous quadratic knapsack problem, Math. Program. Comput. 6 (2014) 151–169.

[7] S. Cosares and D. S. Hochbaum, Strongly polynomial algorithms for the quadratic
transportation problem with a fixed number of sources, Math. Oper. Res. 19 (1994)
94–111.

[8] Y.–H. Dai and R. Fletcher, New algorithms for singly linearly constrained quadratic
programs subject to lower and upper bounds, Math. Program. 106 (2006) 403–421.

[9] T. A. Davis, W. W. Hager and J. T. Hungerford, An efficient hybrid algorithm for the
separable convex quadratic knapsack problem, ACM Trans. Math. Software 42 (2016),
Article 22.

[10] Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual, 2016,
http://www.gurobi.com.

312 Y.-J. LIU AND Y. WEN

[11] R. Helgason, J. Kennington and H. Lall, A polynomially bounded algorithm for a singly
constrained quadratic program, Math. Program. 18 (1980) 338–343.

[12] D. S. Hochbaum and S.-P. Hong, About strongly polynomial time algorithms for
quadratic optimization over submodular constraints, Math. Program. 69 (1995) 269–
309.

[13] J. Jeong, Indefinite Knapsack Separable Quadratic Programming: Methods and Appli-
cations, PhD dissertation, University of Tennessee, 2014.

[14] K. C. Kiwiel, On linear-time algorithms for the continuous quadratic knapsack problem,
J. Optim. Theory Appl. 134 (2007) 549–554.

[15] K. C. Kiwiel, Breakpoint searching algorithms for the continuous quadratic knapsack
problem, Math. Program. 112 (2008) 473–491.

[16] K. C . Kiwiel, Variable fixing algorithms for the continuous quadratic knapsack problem,
J. Optim. Theory Appl. 136 (2008) 445–458.

[17] N. Maculan and G. G. de Paula, A linear-time median-finding algorithm for projecting
a vector on the simplex of ℜn, Oper. Res. Lett. 8 (1989) 219–222.

[18] N. Maculan, C. P. Santiago, E. M. Macambira and M. H. C. Jardim, An O(n) algorithm
for projecting a vector on the intersection of a hyperplane and a box in Rn, J. Optim.
Theory Appl. 117 (2003) 553–574.

[19] K. Muller, S. Mika, G. Ratsch, K. Tsuda and B. Scholkopf, An introduction to kernel-
based learning algorithms, IEEE Trans. Neural Netw. 12 (2001) 181–201.

[20] P.M. Pardalos and N. Kovoor, An algorithm for a singly constrained class of quadratic
programs subject to upper and lower bounds, Math. Program. 46 (1990) 321–328.

[21] M. Patriksson, A survey on the continuous nonlinear resource allocation problem, Eu-
ropean J. Oper. Res. 185 (2008) 1–46.

[22] A. G. Robinson, N. Jiang and C.S. Lerme, On the continuous quadratic knapsack
problem, Math. Program. 55 (1992) 99–108.

[23] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[24] R. T. Rockafellar, Conjugate Duality and Optimization, SIAM Publications, Philadel-
phia, 1974.

[25] F. M. Xu, Y.-H. Dai, Z. H. Zhao and Z.-B. Xu, Efficient projected gradient methods
for a class of l0 constrained optimization problems, preprint.

[26] F. M. Xu, Z. S. Lu and Z.-B. Xu, An efficient optimization approach for a cardinality-
constrained index tracking problem, Optim. Methods Softw. 31 (2016) 258–271.

[27] Z.-B. Xu, X. Y. Chang, F. M. Xu and H. Zhang, L1/2 regularization: a thresholding
representation theory and a fast solver, IEEE Trans. Numer. Netw. Learn. Syst. 23
(2012) 1013–1027.

A LINEAR TIME ALGORITHM FOR CQKP ℓ1 313

Manuscript received 5 November 2016
revised 5 November 2016

accepted for publication 21 January 2017

Yong-Jin Liu
School of Science, Shenyang Aerospace University
Shenyang 110136, People’s Republic of China
E–mail address: yjliu@sau.edu.cn

Yanan Wen
School of Science, Shenyang Aerospace University
Shenyang 110136, People’s Republic of China
E–mail address: wenyanan4869@163.com

