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two reasons. One is that in many real-world problems the underlying parameters represent
quantities that can only take on nonnegative values, e.g., amounts of materials, chemical
concentrations, pixel intensities, to name a few [16]. Another reason is that it is one of the
prototype examples of the symmetric set considered by Beck and Hallak [6] in their nonlinear
sparse optimization. We hope that by including the nonnegativity constraint some of our
results may have their counterparts when a more general symmetric set is used instead of
Rn

+.
It is usually expected that numerical methods for the linear (nonlinear) compressed

sensing should naturally extend to solve (1.1). A class of such methods are of the greedy
methods. One advantage of these methods is that they are generally faster than the relax-
ation approaches, which often lead to separable convex programming problems that can be
solved, for example, by methods of alternating directions or splitting methods [21]. Another
advantage is that many of them have stable recovery properties under some conditions [15].
A variety of greedy methods have been proposed in compressed sensing, such as match-
ing pursuit (MP) [29], orthogonal MP (OMP) [18], compressive sampling matching pursuit
(CoSaMP) [31], subspace pursuit (SP) [17], hard thresholding pursuit (HTP) [20], conju-
gate gradient iterative hard thresholding (CGIHT) [7], to name just a few. Some of those
methods have been extended to the sparsity constrained nonlinear optimization. For ex-
ample, Bahmani et al. [2] proposed a gradient hard-thresholding method which generalizes
CoSaMP. Yuan et al. [39] generalized HTP to the sparsity constrained convex optimization.
Yuan and Liu [40] proposed a Newton greedy pursuit (NTGP) method to approximately
minimize a twice differentiable function over the sparsity constraint.

In particular, the iterative hard thresholding (IHT) algorithm, a popular greedy method
which was proposed for the linear compressed sensing problem by Blumensath and Davies
in [9, 10] (and later extended to the nonlinear case by Blumensath [8]), has attracted much
attention due to its nice recovery properties. For example, when the matrix A in defining
fA is of full row-rank and its spectral norm satisfies ∥A∥2 < 1, IHT converges to a local
minimum [9]. Furthermore, it was observed in [11] that the algorithm may fail to converge
if the spectral norm condition is violated. They then proposed a normalised IHT (NIHT)
with an adaptive stepsize by the line search strategy and proved its convergence to a local
minimum if A is of full row-rank and is s-regular (i.e., any s columns of A are linearly
independent). A latest result of Cartis and Thompson [15] showed that NIHT converges to
a local minimum if the matrix A is 2s-regular.

There recently emerges a new line of research on those problems mainly attempted from
the numerical optimization community [1, 5, 6, 27, 34, 35], which tend to ask the following
fundamental questions:

(Q1) Towards what stationary points that a generated sequence converges?

(Q2) Under what conditions that such a stationary point may become a local/global
minimizer?

(Q3) What is the convergence rate to a local/global minimizer if the convergence is taking
place?

There are two key elements that seem to be indispensable in the delicate analysis among
the existing literature in answering those questions. One is on introducing a well character-
ized stationarity appropriate to the data at hand and the other is on a well defined stepsize
rule that is to force certain sufficient decrease in the merit function used in the respective
algorithms. For example, assuming that the function f has Lipschitz gradient, Beck and
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Eldar [5] introduced L-stationarity (among others) and by using a fixed or the accurate
minimization stepsize rule, they established the convergence to an L-stationary point of
various algorithms including IHT. See [6] for further results along this line on the sparse
optimization problem with a symmetric constraint set. The results in [6] were further sig-
nificantly enhanced by Lu [27] by employing a nonmonotone line search stepsize rule. When
f is nondifferentiable, Attouch et al. [1] introduced the concept of critical point and showed
that a few classes of algorithms actually converge to such a critical point. In particular, a
variant of IHT with a fixed (or varying) stepsize on the linear compressed sensing problem
is proved to converge to a critical point [1, Example 5.4], which in this special case is also
the L-stationary point of Beck and Eldar [5]. We note that (Q3) is hardly addressed in the
literature.

In contrast to the research reviewed above, the stationarities studied by Pan et al. [34,35]
followed the classical derivation of optimality conditions for nonconvex programming and
are based on Bouligand or Clarke tangent cones for nonconvex sets (see [12, Section 6.3]
for the definitions of those two cones). This leads to B-, C- and α-stationarites. Their
relationships to L-stationarity (and others) have been briefly discussed in [6, Remark 5.3].
The blanket assumption used in [34,35] is that f is continuously differentiable (its gradient
is not necessarily Lipschitzian).

In this paper, we continue the research of [34, 35] by applying their stationarities to the
algorithm of IHT with the Armijo stepsize rule to solve (1.1). In answering the questions
(Q1)-(Q3), we asked whether our obtained results have been as general as they can be.
This effort has led to the important relationships among the global/local minimizer and the
three stationary points (α-, B-, and C-stationarities) in Theorem 2.5 and Figure 1, which
clearly show what extra conditions are required for one to imply another. This theorem
is fundamental to our algorithmic analysis later on. It turns out that the extra conditions
needed are satisfied by the restricted strong convexity and restricted strong smoothness of
f . Both of the concepts are introduced and popularized in [32]. The resulting IHT enjoys
a number of very nice convergence properties. We single out a few that partially answered
the questions (Q1)-(Q3):

(i) (for Q1) Any accumulation point of iterative sequence is an α-stationary point of NSO
if the objective function f is 2s-restricted strongly smooth (Theorem 3.3).

(ii) (for Q2) The full iterative sequence converges to a local minimizer of NSO if f is
2s-restricted strongly smooth and 2s-restricted strongly convex (Theorem 3.4).

(iii) (for Q3) The sequence of functional values converges at a sublinear rate if f is 2s-
restricted strongly smooth and 2s-restricted strongly convex (Theorem 3.5). Further-
more, the sequence of iterates converges at a Q-linear rate under the condition that
the sparsity constraint is tight at the solution (Theorem 3.6).

In addition, the numerical performance of our improved IHT is also very satisfactory for a
large number of commonly tested problems. Finally, we would like to emphasize that one of
our convergence results, namely Thm. 3.4(ii), is similar to what have been reported in [6,27],
but under different assumptions and on different algorithms. Our basic assumption is on the
continuity of the gradient of f . When the gradient is also Lipschitzian, our α-startionarity
becomes the L-stationarity. We will make more comments on the similarity right after
Thm. 3.4.

This paper is organized as follows. Section 2 presents some technical results on the
optimality conditions of (1.1). Section 3 contains the IIHT algorithm for (1.1) and proves
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Table 1: Notations used in the paper.

its convergence properties. Numerical results are given in Section 4. The last section makes
some concluding remarks. For the sake of easy reading, we introduce some notations to end
this section.

2 Characterizations of Various Stationarities

In this section, we will give detailed characterizations of the relationships among the three
stationary points (namely, α-, B-, and C-stationary point) and the local/global minimizers
of (1.1). We will also report some consequences of those characterizations under some
additional conditions such as the restricted strong convexity/smoothness of f . Those results
will be used in the convergence analysis of the improved IHT algorithm in later sections.

2.1 On the three stationarities

In this part, we assume that f is continuously differentiable. We will use the orthogonal
projection onto a closed set Ω ⊆ Rn defined as follows:

PΩ(x) := argmin
{
∥y − x∥2 : s.t. y ∈ Ω

}
,

where ∥·∥ is the Euclidean norm in Rn. Since Ω is not convex, there may be multiple optimal
solutions. In this case, PΩ(x) can be any one of them. In particular, when Ω = S, PΩ(x)
can be obtained by setting all but s largest absolute components of x to zero (PΩ(x) is also
known as the support project of x onto S). Furthermore, it was proved in [35, Prop. 3.1]
that

PS+
(x) = PS

(
PRn

+
(x)

)
. (2.1)

Moreover,

xΓx
= yΓx

for x = PS+
(y). (2.2)

The B- and C-stationary points are respectively defined through the orthogonal projec-
tion onto the Bouligand and Clarke tangent cones of S+. In our analysis, we will only use
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an equivalent characterization of the each cone and will not need their original definitions,
which are described in [12, Sect. 6.3] and [35, Sect. 2.1]. We note that the Bouligand tangent
cone below can also be derived following [4].

Proposition 2.1. [35, Thms. 2.1 and 2.2] (Characterizations of Bouligand and Clarke
tangent cones). Recall from Table 1, Γ∗ is the support set of x∗ ∈ Rn. If x∗ ∈ S, the
Bouligand and Clarke tangent cones of S at x∗, respectively denoted by TB

S (x
∗) and TC

S (x
∗)

are given by

TB
S (x

∗) =


Rn

Γ∗ , if |Γ∗| = s,∪
Υ⊇Γ∗,|Υ|=s

Rn
Υ, if |Γ∗| < s,

TC
S (x

∗) = Rn
Γ∗ .

Furthermore, if x∗ ∈ S+ we have

TB
S+

(x∗) = TB
S (x

∗) ∩ TRn
+
(x∗), TC

S+
(x∗) = TC

S (x
∗),

where TRn
+
(x∗) := {d ∈ Rn : di ≥ 0, i /∈ Γ∗} is the usual tangent cone of Rn

+ at x∗.

The α-stationary point defined below is actually the L-stationary point [5] when f has
Lipschitz gradient with the Lipschitz constant Lf . The difference lies in that α in our
definition is allowed to take any positive value, while it is restricted within 0 < α ≤ 1/Lf

in [5].

Definition 2.2. Let x∗ ∈ S+ be a given feasible point of (1.1).

(i) We say that x∗ is an α-stationary point if there exists α > 0 such that

x∗ ∈ PS+
(x∗ − α∇f(x∗)) .

(ii) We say the x∗ is a B-stationary point if

0 ∈ PTB
S+

(x∗)(−∇f(x∗)).

(iii) We say the x∗ is a C-stationary point if

0 = PTC
S+

(x∗)(−∇f(x∗)).

The following table is extracted from [35, Table 3], which is very useful in helping us
understand the subtle differences among the definitions. We will frequently use those char-
acterizations in our analysis below.

Table 2: Gradient characterizations of the three stationary points.
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∥x∗∥0 = s, x∗ ≥ 0 ∥x∗∥0 < s, x∗ ≥ 0

α-stationary point ∇if(x
∗)

 = 0, i ∈ Γ∗

≥ −α(x∗)↓s, i /∈ Γ∗
∇if(x

∗)

 = 0, i ∈ Γ∗

∈ R+, i /∈ Γ∗

B-stationary point ∇if(x
∗)

 = 0, i ∈ Γ∗

∈ R, i /∈ Γ∗
∇if(x

∗)

 = 0, i ∈ Γ∗

∈ R+, i /∈ Γ∗

C-stationary point ∇if(x
∗)

 = 0, i ∈ Γ∗

∈ R, i /∈ Γ∗
∇if(x

∗)

 = 0, i ∈ Γ∗

∈ R, i /∈ Γ∗

It is well known that sparse optimization in general fundamentally differs from classical
optimization. One way to appreciate such difference, as well demonstrated in [5], is that the
classical variational inequality

⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀x ∈ S

is not a necessary optimality condition. Interestingly, as proved below, within sufficiently
small a neighbourhood of x∗, the variational inequality is equivalent to the B-stationary
point.

Proposition 2.3. Let x∗ ∈ S+. Then the following results hold.

(i) x∗ is a B-stationary point of (1.1) if and only if there exists δ satisfying 0 < δ <
min{x∗i : i ∈ Γ∗} such that

⟨∇f(x∗), x− x∗⟩
{

= 0, if ∥x∗∥0 = s
≥ 0, if ∥x∗∥0 < s

(2.3)

holds for any x ∈ N(x∗, δ) ∩ S+.

(ii) In particular, if ∥x∗∥0 < s (the sparse constraint is not tight), then x∗ is a B-
stationary point of (1.1) if and only if

⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀ x ∈ S+.

Proof. (i) (Only if part) Suppose first that x∗ ∈ S+ is a B-stationary point of (1.1). We
prove (2.3) for any x ∈ N(x∗, δ) ∩ S+ with some δ > 0 by considering two cases.

Case 1. ∥x∗∥0 = s and x∗ ≥ 0. Take δ satisfying 0 < δ < min{x∗i : i ∈ Γ∗}, for any
x ∈ N(x∗, δ) ∩ S+ and i ∈ Γ∗, we have

xi = x∗i − (x∗i − xi) ≥ x∗i − |x∗i − xi| > x∗i − δ > 0,

which yields that Γ∗ ⊆ supp(x). By ∥x∥0 ≤ s and |Γ∗| = ∥x∗∥0 = s, we can obtain

supp(x) ≡ Γ∗, ∀x ∈ N(x∗, δ) ∩ S+. (2.4)

Since x∗ is a B-stationary point of (1.1), by Table 2, we have

∇if(x
∗)

{
= 0, for i ∈ Γ∗,
∈ R, for i /∈ Γ∗,
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which together with (2.4) yields that

⟨∇f(x∗), x− x∗⟩ =
∑
i∈Γ∗

∇if(x
∗)(xi − x∗i ) +

∑
i/∈Γ∗

∇if(x
∗)(xi − x∗i ) = 0.

Case 2. ∥x∗∥0 < s and x∗ ≥ 0. Since x∗ is a B-stationary point of (1.1), we have

∇if(x
∗)

{
= 0, i ∈ Γ∗,
∈ R+, i /∈ Γ∗.

It follows that for any δ > 0 and x ∈ N(x∗, δ) ∩ S+,

⟨∇f(x∗), x− x∗⟩ =
∑
i∈Γ∗

∇if(x
∗)(xi − x∗i ) +

∑
i/∈Γ∗

∇if(x
∗)(xi − x∗i ) ≥ 0, (2.5)

where the last inequality follows from the facts that (a) ∇if(x
∗) = 0, for i ∈ Γ∗, and (b)

xi ≥ 0, x∗i = 0,∇if(x
∗) ≥ 0 for i /∈ Γ∗. We note that this part of the proof also applies to

all x ∈ S+ without having to be restricted in a neighbourhood of x∗.

(i) (The if part) Conversely, suppose that x∗ ∈ S+ satisfies (2.3) for any x ∈ N(x∗, δ)∩S+

and 0 < δ < min{x∗i : i ∈ Γ∗}. We show x∗ is a B-stationary point of (1.1) also by two
cases.

Case 1. ∥x∗∥0 = s and x∗ ≥ 0. For any i ∈ Γ∗ and δ satisfying 0 < δ < min{x∗i : i ∈ Γ∗},
by letting x = x∗ + δei/2, we have x ∈ N(x∗, δ) ∩ S+. It follows from (2.3) that

0 = ⟨∇f(x∗), x− x∗⟩ = ⟨∇f(x∗), δei/2⟩ = δ∇if(x
∗)/2.

Hence, ∇if(x
∗) = 0 for i ∈ Γ∗ and ∇if(x

∗) for i ̸∈ Γ∗ is not restricted.
Case 2. ∥x∗∥0 < s and x∗ ≥ 0. If i ∈ Γ∗, using the same proof as Case 1 above, we obtain
∇if(x

∗) = 0. If i /∈ Γ∗, let x = x∗ + δei/2. Then x ∈ N(x∗, δ) ∩ S+. It follows from (2.3)
that

0 ≤ ⟨∇f(x∗), x− x∗⟩ = ⟨∇f(x∗), δei/2⟩ = δ∇if(x
∗)/2.

Hence, ∇if(x
∗) ≥ 0 for i ̸∈ Γ∗. It follows from Table 2 that x∗ is a B-stationary point of

(1.1).

(ii) The only-if part follows from Case 2 of the only-if part of (i), where it was noted
that the proof does not rely on the neighbourhood of x∗ used. The if-part proof follows
from Case 2 of the if-part of (i), where the current condition in (ii) necessarily implies the
condition within a neighborhood used in (i).

Our next major result is to establish the relationships among the three stationary points
and the global/local minimizers of (1.1). Some of the relationships need a certain kind of
convexity. We choose to use the one of the restricted strong convexity introduced in [22,32].
Slightly different forms of this concept were also presented in [2, 8, 39]. Note that these
properties are all analogous to the restricted isometry property (RIP) [14] in the standard
(linear) compressed sensing. For easy reference, we include a definition.

Definition 2.4. A function f is called s-restricted strongly smooth (s-RSS) with parameter
Ls > 0, if for any x, y ∈ Rn satisfying |Γxy| ≤ s, it holds that

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ Ls

2
∥y − x∥2. (2.6)
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We say that the function f is s-restricted strongly convex (s-RSC) with parameter ls > 0,
if for any x, y ∈ Rn satisfying |Γxy| ≤ s, it holds that

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≥ ls
2
∥y − x∥2. (2.7)

In particular, if ls = 0, the function f is said to be s-restricted convex (s-RC).

We note that f being s-RSS is a weaker condition than that f having a Lipschitz gradient,
and s-RSC may not imply the convexity of f on Rn. We are ready to report our main result
below.

Theorem 2.5. For (1.1) and x∗ ∈ S+, consider three conditions: (a) ∥x∗∥0 = s; (b) ∥x∗∥0 <
s; (c) f is 2s-RC. Then we have the following (1) − (14) relationships shown in Figure 1
among the α-, B-, C-stationary points and global/local minimizers. For example, for the
relationship (3), an α-stationary point will be a global minimizer of (1.1) under the conditions
(b) and (c).

Figure 1: Relationships among α-, B-, C-stationary points and global/local minimizers.

Proof. Clearly, (1) holds. By using Table 2, (11)-(14) can be verified directly. We actually
only need to prove (3), (7) and (8). In fact, if (3), (7) and (8) hold, then (12) and (8) ⇒
(5); (7) and (11) ⇒ (6); (6) and (3) ⇒ (2); (1) and (6) ⇒ (4); (7) and (14) ⇒ (9); (13) and
(8) ⇒ (10).

For (3), if f is 2s-restricted convex, then for any x ∈ S+ which implies |Γxx∗ | = |supp(x)∪
Γ∗| ≤ 2s, we have

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩
= f(x∗) +

∑
i∈Γ∗

∇if(x
∗)(xi − x∗i ) +

∑
i/∈Γ∗

∇if(x
∗)xi

≥ f(x∗),

where the last inequality is from expression of α-stationary point in Table 2 for the case
∥x∗∥0 < s. This proves that x∗ is a global minimizer of (1.1).

For (7), if x∗ ∈ S+ is a local minimizer of (1.1), then there is a constant δ > 0 such that

f(x∗) ≤ f(x), ∀ x ∈ N(x∗, δ) ∩ S+.

If ∥x∗∥0 < s, then for any i ∈ Γ∗, we have x∗ + tei ∈ N(x∗, δ) ∩ S+ with sufficiently small
t > 0 or t < 0 such that

f(x∗) ≤ f(x∗ + tei) = f(x∗) + t∇if(x
∗) + o(t),



CONVERGENT IHT FOR NONNEGATIVE SPARSITY OPTIMIZATION 333

thus ∇if(x
∗) = 0 for i ∈ Γ∗. For any i /∈ Γ∗, the above inequality holds for sufficiently small

t > 0, which yields ∇if(x
∗) ≥ 0. If ∥x∗∥0 = s, the same argument leads to ∇if(x

∗) = 0 for
any i ∈ Γ∗. Therefore, x∗ is a B-stationary point of (1.1) by Table 2.

For (8), if x∗ is B-stationary point and f is 2s-restricted convex, then for any x ∈
N(x∗, δ) ∩ S+ that implies |Γxx∗ | = |supp(x) ∪ Γ∗| = |Γ∗| = s ≤ 2s, we have

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩ ≥ f(x∗),

where the last inequality is from Pro. 2.3(i), which means x∗ is a local minimizer of (1.1).

We would like to make some comments regarding the above theorem.

(R1) It follows from the relations (7) and (9) in Fig. 1 that a local minimizer must be a
B- or C-stationary point. This means that the B- or C-stationarity forms a necessary
condition for the sparse optimization (1.1). For the converse to be true, one must
need some condition such as (c). In particular, the condition (a): ∥x∗∥0 = s (i.e., the
sparsity constraint is tight) is also part of the sufficient condition for a C-stationary
point to be a local minimizer. Without this condition, a C-stationary point may fail
to be a local minimizer even f is assumed to be convex, as shown by the following
example:

min f(x) = (x1 + 1)2 + (x2 − 1)2 + (x3 − 1)2

s.t. ∥x∥0 ≤ 2, x ≥ 0.

The objective function f is convex on R3
+ and its gradient ∇f(x) = 2(x1 + 1, x2 −

1, x3−1)⊤. It is obvious that x∗ = (0, 0, 1)⊤ with ∇f(x∗) = (2,−2, 0)⊤ is C-stationary
point, but not a local minimizer because f((0, ϵ, 1)⊤) < f(x∗), 0 < ϵ ≤ 1.

(R2) If one further assumes that f has Lipschitz gradient (not just being continuously
differentiable), α-stationarity becomes the L-stationaritiy introduced in [5]. Moreover,
α-stationarity is also a necessary condition of x∗ being a local minimizer [5, Thm. 2.2].
Without the Lipschitz property of the gradient function, relation (6) shows that it is
also a necessary condition provided that the sparse constraint is not tight.

2.2 Global properties

In this subsection, we collect several useful global properties of B- and C-stationary points
under the restricted (strong) convexity. Our first result is a simple consequence of the results
reported above. Recalling the variational inequality characterization of the B-stationary
point in Prop. 2.3(ii), the relationships (11) and (3) in Fig. 1 establish the following important
characterization of a global minimizer of (1.1).

Corollary 2.6. Suppose f is 2s-RC and x∗ ∈ S+ with ∥x∗∥0 < s. The following are
equivalent.

(i) x∗ is a global minimizer of (1.1).

(ii) x∗ is an α-stationary point.

(iii) x∗ is a B-stationary point.

(iv) It holds that ⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀ x ∈ S+.



334 L. PAN, S. ZHOU, N. XIU AND H. QI

The next result shows that a B-stationary point or a C-stationary point can be a global
minimizer when restricted to certain subspace.

Theorem 2.7. Suppose f is s-RC. Let x∗ ∈ S+. Then the following hold.

(i) If x∗ is a B-stationary point, then it is a global minimizer on the subspace Rn
Υ for any

Υ ⊆ {1, · · · , n} that satisfies Γ∗ ⊆ Υ and |Υ| = s.

(ii) If x∗ is a C-stationary point, then it is a global minimizer on the subspace Rn
Γ∗ .

(iii) If f is s-RSC, then the local minimizer of problem (1.1) on any s-dimensional sub-
space is unique. Furthermore, the number of the local minimizers is finite.

Proof. (i) For any x ∈ Rn
Υ ∩ Rn

+, if ∥x∗∥0 = s = |Γ∗| (and hence Υ = Γ∗), we have
(x − x∗)i = 0,∀i /∈ Γ∗ ; if ∥x∗∥0 < s, (x − x∗)i = xi ≥ 0,∀i /∈ Γ∗, which together with the
fact of f being s-restricted convex and the expression of B-stationary point in Table 2 yields
that

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩
= f(x∗) +

∑
i∈Γ∗

∇if(x
∗)(xi − x∗i ) +

∑
i/∈Γ∗

∇if(x
∗)(xi − x∗i )

≥ f(x∗).

Thus the conclusion is derived. The proof of (ii) is similar to (i), and thus its proof is
omitted.

(iii) We note that under the assumption of s-restricted strong convexity of f , the in-
equality in the proof of (i) becomes strict. Therefore, there exists only one local minimizer
on any s-dimensional subspace. We also note that from Table 2 (Relation (9)), any local
minimizer of (1.1) is also a C-stationary point. However, according to (ii), any C-stationary
point must be a unique minimizer on an s-dimensional subspace. Since the number of the
subspaces whose dimension is no larger than s is finite, we conclude that the number of the
local minimizers of (1.1) is finite.

The following example shows that there may exist multiple minimizers of (1.1) under the
s-RSC. That is, one cannot establish the uniqueness of the global minimizer in Thm. 2.7(iii),
unless stronger assumptions are in place.

min ∥x− 1∥, s.t. ∥x∥0 ≤ 1, x ≥ 0,

where 1 = (1, 1, · · · , 1)⊤. The objective function is strongly convex on Rn, and every ei,
i = 1, . . . , n, is a global minimizer.

3 A Convergent IHT and Its Theoretical Analysis

In this section, we will present an improved iterative hard thresholding (IIHT) algorithm
for (1.1) and then analyze its convergence properties utilizing the results reported above.

3.1 IIHT Algorithm

As reviewed in the Introduction, in order for the generated iterates by the IHT algorithm
to converge to a point satisfying certain optimality conditions (stationarities), a proper
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selection of stepsize seems necessary at each iteration. For example, for classical linear
compressed sensing, Blumensath and Davies introduced an adaptive stepsize rule based on
the RIP to ensure a sufficient decrease in the objective per iteration. Recently, for the
nonlinear sparse optimization problem, Lu [27] introduced a nonmonotone line search to a
projection algorithm to ensure its convergence. In this paper, we choose to use the classical
Armijo stepsize rule in IHT, leading to what we call an Improved IHT (IIHT) algorithm.
Another new element that we introduce in IIHT is a new stopping criterion that is motived
by C-stationarity. The remaining part of IIHT just follows the original IHT and hence the
framework of IIHT is very simple and is described as follows.

Table 3: The framework of IIHT algorithm for (1.1).

Step 0 Initialize x0 = 0, 0 < α0 <
1

L2s
, σ > 0, 0 < β < 1, ϵ > 0. Set k ⇐ 0.

Step 1 Compute xk+1 = PS+

(
xk − αk∇f(xk)

)
, where αk = α0β

qk and qk is the smallest

nonnegative integer q such that

f(xk(α0
kβ

q)) ≤ f(xk)− σ
2 ∥x

k(α0
kβ

q)− xk∥2,

and xk(α) := PS+
(xk − α∇f(xk)).

Step 2 If ∥∇Γkf(xk)∥ ≤ ϵ, then Stop; Otherwise, let k ⇐ k + 1 and go to Step 1.

The stopping criterion used will be justified by Thm. 3.4(iii). We emphasize that the
major computaion PS+

(·) is very easy to obtain via (2.1). The following result shows that
the Armijo stepsize is well defined under some condition.

Lemma 3.1. Let f be 2s-RSS and xk ∈ S+ be given. Then it holds

f(xk(α)) ≤ f(xk)− σ

2
∥xk(α)− xk∥2 for 0 < α ≤ 1

L2s + σ
. (3.1)

Therefore αk in the algorithm is well defined.

Proof. According to the computation of xk(α) in Step 1, we have

xk(α) ∈ argmin
{
∥x− xk + α∇f(xk)∥2 : x ∈ S+

}
,

which implies that ∥xk(α)− xk + α∇f(xk)∥2 ≤ ∥α∇f(xk)∥2 by xk ∈ S+. This leads to

∥xk(α)− xk∥2 ≤ −2α⟨∇f(xk), xk(α)− xk⟩. (3.2)

It follows from the property of 2s-RSS of f and (3.2) that

f(xk(α)) ≤ f(xk) + ⟨∇f(xk), xk(α)− xk⟩+ L2s

2
∥(xk(α)− xk)∥2

≤ f(xk)− 1

2α
∥xk(α)− xk∥2 + L2s

2
∥(xk(α)− xk)∥2

= f(xk)− 1

2
(1/α− L2s)∥xk(α)− xk∥2.

By restricting α ∈ (0, 1
L2s+σ ], we obtain the desired result. The proof is completed.
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3.2 Convergence Analysis

Combining the restricted strong convexity and smoothness of f , the convergence of IIHT
can be established in this subsection. We first present a technical result.

Lemma 3.2. Suppose that the function f is s-RC and s-RSS with parameter Ls. Then for
any x, y ∈ Rn satisfying |Γxy| ≤ s, we have

∥(∇f(y)−∇f(x))Γxy∥ ≤ Ls∥y − x∥.

Proof. Let us fix x ∈ S and define the following function of variable y at point x:

ϕx(y) := f(y)− ⟨∇f(x), y − x⟩.

Due to the s-RC of f(·), the point x is a minimizer of ϕx(y) over all y satisfying |Γxy| ≤ s.
This is because

ϕx(y)− ϕx(x) = f(y)− ⟨∇f(x), y − x⟩ − f(x) ≥ 0 ∀ y such that |Γxy| ≤ s. (3.3)

We note that function ϕx(·) has the same properties of s-restricted strong smoothness
as f(·). Define d ∈ Rn by

di :=

{ 1
Ls

(∇ϕx(y))i, if i ∈ Γxy

0, otherwise.

We have ∥∥y − d
∥∥
0
≤ |Γxy| ≤ s and ⟨∇ϕx(y), d⟩ =

1

Ls
∥(∇ϕx(y))Γxy

∥2,

which, together with (3.3) and the s-RSS of ϕx(·), imply

ϕx(x) ≤ ϕx
(
y − d

)
≤ ϕx(y) +

⟨
∇ϕx(y), −d

⟩
+
Ls

2

∥∥ 1

Ls
(∇ϕx(y))Γxy

∥∥2
= ϕx(y)−

1

2Ls

∥∥(∇ϕx(y))Γxy

∥∥2. (3.4)

Rewrite (3.4) as

f(x) ≤ f(y)− ⟨∇f(x), y − x⟩ − 1

2Ls

∥∥(∇f(y)−∇f(x))Γxy

∥∥2. (3.5)

By interchanging x and y in (3.5) and adding the resulting inequality to (3.5), we get∥∥(∇f(y)−∇f(x))Γxy

∥∥2 ≤ Ls⟨∇f(y)−∇f(x), y − x⟩. (3.6)

The desired results then follows from applying the Cauchy-Schwarz inequality to (3.6).

We report our first convergence result below.

Theorem 3.3. Let the sequence {xk} be generated by IIHT. Suppose f is 2s-RSS. Then the
following hold.

(i) lim
k→∞

∥xk+1 − xk∥ = 0 and infk≥0 {αk} > 0;
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(ii) Any accumulation point of {xk} is an α-stationary point of (1.1).

Moreover, if f is 2s-RC, then the following hold.

(iii) The sequence of projected gradients converges to zero, i.e.,

lim
k→∞

∥∇Γkf(xk)∥ = 0.

(iv) Any accumulation point of {xk} is a local minimizer of (1.1).

Proof. (i) As required in IIHT, we have f(xk)− f(xk+1) ≥ σ
2 ∥x

k+1 − xk∥2. Then

∞∑
k=0

∥xk+1 − xk∥2 ≤ 2

σ

∞∑
k=0

(
f(xk)− f(xk+1)

)
<

2

σ

(
f(x0)− lim

k→+∞
f(xk)

)
< +∞,

where the last inequality is due to f being bounded from below. Hence lim
k→∞

∥xk+1−xk∥ = 0.

Armijo-type stepsize rule and Lemma 3.1 imply that {αk} is bounded from below by a
positive constant. In fact,

inf
k≥0

{αk} ≥ β

σ + L2s
:= α > 0. (3.7)

(ii) Suppose that x∗ is an accumulation point of the sequence {xk}. There exists a
subsequence {xkj} converging to x∗. It follows from (i) that

lim
j→∞

xkj+1 = lim
j→∞

xkj = x∗. (3.8)

Based on the update
xkj+1 = PS+

(
xkj − αkj

∇f(xkj )
)

(3.9)

in Step 1 of the IIHT algorithm, we consider two cases.
Case 1. For i ∈ Γ∗. There must exist a sufficiently large index n1 and a positive constant

c0 such that
min{xkj

i , x
kj+1
i } ≥ c0 ∀ j ≥ n1.

This together with the projection formula of PS+(·) in (2.1) and (3.9) implies

x
kj+1
i = x

kj

i − αkj
∇if(x

kj ).

Therefore, the positive lower bound in (3.7) and the limit in (3.8) yield

∇if(x
∗) = 0, ∀ i ∈ Γ∗.

Case 2. For i /∈ Γ∗. Without loss of any generality, we may assume limj→∞ αkj = c1 > 0
on the subsequence {kj}. We consider two subcases. Subcase 2.1: ∥x∗∥0 = s. Then we have

0 = lim
j→∞

x
kj+1
i = lim

j→∞

(
PS

(
PRn

+
(xkj − αkj∇f(xkj ))

))
i

Due to the property of the projections PS(·) and PRn
+
(·), we must have

max
{
x
kj

i − αkj
∇if(x

kj ), 0
}
≤

(
xkj+1

)↓
s
.
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Taking limits on both sides, we obtain

∇if(x
∗) ≥ − 1

c1
(x∗)↓s.

Subcase 2.2: ∥x∗∥0 < s. Suppose ∇if(x
∗) < 0. We then have

lim
j→∞

(
x
kj

i − αkj
∇if(x

kj )
)
= −c1∇if(x

∗) > 0,

leading to (
PRn

+
(xkj − αkj

∇f(xkj ))
)
i
≥ −1

2
c1∇if(x

∗)

for all sufficiently large j. Since ∥x∗∥0 < s, we must have for j sufficiently large

x
kj+1
i =

(
PS

(
PRn

+
(xkj − αkj

∇f(xkj ))
))

i
=

(
PRn

+
(xkj − αkj

∇f(xkj ))
)
i
≥ −1

2
c1∇if(x

∗) > 0.

This contradicts the assumption i ̸∈ Γ∗ (which in turn implies limj→∞ x
kj+1
i = 0). There-

fore, we must have ∇if(x
∗) ≥ 0 for Subcase 2.2.

Summarizing the above two cases, we obtained

∇if(x
∗)

{
= 0, if i ∈ Γ∗,
∈ [− 1

c1
(x∗)↓s, ∞), if i /∈ Γ∗,

(3.10)

which means that x∗ is an α-stationary point of (1.1) by Table 2.
(iii) Notice that TC

S+
(xk) = Rn

Γk is a subspace. The projection of the negative gradient

(−∇f(xk)) to this subspace has the following property due to [13, Lemma 3.1]:

∥PRn

Γk
(−∇f(xk))∥ = max

{
⟨−∇f(xk), v⟩ : v ∈ Rn

Γk , ∥v∥ ≤ 1
}
=

∥∥∇Γkf(xk)
∥∥.

Moreover, the maximum takes place at the boundary of ∥v∥ = 1. Therefore, for any given
ϵ > 0, there exists vk ∈ Rn

Γk with ∥vk∥ = 1 such that∥∥∇Γkf(xk)
∥∥ ≤ −⟨∇f(xk), vk⟩+ ϵ. (3.11)

It follows from xk+1 = PS+

(
xk − αk∇f(xk)

)
and the property in (2.2) that

xk+1
Γk+1 =

(
xk − αk∇f(xk)

)
Γk+1

.

In other words, the vector (xk+1 − (xk − αk∇f(xk))) is orthogonal to Rn
Γk+1 . This yields

that ⟨
xk+1 − (xk − αk∇f(xk)), wk+1 − xk+1

⟩
= 0, ∀ wk+1 ∈ Rn

Γk+1 .

Choose a particular wk+1 by wk+1 := xk+1+vk+1. The Cauchy-Schwartz inequality implies

−⟨∇f(xk), vk+1⟩ ≤ ∥xk+1 − xk∥
αk

. (3.12)

Since f is 2s-RSS, we have from Lemma 3.2 and (3.12) that

−⟨∇f(xk+1), vk+1⟩ = −⟨∇f(xk+1)−∇f(xk), vk+1⟩ − ⟨∇f(xk), vk+1⟩

≤ L2s∥xk+1 − xk∥+ ∥xk+1 − xk∥
αk

.
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Taking limits on both sides and using the facts established in (i), we have

lim sup
k→∞

−⟨∇f(xk+1), vk+1⟩ ≤ 0.

From (3.11) and the arbitrariness of ϵ, we proved lim
k→∞

∥∥∇Γkf(xk)
∥∥ = 0.

(iv) The convergence to a local minimizer of (1.1) provided that f is 2s-restricted convex
follows directly from Theorem 2.5 ( Relation (5)).

The following result further characterizes when the whole sequence converges to a local
minimizer and when the local minimizer becomes a global one.

Theorem 3.4. Assume f is both 2s-RSS and 2s-RSC. Then the whole sequence {xk} con-
verges to a local minimizer x∗ of (1.1). Furthermore, depending on whether the sparse
constraint is tight or not at x∗, we have the following detailed characterization of x∗.

(i) If the sparse constraint is tight at x∗ (i.e., ∥x∗∥0 = s), then

Γk ≡ Γ∗ for all sufficiently large k.

(ii) If the sparse constraint is not tight at x∗ (i.e., ∥x∗∥0 < s), then x∗ is a global minimizer
of (1.1).

Proof. From Thm. 2.7(iii), the number of the local minimizers of (1.1) is finite and from
Theorem 3.3(iv), every accumulation point of {xk} is a local minimizer of (1.1). Hence,
the number of accumulation points of sequence {xk} is finite and every accumulation point,
which is also a local minimizer, is isolated. Since f is 2s-RSC, the sequence {xk} is bounded.
Theorem 3.3(i) has established that the whole sequence {xk} satisfies ∥xk+1 − xk∥ → 0. It
follows from [30, Lemma 4.10] (which is restated as [23, Prop. 7], which is more relevant to
our current setting) that the whole sequence must converge to a local minimizer. We now
prove the remaining two claims.

(i) If ∥x∗∥0 = s, since xk → x∗, we have ∥xk − x∗∥ < δ where 0 < δ < min{x∗i : i ∈ Γ∗}
for all sufficiently large k. Then following the same reasoning as proving (2.4), we have
Γk ≡ Γ∗ for all sufficiently large k.

(ii) If ∥x∗∥0 < s, the conclusion can be derived immediately due to f being 2s-RSC and
Theorem 2.5 (Relation (2)).

What we have proved in the above theorem is that when the sparse constraint ∥x∥0 ≤ s
is tight at x∗, we can only claim that the whole sequence converges to a local minimizer,
whereas when it is not tight, the whole sequence converges to the global minimizer. We
note that a similar result has also been recently proved by Lu [27] though under different
assumptions. If the sparse constraint is tight, then the sequence generated in [27] only
converges to a local minimizer under the assumptions that f has Lipschitz gradient and is
convex. If the sparse constraint is not tight, then the sequence generated in [27] converges
to the global minimizer provided that f further satisfies Assumption (3) in [27]. Here
we assumed 2s-RSS and 2s-RSC. Therefore, our basic assumptions as well as the proof
techniques are fundamentally different from those in [27]. Moreover, our result in (i) states
that the active index set can be correctly identified in the case of tight constraint. This is
the crucial property that allows us to establish the Q-linear convergence rate (Thm. 3.6)
below.
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3.3 Sub-linear and Q-linear convergence rate

In this subsection, we will show the linear convergence rate both in terms of functional value
sequence {f(xk)} and the sequence itself {xk}. From the view of point in Theorem 3.4, we
need the assumptions of both 2s-RSC and 2s-RSS. Consequently, the whole sequence {xk}
converges to a local minimizer x∗.

First we make an easy observation. For xk, denote

Fk(x) := ∥x− xk + αk∇f(xk)∥2.

Then it is obvious that

xk+1 = PS+(x
k − αk∇f(xk)) = arg min

x∈S+

Fk(x).

We claim that it holds

⟨∇Fk(x
k+1), x∗ − xk+1⟩ ≥ 0 for any k such that Γ∗ ⊆ Γk+1. (3.13)

We prove above inequality by considering two cases. Case 1: ∥xk+1∥0 < s and Case 2:
∥xk+1∥0 = s. For Case 1, apply Cor. 2.6(iv) to Fk (instead of f therein) to get (3.13)
because Fk(·) is 2s-RC due to Fk(·) being strongly convex. For Case 2, xk+1 is the global
minimizer of Fk(x) and thus a B-stationary point, which implies ∇Γk+1Fk(x

k+1) = 0. Then
by Γ∗ ⊆ Γk+1 when k is sufficiently large, we must have

⟨∇Fk(x
k+1), x∗ − xk+1⟩ =

∑
i∈Γk+1

∇iFk(x
k+1)(x∗i − xk+1

i ) = 0.

Hence (3.13) holds and its leads to the following linear rate convergence.

Theorem 3.5. Assume f is 2s-RSS and 2s-RSC. Let {xk} be generated by IIHT and be
convergent to a local minimizer x∗ of (1.1) (the convergence is guaranteed by Thm. 3.4).
Then for any k > k0, the following inequality holds:

f(xk)− f(x∗) ≤ 1

(k − k0)αl2s

(
f(xk0)− f(x∗)

)
, (3.14)

where α := β
L2s+σ and k0 is the smallest positive integer such that Γ∗ ⊆ Γk for any k > k0.

Proof. Since xk → x∗, there exists k0 such that Γ∗ ⊆ Γk, ∀ k > k0. Therefore, (3.13)
holds for any k > k0. Since f is convex on any 2s-dimensional subspace and 2s-RSS with
0 < αk <

1
L2s

, it follows that

f(x∗) ≥ f(xk) + ⟨∇f(xk), x∗ − xk⟩, (3.15)

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ 1

2αk
∥xk+1 − xk∥2. (3.16)

By the function Fk(x) being strongly convex with modulus 2 and (3.13), we have

Fk(x
∗) = Fk(x

k+1) + ⟨∇Fk(x
k+1), x∗ − xk+1⟩+ ∥x∗ − xk+1∥2 ≥ Fk(x

k+1) + ∥x∗ − xk+1∥2.

Substituting the definition of Fk(x) into the above inequality and simplifying lead to

⟨∇f(xk), xk+1 − xk⟩+ 1

2αk
∥xk+1 − xk∥2 (3.17)

≤ ⟨∇f(xk), x∗ − xk⟩+ 1

2αk
(∥x∗ − xk∥2 − ∥x∗ − xk+1∥2).
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Combining (3.16), (3.17) and (3.15), it holds that

f(xk+1) +
1

2αk
∥x∗ − xk+1∥2

≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ 1

2αk
∥xk+1 − xk∥2 + 1

2αk
∥x∗ − xk+1∥2 (by (3.16))

≤ f(xk) + ⟨∇f(xk), x∗ − xk⟩+ 1

2αk
∥x∗ − xk∥2 (by (3.17))

≤ f(x∗) +
1

2αk
∥x∗ − xk∥2, (by (3.15))

which amounts to

f(xk+1)− f(x∗) ≤ 1

2αk

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
≤ 1

2α

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
,

where we have used the fact αk ≥ β
σ+L2s

= α proved in Theorem 3.3(i) (3.7). For any positive

integer j, using this inequality and the monotonically decreasing property of {f(xk)}, we
have

j(f(xk+j)− f(x∗)) ≤
k+j−1∑
i=k

(
f(xi+1)− f(x∗)

)
≤ 1

2α
(∥xk − x∗∥2 − ∥xk+j − x∗∥2).

We thus have

f(xk+j)− f(x∗) ≤ 1

2jα
∥xk − x∗∥2. (3.18)

In addition, since x∗ is a local minimizer and thus a B-stationary point. By Prop. 2.3(i),
it holds ⟨∇f(x∗), xk − x∗⟩ ≥ 0 because xk is in a neighborhood of x∗. This and f being
2s-RSC yield

f(xk)− f(x∗) ≥ ⟨∇f(x∗), xk − x∗⟩+ l2s
2
∥xk − x∗∥2 ≥ l2s

2
∥xk − x∗∥2,

which together with (3.18) contributes to

f(xk+j)− f(x∗) ≤ 1

jαl2s

(
f(xk)− f(x∗)

)
.

Therefore, for any k > k0, it holds that

f(xk)− f(x∗) ≤ 1

(k − k0)αl2s

(
f(xk0)− f(x∗)

)
,

which completes the proof.

We now show the Q-linear convergence rate of the iterative points sequence of IIHT
under assumption ∥x∗∥0 = s.

Theorem 3.6. Assume f is 2s-RSS and 2s-RSC. Let x∗ be the limit of the sequence {xk}
generated by IIHT that satisfies ∥x∗∥0 = s. Then for any sufficiently large k, it holds,

∥xk+1 − x∗∥2 ≤ ρ∥xk − x∗∥2, 0 < ρ < 1, (3.19)

where ρ := 1− 2l22sα/L2s + l22sα
2 with α being defined in Theorem 3.5.
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Proof. As already used, the convergence of {xk} to x∗ is guaranteed by Thm. 3.4. Since f
is 2s-restricted strongly convex with parameters l2s in (2.7), we can easily obtain that

∥(∇f(x)−∇f(y))Γxy
∥ ≥ l2s∥x− y∥ ∀ |Γxy| ≤ 2s.

This together with Lemma 3.2 and Thm. 3.4(i) (proving Γk ≡ Γ∗ for all sufficiently large k)
yields that for any sufficiently large k,

∥xk+1 − x∗∥2 = ∥xkΓ∗ − αk∇Γ∗f(xk)− x∗Γ∗ + αk∇Γ∗f(x∗)∥2

= ∥xk − x∗∥2 − 2αk⟨xk − x∗,∇f(xk)−∇f(x∗)⟩
+α2

k∥(∇f(xk)−∇f(x∗))Γ∗∥2

≤ ∥xk − x∗∥2 − (2αk/L2s − α2
k)∥(∇f(xk)−∇f(x∗))Γ∗∥2

≤
(
1− 2l22sαk/L2s + l22sα

2
k

)
∥xk − x∗∥2,

where ∇Γ∗f(x∗) = 0 in the first equality holds due to Thm. 3.3(iii), namely, ∇Γ∗f(x∗) =
limk→∞ ∇Γkf(xk) = 0. It follows from α ≤ αk < 1/L2s that

1− 2l22sαk/L2s + l22sα
2
k = 1 + l22s

(
αk − 1/L2s

)2 − l22s/L
2
2s

≤ 1 + l22s
[(
α− 1/L2s

)2 − 1/L2
2s

]
= 1− 2l22sα/L2s + l22sα

2 = ρ.

Moreover, ρ = l22s
(
α− 1/L2s

)2
+ 1− l22s/L

2
2s > 0 and ρ = 1− l22sα

(
2

L2s
− β

L2s+σ

)
< 1. The

proof is completed.

We note that convergence result of the type (3.19) is known to be Q linear rate in
optimization. We are only able to establish this result for the special case when the sparse
constraint is tight. The key reason is that we were able to correctly identify the active index
set for this case.

4 Numerical Experiments

In this section, we report our numerical experiments of IIHT on three classes of problems:
Linear compressed sensing under nonnegativity constraints, Sparse logistic regression and
Phase retrieval. Our stopping criterion is set as

number of iterations ≤ Maxiter or ∥(∇f(xk))Γk∥ ≤ ϵ,

where we stop our algorithm whenever the number of iterations exceeds Maxiter or the
projected gradient becomes less than ϵ. We will set a different level for ϵ and Maxiter for
each class of test problems. The CPU time reported here does not include the time for data
initialization. All those simulations are carried out on a CPU 3.2GHz, RAM 4.0GB desktop.

4.1 Compressed Sensing

We first test the classical linear CS problem under the nonnegativity constraint with f(x) =
fA(x) := ∥Ax− b∥2, where A ∈ Rm×n is a linear measurement matrix satisfying

b = Ax+ ξ.
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We will test two scenarios. One is the exact recovery where ξ ≡ 0 and the other is the so-
called stable recovery where ξ follows the normal distribution. More specifically, two types
of sensing matrices of A will be generated, namely, random Gaussian matrix, and random
partial Discrete Cosine Transform (pDCT) matrix:

Gaussian: A·j
i.i.d.∼ N (0, I/m), j = 1, 2, · · · , n,

pDCT: Aij = m−1/2 cos(2π(j − 1)ψi), i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

where A·j denotes the jth column of A, ψi, i = 1, . . . ,m are uniformly and independently
sampled from [0, 1]. After generating them, we orthogonalize them to satisfy AA⊤ = I.

We generate the ’true’ original signal xorig with nonnegative elements as follow: first
produce an index set T with s indices randomly selected from {1, · · · , n}; then for each
element of xorig with index in T , uniformly choose them from [0, 10]. The data are generated
as follows (in Matlab format):

xorig = zeros(n, 1); T = randperm(n);

xorig(T (1 : s)) = 10 ∗ rand(s, 1); (4.1)

b = A ∗ xorig + σ0 ∗ randn(m, 1).

Clearly, the case σ0 = 0 is the exact recovery. For stable recovery, we take σ0 = 0.01.

(a) Parameter setting. In our implementation, we set Maxiter = 1000, ϵ = 10−5,
β = 0.8 and σ = 10−5 for simplicity. Instead of fixing α0 for each step in IIHT, we update
it according to [11] to accelerate the computational speed, namely,

αk
0 =

∥A⊤
Γk(b−Axk)∥2

∥AΓkA⊤
Γk(b−Axk)∥2

.

We run 40 trials for Gaussian and pDCT matrices with n = 5000,m = n/4 and s = 0.01n
or s = 0.05n for exact and stable recovery to see the decreasing of objective function at each
iteration. Results recorded in Figure 2 show that only 5 (15) iterations are needed to get the
desirable solutions when s = 0.01n (s = 0.05n ) for both exact and stable recovery, which
shows that the gain in decreasing the objective function per iteration is sufficient.

Figure 2: Objective function value at each iteration.

(b) Comparison of different methods. The reason for us to consider linear mapping
is that we can compare our algorithm with other state-of-the-art greedy methods which are
used to address liner compressed sensing. For example, Normalized Iterative Hard Thresh-
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olding (NIHT) proposed by Blumensath in [11], Compressive Sampling Matching Pursuit
(CoSaMP) established by Thomas et al. in [31], and Subspace Pursuit( SP) in [17] 1.

We begin with running 100 independent trials for each type of matrix under m = 64, n =
256 and recording the corresponding success rate at sparsity levels from 5 to 30. The success
rate is defined as the percentage of successful recovery of 100 trials. If the relative error is
smaller than 10−2, i.e.,

Relative Error :=
∥x− xorig∥

∥x∥
< 10−2,

the recovery is regarded as a successful one. Here x denotes computed solutions by four
methods. Corresponding results are seen in Figure 3. Obviously, for these two types of
matrices, IIHT basically runs the best results, followed by SP which outperforms NIHT and
CoSaMP.

Figure 3: Success rates with two types of matrices with m = 64, n = 256.

To see the accuracy of the solutions and the speed of these four methods, we now run
40 trials for each kind of matrices with higher dimensions n increasing from 1000 to 9000
and keeping m = n/4, s = 0.01n, 0.05n. We also fix σ0 = 0.01. Specific results produced by

1. CoSaMP and SP are available at:http://media.aau.dk/null space pursuits/2011/07/a-few-
corrections-to-cosamp-and-sp-matlab.html.
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these four methods are recorded in Tables 4 and 5. The most obvious property of the data
in the table is that the relative error of those four methods almost are identical. However,
in terms of computational time, SP performs the best when s = 0.01n, followed by IIHT,
CoSaMP and NIHT; When s = 0.05n, our proposed IIHT behaves better than SP and NIHT,
and CoSaMP comes the last.

Table 4: Average results for Gaussian matrix.

s n Relative Error Time

IIHT NIHT SP CoSaMP IIHT NIHT SP CoSaMP

1000 0.0040 0.0046 0.0046 0.0051 0.0049 0.0070 0.0052 0.0059

3000 0.0035 0.0037 0.0037 0.0041 0.0124 0.0914 0.0081 0.0125

0.01n 5000 0.0036 0.0035 0.0036 0.0041 0.0254 0.2817 0.0116 0.0282

7000 0.0042 0.0041 0.0043 0.0051 0.0541 1.6674 0.0292 0.0862

9000 0.0038 0.0039 0.0041 0.0047 0.0905 2.8940 0.0719 0.1070

1000 0.0043 0.0046 0.0045 0.0067 0.0113 0.0787 0.0145 0.0428

3000 0.0038 0.0038 0.0039 0.0067 0.0651 2.8045 0.1194 37.491

0.05n 5000 0.0044 0.0042 0.0044 0.0065 0.2946 11.075 0.5455 150.69

7000 0.0038 0.0038 0.0038 0.0061 0.4264 23.916 1.2049 559.55

9000 0.0040 0.0041 0.0041 0.0065 0.8517 58.758 1.9868 1492.2

Table 5: Average results for pDCT matrix.

s n Relative Error Time

IIHT NIHT SP CoSaMP IIHT NIHT SP CoSaMP

1000 0.0038 0.0039 0.0039 0.0039 0.0047 0.0060 0.0051 0.0049

3000 0.0034 0.0034 0.0034 0.0042 0.0123 0.0877 0.0083 0.0127

0.01n 5000 0.0035 0.0035 0.0035 0.0044 0.0321 0.3904 0.0143 0.0350

7000 0.0039 0.0039 0.0037 0.0044 0.0530 1.4925 0.0318 0.0728

9000 0.0037 0.0037 0.0037 0.0045 0.0903 3.2969 0.0532 0.2942

1000 0.0041 0.0040 0.0040 0.0068 0.0104 0.0754 0.0167 3.0316

3000 0.0038 0.0038 0.0038 0.0061 0.0654 2.3984 0.1477 32.955

0.051n 5000 0.0041 0.0040 0.0041 0.0069 0.2266 11.858 0.3876 141.56

7000 0.0042 0.0040 0.0042 0.0068 0.4541 17.088 1.5226 562.10

9000 0.0040 0.0040 0.0041 0.0063 0.9101 56.779 8.73688 1485.2

4.2 Sparse Logistic Regression Problem

The logistic regression model plays an important role in two-class classification method that
has been used widely in many applications ranging from data mining, machine learning,
computer vision, to bioinformatics. Specifically, given data z ∈ Rn and weights (v, w), it
assumes the following probability model

P(b = ±1|v, w) = 1

1 + exp(−b(v + w⊤z))
,

where b is the class label. If zi ∈ Rn, i = 1, · · · ,m are m given samples with n features and
bi ∈ {1,−1}, i = 1, · · · ,m are given m binary outcomes or labels, one estimates (v, w) by
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minimizing the negative log-likelihood:

min
v,w

L(w, v) :=

m∑
i=1

log
(
1 + exp(−bi(v + w⊤zi))

)
Recently, sparse logistic regression is attractive in many applications involving high-dimensional
data, seen [24,28] and references therein. The corresponding optimization model is

min
v,w

L(v, w), s.t. ∥w∥0 ≤ s. (4.2)

Letting x = (v;w) ∈ Rn+1 and pi = (1; zi) ∈ Rn+1, denote the so-called logistic loss as

f(x) :=
1

m

m∑
i=1

log
(
1 + exp(−bi · x⊤pi)

)
,

We select two popular methods for numerical comparison. One is the penalty method of Lu
and Zhang [28] proposed a penalty decomposition (PD) method. The other is the first-order
method SLEP of [26]. To compare the solution quality of the three methods, we adopt the
criterion, error rate, from [28], which is defined by

Error Rate :=
1

m

m∑
i=1

|sign(x⊤pi)− bi|, (4.3)

where x is the solution obtained by methods and sign(a) is the sign function, i.e., sign(a) = 1
if a > 0; sign(a) = −1 if a < 0; sign(a) = 0, otherwise.

(a) Parameter setting. We will test two kinds of data sets: real data sets and random
data sets to be described below. For the PD method, we set eps = 10−3, maxit = 1000,
and the rest of its parameters are set by default. For SLEP method, we set opts.mFlag =
1, opts.lFlag = 1, opts.tFlag = 2, and fix rho= 0.05 for the random data sets, where rho
corresponds to l1 norm penalty parameter λ. However, rho is appropriately adjusted for the
real data sets. The rest of its parameters are set by default. For our IIHT, we use

Table 6: Parameters for IIHT.

Real data α0 = 0.01, β = 0.2, σ = 10−5, Maxiter = 1000, ϵ = rm/λmax(A
⊤A)

Random data α0 = 0.2, β = 0.5, σ = 10−3, Maxiter = 1000, ϵ = mmax
{
10−4, 10

m+n
1000

−13
}

Here, A := [p1, · · · , pm] and r := max{m,n}/min{m,n}, x0 = (v0;w0). We always start
with w0 as a zero vector, and initialize v0 = 10 for real data sets but v0 = 1 for random
data sets.

(b) Comparison on real data. In our first experiment, we test three real data sets.
The first data set is the colon tumor gene expression data1 with 62 samples and 2000
features. The second data is the ionosphere2 data with 351 samples and 34 features. The
third one is the German Credit data3 with 1000 samples and 24 features. The first and third
data sets are from the UCI machine learning bench market repository [33]. We standardize
each data set so that the sample mean is zero and the sample variance is one. We first

1. Colon tumor gene expression data: http://genomics-pubs.princeton.edu/oncology/affydata/index.html.
2. Ionosphere data: http://archive.ics.uci.edu/ml/datasets/Ionosphere.
3. German Credit data: https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).
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apply SLEP to (4.2) with a sequence of suitably chosen rho to obtain solutions ŵ with an
increasing sparsity sequence such as ∥ŵ∥0 = 1, 2, · · · , 20. We then set s being same as ∥ŵ∥0
for PD and IIHT, so that the solutions of these three method are of the same sparsity.

Results for the first two data sets are recorded in Figure 4. In terms of CPU time, PD
performs poorly for both data sets, while SLEP and IIHT run very fast. For Colon data,
SLEP basically gets lowest logistic loss and error rate, and PD produces the highest ones. For
Ionosphere data, there is no big difference for logistic loss between PD and IIHT. Both are
better than SLEP. In terms of error rate, IIHT behaves the best, followed by PD and SLEP.

Figure 4: Results for Colon tumor gene expression data and Ionosphere data.

In fact, the error rate is often used to evaluate the quality of a model vector, which
is taken the sum over the testing samples instead of the training samples in (4.3). It is
well known that when the ratio between the number of training samples and the number
of features is small, namely, m/n, the error rate is usually high for most of models. Thus,
Colon and Ionosphere data sets may not be appropriate for evaluating the error rate. Based
on this, we chose German Credit data to estimate it. Specifically, we simply divide this
data into two parts: the first 900 samples being training data and the rest 100 samples
being testing data. Then we apply three methods in the way as above. The results are
shown in Figure 5. For training data, PD returns the best results in terms of logistic loss
and error rate, followed by IIHT and SLEP. However, IIHT basically outperforms SLEP and
PD for testing data, as it generates lowest logistic loss for most cases.

(c) Comparison on random data. Now we compare the three methods on the random
data sets, where the samples {z1, · · · , zm} and the corresponding outcomes {b1, · · · , bm} are
generated in the same manner as [28]. In detail, for each instance we choose equal num-
ber of positive and negative samples, that is, m+ = m− = m/2, where m+ (resp., m−) is
the number of samples with outcome +1 (resp., -1). The features of positive (resp., nega-
tive) samples are independent and identically distributed, drawn from a normal distribution
N (ϕ, 1), where ϕ is in turn drawn from a uniform distribution on [0, 1] (resp., [−1, 0]).
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Figure 5: Results for German Credit data.

Corresponding pseudo MTALAB codes are:

T = randperm(m); b = ones(m, 1); b(T (1 : m/2)) = −1;

zi = bi ∗ rand+ randn(n, 1), i = 1, · · · ,m.

Data of different sizes are generated. For each size, we randomly generate the data set
consisting of 40 trials. For each trial, let ŵ be the approximate optimal solution obtained by
SLEP. We then apply our PD and IIHT methods to solve problem (4.2) with s = ∥ŵ∥0 so that
the resulting approximate optimal solutions are at least as sparse as ŵ. The results of the
three methods for the these randomly generated instances are presented in Table 7. Clearly,
IIHT obtains the best results with lowest logistic loss and least CPU time. PD outperforms
SLEP in terms of logistic loss but takes the most time.

Table 7: Average results generated by three methods.
Logistic Loss Time

m n s IIHT PD SLEP IIHT PD SLEP

1000 127.2 2.42e-04 2.46e-04 1.65e-01 0.51 13.32 0.75

1000 3000 145.3 4.90e-05 2.26e-04 1.55e-01 1.33 65.41 4.23

5000 165.2 3.40e-05 1.89e-04 1.50e-01 2.87 100.68 6.83

1000 195.4 9.94e-05 4.10e-04 1.91e-01 2.22 81.49 3.56

3000 3000 233.3 5.31e-05 4.10e-04 1.83e-01 4.14 201.88 11.33

5000 246.5 4.21e-05 2.97e-04 1.79e-01 6.08 360.44 20.75

1000 239.7 3.06e-05 5.72e-04 1.94e-01 4.06 139.51 6.41

5000 3000 304.5 1.58e-05 3.84e-04 1.87e-01 10.07 362.73 18.76

5000 326.3 2.14e-05 2.96e-04 1.86e-01 16.07 549.65 33.12

4.3 Phase Retrieval Problem

Phase retrieval is the problem that aims at recovering a signal from the magnitude of its
Fourier transform. Namely, it is to find a real-valued discrete time signal x ∈ RN from its
magnitude-squared of an N point discrete Fourier transform (DFT):

bj =
∣∣∣ n∑
k=1

xke
−2πi(j−1)(k−1)/N

∣∣∣2, j = 1, · · · , N.

Here x is constructed as x = (x1, · · · , xn, 0, · · · , 0)⊤ ∈ RN . If we denote F the DFT matrix,
then each elements Fjk = e−2πi(j−1)(k−1)/N and b = |Fx|2, where | · |2 denotes the element-
wise absolute-squared value. Therefore, phase retrieval of sparse signals actually can be
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reformulated as the following model (see [36] for details).

minx∈RN

∑N
i=1(|Fix|2 − bi)

2,
s.t. ∥x∥0 ≤ s,

supp(x) ⊆ {1, · · · , n}.

where Fi is the i-th row of F . Actually, phase retrieval of sparse signals is a special case of
the more general quadratic compressed sensing (QCS) problem [5,37]. For our IIHT, we set
Maxiter = 2000, α0 = 0.001, ϵ = 10−2 and β = 0.1, σ = 10−4. We generate y ∈ Rn with
sparsity s as in (4.1), and then get xorig and b by the pseudo MATLAB codes:

xorig = [y; zeros(N − n, 1)];

b = abs(fft(xorig)).
∧2 + σ0 ∗ randn(N, 1);

In order to evaluate the performance of IIHT, we compare it with GESPAR proposed
in [36]. Its parameters are set by default.

Figure 6: Success rates with three types of matrices.

By fixing n = 64 and N = 64, 128 under σ0 = 0.01 and σ0 = 0.1, we test 100 trials for
these two methods with different sparsity level s. The corresponding success rate which is
defined as before and CPU time are taken into consideration in illustrating their performance.
Results shown in Figure 6 demonstrate that IIHT outperforms GESPAR when N = 64, while
performs worse than GESPAR when N = 128, regardless of noise level.

To see the accuracy of the solutions and the speed of these two methods, we now run
40 trials with slightly higher dimensions n increasing from 500 to 3000 and keeping N =
2n, s = 1%n. We also test them under two noise levels σ0 = 0.01 and σ0 = 0.1. We only
report results associated with successful recovery, i.e., Relative Error < 0.01. Such results
are recorded in Table 8, in which IIHT outperforms GESPAR in terms of both average CPU
time and average relative error when n ≥ 1500.

Table 8: Average results with N = 2n, s = 1%n.
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n σ0 = 0.01 σ0 = 0.1

Time Relative Error Time Relative Error

IIHT GESPAR IIHT GESPAR IIHT GESPAR IIHT GESPAR

500 1.82 0.82 8.73e-06 4.97e-06 1.58 0.65 7.71e-05 5.72e-05

1000 3.38 8.47 2.73e-06 1.93e-06 4.70 8.82 2.59e-05 1.79e-05

1500 4.22 45.64 1.65e-06 2.07e-04 4.07 54.40 1.65e-05 5.46e-05

2000 7.14 98.53 1.08e-06 4.93e-04 6.33 115.02 1.03e-05 3.46e-04

2500 9.07 284.07 9.57e-07 5.89e-04 9.48 360.91 9.22e-06 1.05e-03

3000 12.45 490.90 7.29e-07 2.69e-04 9.88 754.86 7.73e-06 1.21e-03

5 Conclusion

In this paper, we studied an improved version of the popular Iterated Hard-Thresholding
(IHT) algorithm, for the sparsity and nonnegativity constrained optimization, from the
veiwpoint of optimization. We try to answer the questions that are common in optimization.
Those questions include towards what stationary point that the IHT would converge to and
at what speed. In order to answer those questions, we studied the relationships among the
three stationary points (α-, B- and C-stationary points) and local (global) minimizers of
(1.1). Moreover, we established some results on convergence and linear convergence rates of
IHT by including the Armijo line search in IHT. Numerical experiments demonstrated the
efficiency of the improved IHT on three widely tested problems.

Two immediate questions arise from this research. One is to assess whether the non-
monotone line search strategy used by Lu [27] would lead to more efficient performance
of IHT and lead to stronger convergence results. The second question is whether we can
establish convergence to the global minimizer for the case that the sparse constraint is not
tight.
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