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where α > 0 is known the regularization parameter and, throughout this paper, ∥ ·∥ denotes
the Euclidean norm.

Recently, Xu transfered the idea of Tikhonov’s regulation method to solve the constrained
linear inverse problem (1.2) to the case of the SFP (1.1). It easy to find that the SFP (1.1)
is equivalent to the following optimization problem

min
x∈C

∥(I − PQ)Ax∥.

Xu considered the minimization problem to solve the above optimization problem

min
x∈C

∥(I − PQ)Ax∥2 + α∥x∥2, (1.3)

where α > 0 is known the regularization parameter. And in [15, 18] he introduced some
methods for solving the SFP based on the minimization problem (1.3) in Hilber spaces, which
gave the minimum-norm solution of the split feasibility problem. In [2], Ceng proposed some
relaxed extragradient methods for finding minimum-norm solution of the split feasibility
problem.

In this paper, motivated by Xu’s idea to find the minimum-norm solution for the SFP,
we consider the following unconstrained optimization problem:

min
x∈ℜN

fα(x) =
1

2
∥(I − PC)x∥2 +

1

2
∥(I − PQ)Ax∥2 + 1

2
α∥x∥2, (1.4)

where α > 0 is known the regularization parameter. Accordingly, we denote

f(x) =
1

2
∥(I − PC)x∥2 +

1

2
∥(I − PQ)Ax∥2. (1.5)

Under some mild conditions, by solving this unconstrained optimization problem (1.4), we
can obtain the minimum-norm solution of the SFP. In this paper, we design and analyze a
gradient algorithm for finding the minimum-norm solution of the SFP through (1.4). The
global convergence of the algorithm is also established.

The rest of the paper is organized as follows. In Section 2, we introduce some useful
properties which will be used in the next sections. In Section 3, we propose an algorithm to
obtain the minimum-norm solution of the SFP. Section 4 gives some conclusions.

2 Preliminaries

In this section, we introduce some useful preliminaries which will be used in the next sections.
Throughout the paper, ⟨., .⟩ denotes the inner product; PΩ denotes the projection from ℜN

onto a nonempty closed convex subset Ω of ℜN , and it is defined as PΩ(x) = argminy∈Ω ∥x−
y∥. Let T : ℜN → ℜN be a nonlinear operator, T is called β-strongly monotone with β > 0,
if

⟨x− y, Tx− Ty⟩ ≥ β∥x− y∥2, x, y ∈ ℜN .

Lemma 2.1 ([16])). Let Ω be a nonempty closed convex subset of ℜN ,then
(1) ⟨PΩ(x)− x, y − PΩ(x)⟩ ≥ 0, x ∈ ℜN , y ∈ Ω;
(2) ⟨PΩ(x)− PΩ(y), x− y⟩ ≥ ∥PΩ(x)− PΩ(y)∥2, x, y ∈ ℜN ;
(3) ∥PΩ(x)− PΩ(y)∥2 ≤ ∥x− y∥2 − ∥PΩ(x)− x+ y − PΩ(y)∥2, x, y ∈ ℜN .

Remark 2.2. From Lemma 2.1, it is not hard to find that
(1) ∥PΩ(x)− PΩ(y)∥ ≤ ∥x− y∥, x, y ∈ ℜN ;
(2) ∥PΩ(x)− x+ y − PΩ(y)∥ ≤ ∥x− y∥, x, y ∈ ℜN .
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Lemma 2.3 ([17]). A proper convex function g : ℜN → (−∞,+∞] is strongly convex with
the coefficient σ > 0 if and only if g̃(x) = g(x)− 1

2σ∥x∥
2 is also a proper convex function.

Lemma 2.4 ([17]). Let g be a convex and differentiable function.Then x∗ ∈ ℜN is a solution
of the problem:

min
x∈ℜN

g(x)

if and only if x∗ ∈ ℜN satisfies the following optimality condition:

∇g(x∗) = 0.

Moreover, if g is strictly convex, then the problem minx∈ℜN g(x) has a unique solution.

Theorem 2.5. The function f(x) defined by (1.5) is convex and ∇f is Lipschitz continuous
with Lipschitz constant 1 + ∥A∥2.

Proof. Since ∇f = (I − PC) +AT (I − PQ)A, we have

⟨∇f(x)−∇f(y), x− y⟩
= ⟨(I − PC)x− (I − PC)y +AT (I − PQ)Ax−AT (I − PQ)Ay, x− y⟩
= ∥x− y∥2 − ⟨PC(x)− PC(y), x− y⟩+ ∥Ax−Ay∥2 − ⟨PQ(Ax)− PQ(Ay), Ax−Ay⟩
≥ ∥x− y∥2 − ∥PC(x)− PC(y)∥∥x− y∥+ ∥Ax−Ay∥2 − ∥PQ(Ax)− PQ(Ay)∥∥Ax−Ay∥
≥ ∥x− y∥2 − ∥x− y∥2 + ∥Ax−Ay∥2 − ∥Ax−Ay∥2

= 0.

Combing with the fact that f(x) is continuous and differentiable, we can conclude that it is
a convex function.

∥∇f(x)−∇f(y)∥ = ∥(I − PC)x− (I − PC)y +AT (I − PQ)Ax−AT (I − PQ)Ay∥
≤ ∥x− PC(x) + PC(y)− y∥+ ∥AT (I − PQ)Ax−AT (I − PQ)Ay)∥
≤ ∥x− y∥+ ∥A∥∥(I − PQ)Ax− (I − PQ)Ay)∥
≤ ∥x− y∥+ ∥A∥∥Ax−Ay∥
≤ ∥x− y∥+ ∥A∥2∥x− y∥
= (1 + ∥A∥2)∥x− y∥.

So, ∇f is Lipschitz continuous and the Lipschitz constant is 1 + ∥A∥2.

Remark 2.6. Following the same line as in the proof for Theorem 2.5, we can obtain that
∇fα is Lipschitz continuous and the Lipschitz constant is 1 + ∥A∥2 + α.

Proposition 2.7. ∇fα is α-strongly monotone.

Proof. Since ∇fα(x) = ∇f(x) + αx, we have

fα(x)−∇fα(y), x− y⟩ = ⟨∇f(x)−∇f(y) + α(x− y), x− y⟩
= α∥x− y∥2 + ⟨∇f(x)−∇f(y), x− y⟩.

(2.1)

From Theorem 2.5, we know that f is a convex function. So

⟨∇f(x)−∇f(y), x− y⟩ ≥ 0,
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which, together with (2.1), implies that

⟨∇fα(x)−∇fα(y), x− y⟩ ≥ α∥x− y∥2.

This tells us that ∇fα is α-strongly monotone.

Proposition 2.8. For any γ which satisfies 0 < γ < α
(1+α+∥A∥2)2 , I − γ∇fα is contraction

with coefficient 1− 1
2αγ, that is

∥(I − γ∇fα)x− (I − γ∇fα)y∥ ≤ (1− 1

2
αγ)∥x− y∥.

Proof. From the condition that 0 < γ < α
(1+α+∥A∥2)2 , we can get that γ2(1 + α+ ∥A∥2)2 <

γα < 1. So

∥(I − γ∇fα)x− (I − γ∇fα)y∥2 = ∥x− y + γ∇fαy − γ∇fαx∥2

= ∥x− y∥2− 2γ⟨∇fαx−∇fαy, x− y⟩+γ2∥∇fαx−∇fαy∥2

≤ ∥x− y∥2 − 2γα∥x− y∥2 + γ2(1 + α+ ∥A∥2)2∥x− y∥2

≤ ∥x− y∥2 − 2γα∥x− y∥2 + γα∥x− y∥2

= (1− γα)∥x− y∥2,

which implies that

∥(I − γ∇fα)x− (I − γ∇fα)y∥ ≤
√
1− γα∥x− y∥

≤ (1− 1
2γα)∥x− y∥.

This completes the proof.

Now we consider the optimization problem (1.4). Combing the fact that f(x) and fα(x)
are proper convex functions and Lemma 2.3, it easy to observe that fα(x) is a strongly
convex function, which guarantees that the solution of (1.4) is unique. Let xα be the unique
solution to the optimization problem (1.4).

Next we establish the relationship between xα and the minimum-norm solution of the
SFP. Note that finding the minimum-norm solution of the SFP is equal to solve the following
optimization problem:

min
s.t.x∈C,Ax∈Q

∥x∥2

It is easy to find that this is a convex programming and the objective function is strictly
convex. So, it has a unique solution. Namely the minimum-norm solution of the SFP is
unique.

Lemma 2.9. {∥xα∥} is bounded for α ∈ (0,∞).

Proof. Let α > β > 0 and xα and xβ be the solutions of optimization problems minx∈ℜN fα(x)
and minx∈ℜN fβ(x), respectively. Then we have{

fα(xα) ≤ fα(xβ);
fβ(xβ) ≤ fβ(xα).

i.e.,

f(xα) +
1

2
α∥xα∥2 ≤ f(xβ) +

1

2
α∥xβ∥2;
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f(xβ) +
1

2
β∥xβ∥2 ≤ f(xα) +

1

2
β∥xα∥2.

Adding these two inequalities, we obtain that

α∥xα∥2 + β∥xβ∥2 ≤ α∥xβ∥2 + β∥xα∥2.

It implies that

(α− β)(∥xα∥2 − ∥xβ∥2) ≤ 0.

That is to say ∥xα∥ ≤ ∥xβ∥. So ∥xα∥ decreases for α ∈ (0,∞). Moreover 0 ≤ ∥xα∥ < ∥x0∥,
which guarantees that ∥xα∥ is bounded.

Theorem 2.10. As α → 0, {xα} converges to the minimum-norm solution of the SFP.

Proof. Let x̃ be the unique minimum-norm solution of the SFP. We first show that

∥xα∥ ≤ ∥x̃∥. (2.2)

Since xα be the unique solution to the optimization problem (1.4), we have

fα(xα) ≤ fα(x̃),

i.e.,
1

2
∥(I − PC)xα∥2 +

1

2
∥(I − PQ)Axα∥2 +

1

2
∥xα∥2 ≤ 1

2
∥x̃∥2.

Then we get

∥xα∥2 ≤ ∥x̃∥2 − 1

α
(∥(I − PC)xα∥2 + ∥(I − PQ)Axα∥2) ≤ ∥x̃∥2.

So (2.2) holds. Now we suppose that {αn} is a sequence such that αn → 0 as n → ∞. The
optimal solution xαn of minx∈ℜN fαn(x) is abbreviated as xn for convenience. From Lemma
2.9, we know that {xn} is bounded. Let x̄ be any accumulation point of {xn}. Then there
exists its subsequence {xni

} converging to x̄. Next we show that x̄ is a solution to the SFP
and x̄ = x̃. Because fαn

is continuous and differentiable, from Lemma 2.4, we can easily get

∇fαn(xn) = 0.

Then

⟨(I − PC)xn + (I − PQ)Axn + αnxn, x̃− xn⟩ = 0. (2.3)

Note that

⟨xn − PC(xn), xn − x̃⟩ = ⟨xn − PC(xn), xn − PC(xn) + PC(xn)− x̃⟩
= ∥xn − PC(xn)∥2 + ⟨xn − PC(xn), PC(xn)− x̃⟩
≥ ∥xn − PC(xn)∥2.

(2.4)

By similar proof to (2.4), we can also obtain that

⟨(I − PQ)Axn, Axn −Ax̃⟩ ≥ ∥(I − PQ)Axn)∥2. (2.5)
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Combining (2.2)-(2.5), we get

∥xn − PC(xn)∥2 + ∥(I − PQ)Axn)∥2 ≤ ⟨(I − PC)xn +AT (I − PQ)Axn, xn − x̃⟩
= αn⟨xn, x̃− xn⟩
≤ αn∥xn∥∥x̃− xn∥
≤ αn∥xn∥(∥x̃∥+ ∥xn∥)
≤ 2αn∥x̃∥2.

So
∥xni − PC(xni)∥2 + ∥(I − PQ)Axni)∥2 ≤ 2αni∥x̃∥2. (2.6)

Taking limits on both side of (2.6), we conclude that

∥x̄− PC(x̄)∥2 + ∥Ax̄− PQ(Ax̄)∥2 = 0.

We can immediately get
x̄ = PC(x̄) and Ax̄ = PQ(Ax̄).

That is to say that x̄ is a solution to the SFP. We have proved that

∥xn∥ ≤ x̃.

Then
∥x̄∥ ≤ lim

n→∞
sup∥xn∥ ≤ x̃.

i.e.,
∥x̄∥ ≤ x̃.

Due to the uniqueness of minimum-norm solution, we must have x̄ = x̃. So {xn} is conver-
gent. And its subsequence {xni

} converges to x̃, so is {xn}, which is the required result.

3 Gradient algorithm and its convergence

In this section, we will first introduce a gradient algorithm for solving the minimum-norm
solution of the SFP, and then establish the convergence of it.

Algorithm 3.1. Given any x0 ∈ ℜN . For k = 0, 1, 2, ...,
calculate

xk+1 = xk − γk∇fαk
(xk),

where 0 < γk < αk

(1+∥A∥2+αk)2
.

Lemma 3.2 ([15, 18]). Assume that {φk} be a sequence of nonnegative real numbers such
that

φk+1 ≤ (1− σk)φk + σkδk, k ≥ 0.

where {σk}, {δk} are sequences of real number satisfying
(a) {σk} ⊂ [0, 1] and

∑∞
k=0 σk = ∞;

(b) limk→∞ supδk ≤ 0,or
∑∞

k=0 σkδk is convergent.
Then, limk→∞ φk = 0.

Now we establish the convergence of Algorithm 3.1.



AGRADIENTALGORITHM FORFINDING MINIMUM-NORM SOLUTIONOFTHE SEP 361

Theorem 3.3. Assuming that the solution set of the SFP is nonempty. The sequences
{γk}, {αk} satisfies the following conditions:

(i) 0 < γk < αk

(1+∥A∥2+αk)2
;

(ii) αk → 0 and γk → 0;

(iii)
∑∞

k=0 αkγk = ∞;

(iv) (|γk+1 − γk|+ γk|αk+1 − αk|)/(αk+1γk+1)
2 → 0.

Then the sequence {xk} generated by Algorithm 3.1 globally converges to the minimum-norm
solution of the SFP.

Proof. Because fαk
is continuous and differentiable. Through Lemma 2.4, we can easily get

∇fαk
(xαk

) = 0 and lim
k→∞

xαk
= x̃. (3.1)

Now we only need to prove that ∥xk+1 − xαk
∥ → 0. Due to (3.1), xαk

can be express as:
xαk

= (I − γk∇fαk
)xαk

. Note that

∥xk+1 − xαk
∥ = ∥(I − γk∇fαk

)xk − (I − γk∇fαk
)xαk

∥

≤ (1− 1

2
αkγk)∥xk − xαk

∥

= (1− 1

2
αkγk)∥xk − xαk−1

+ xαk−1
− xαk

∥

≤ (1− 1

2
αkγk)∥xk − xαk−1

∥+ ∥xαk
− xαk−1

∥.

(3.2)

∥xαk
− xαk−1

∥ = ∥xαk
− (I − γk∇fαk

)xαk−1
+ (I − γk∇fαk

)xαk−1
− xαk−1

∥
≤ ∥xαk

− (I − γk∇fαk
)xαk−1

∥+ ∥γk∇fαk
(xαk−1

)∥
= ∥(I − γk∇fαk

)xαk
− (I − γk∇fαk

)xαk−1
∥+ ∥γk∇fαk

(xαk−1
)∥

≤ (1− 1

2
αkγk)∥xαk

− xαk−1
∥+ ∥γk∇fαk

(xαk−1
)∥

= (1− 1

2
αkγk)∥xαk

− xαk−1
∥+ ∥γk∇fαk

(xαk−1
)− γk−1∇fαk−1

(xαk−1
)∥.

So we get

∥xαk
− xαk−1

∥

≤ 2

αkγk
∥γk∇fαk

(xαk−1
)− γk−1∇fαk−1

(xαk−1
)∥

=
2

αkγk
(∥(γk − γk−1)∇fαk

(xαk−1
) + γk−1(∇fαk

(xαk−1
)−∇fαk−1

(xαk−1
))∥)

≤ 2

αkγk
(|γk − γk−1|∥∇fαk

(xαk−1
)∥+ γk−1∥∇fαk

(xαk−1
)−∇fαk−1

(xαk−1
)∥)

=
2

αkγk
(|γk − γk−1|∥∇fαk

(xαk−1
)∥+ 1

2
γk−1|αk − αk−1|∥xαk−1

∥).

(3.3)

From Lemma 2.9, we know that {xαk
} is bounded. So {∇fαk

(xαk
)} is also bounded as

αk → 0.
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Let
M = sup{∥∇fαk

(xαk−1
)∥, ∥xαk−1

∥} < ∞.

Then we get the following inequality from (3.3)

∥xαk
− xαk−1

∥ ≤ 2

αkγk
(|γk − γk−1|+

1

2
γk−1|αk − αk−1|)M.

Let

ρk =
4

(αkγk)2
(|γk − γk−1|+

1

2
γk−1|α− k − αk−1|)M.

Then the above inequality can be rewritten as follows

∥xαk
− xαk−1

∥ ≤ αkγk
2

ρk. (3.4)

Combine (3.2) and (3.4), we get

∥xk+1 − xαk
∥ ≤ (1− 1

2
αkγk)∥xk − xαk−1

∥+ αkγk
2

ρk. (3.5)

Under the conditions (ı̇)− (ı̇v) in theorem, we obtain that

1

2
αkγk ⊂ [0, 1];

∞∑
k=0

1

2
αkγk = ∞; ρk → 0,nemaly, lim

k→∞
supρk ≤ 0.

Now from Lemma 3.2, we get limk→∞ ∥xk+1 − xαk
∥ = 0. So, limk→∞ xk+1 = limk→∞ xαk

.
Then we obtain the required result, i.e., limk→∞ xk+1 = x̃.

Remark 3.4. Note that, if αk = k−δ, γk = k−σ and 0 < δ < σ < 1, σ + 2δ < 1, then
{αk}, {γk} satisfy the conditions (ı̇)− (ı̇v) in Theorem 3.3.

4 Conclusions

In this paper we mainly consider to find the minimum-norm solution of the split feasibility
problem. We first construct an unconstrained optimization problem related to the split
feasibility problem and analyze the relationship between them. Then, we present a gradient
algorithm to find the minimum-norm solution of the split feasibility problem. Under some
mild conditions, we also establish the global convergence of the algorithm.
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