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2 Preliminaries

We first recall some concepts and results on Euclidean Jordan algebras that will be used in
this paper. Most of them can be found in the monograph by Faraut and Korányi [3].

2.1 Euclidean Jordan algebras

Let V be a n-dimensional vector space over R and (x, s) 7→ x ◦ s : V × V → V be a bilinear
mapping. We call (V, ◦) a Jordan algebra iff the bilinear mapping satisfies the following
conditions:

(i) x ◦ s = s ◦ x for all x, s ∈ V,
(ii) x ◦ (x2 ◦ s) = x2 ◦ (x ◦ s) for all x, s ∈ V,

where x2 := x ◦ x and x ◦ s is the Jordan product of x and s. We call an element e the
identity element if and only if z ◦ e = e ◦ z = z for all z ∈ V . A Jordan algebra (V, ◦) with
an identity element e is called a Euclidean Jordan algebra, denoted by V := (V, ⟨·, ·⟩, ◦), if
and only if there is an inner product, ⟨·, ·⟩, such that

⟨x ◦ s, z⟩ = ⟨x, s ◦ z⟩ for all x, s, z ∈ V.

Given a Euclidean Jordan algebra V, we define the set of squares as K := {z2 : z ∈ V}. It
is known by Theorem III 2.1 in [3] that K is the symmetric cone, i.e., K is a closed, convex,
homogeneous and self-dual cone.

A Euclidean Jordan algebra is said to be simple if it is not a direct sum of two (non-trivial)
Euclidean Jordan algebras. It is well known that any nonzero Euclidean Jordan algebra is a
product of simple Euclidean Jordan algebras and every simple algebra is isomorphic to one
of the algebras given below:

(i) The algebra Sn of n × n real symmetric matrices with trace inner product and the
Jordan product X ◦ Y = 1

2 (XY + Y X);

(ii) The Jordan spin algebra Ln (n ≥ 3) on Rn with standard inner product and the
Jordan product

x ◦ y := (xT y, x1y2 + y1x2, · · ·, x1yn + y1xn)
T ;

(iii) The algebra Hn of all n × n complex Hermitian matrices with trace inner product
and X ◦ Y = 1

2 (XY + Y X);

(iv) The algebra Qn of all n × n quaternion Hermitian matrices with (real) trace inner
product and X ◦ Y = 1

2 (XY + Y X);

(v) The algebra O3 of all 3×3 octonion Hermitian matrices with (real) trace inner product
and X ◦ Y = 1

2 (XY + Y X).

We state below the spectral decomposition theorem for elements in a Euclidean Jordan
algebra.

Theorem 2.1 (Spectral Decomposition Type II (Theorem III.1.2, [3])). Let V be a Euclidean
Jordan algebra with rank r. Then for z ∈ V, there exist a Jordan frame {q1, q2, · · · , qr} and
real numbers λ1(z) ≥ λ2(z) ≥ · · · ≥ λr(z), such that

z = λ1(z)q1 + λ2(z)q2 + · · ·+ λr(z)qr. (2.1)



POWER PENALTY METHOD FOR SCLCP 367

The numbers λi(z) (i ∈ {1, 2, · · · , r}) are the eigenvalues of z. We call (2.1) the spectral
decomposition (or the spectral expansion) of z.

λ(x) := (λ1(x), λ2(x), . . . , λr(x)).

We define

z+ := ΠK(z), z− := z+ − z, and |z| = z+ + z−,

where ΠK(z) denotes the (orthogonal) projection of z onto K.
Given (2.1), we have

z =

r∑
1

λi
+qi −

r∑
1

λi
−qi and ⟨

r∑
1

λi
+qi,

r∑
1

λi
−qi⟩ = 0,

where for a real number α, α+ := max{0, α} and α− := α+ − α.

From this we easily verify that

z+ =

r∑
1

λi
+qi and x− =

r∑
1

λi
−qi,

and so

z = z+ − z− with ⟨z+, z−⟩ = 0.

Given (2.1), zα = λα
1 (z)q1 + λα

2 (z)q2 + · · · + λα
r (z)qr, when z ∈ K, α > 0. The trace of

z is defined by trace(z) :=
∑r

i=1 λi(z). We assume that V carries the canonical trace inner
product ⟨x, y⟩ = trace(x ◦ y). We let ∥z∥p = [

∑r
i=1 |λi(z)|p]1/p for p ≥ 1. When p = 2, it is

the induced norm given by

∥z∥V := ∥z∥2 :=
√

⟨z, z⟩ =

√√√√ r∑
i=1

λ2
i (z).

By Corollary 4.10 in [9], when V is simple,

⟨x, y⟩ ≤ ⟨λ(x), λ(y)⟩ ∀x, y ∈ V. (2.2)

Hence, by Hölder’s inequality (see Theorem 4.2 in [13]),

|⟨x, y⟩| ≤ ∥λ(x)∥p∥λ(y)∥q. (2.3)

2.2 Nonlinear Penalized Equation

We consider SCLCP: find a vector x ∈ V such that

x ∈ K, y = M(x) + q ∈ K, and ⟨x, y⟩ = 0, (2.4)

where M : V → V is a linear transformation and q ∈ V. In order to consider the power
penalty method for SCLCP, we introduce the following nonlinear equation (NE): Find x ∈
V such that

M(x) + µ(x+)1/k = q, (2.5)
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where µ > 1 and k > 0 are parameters.
Replacing x by −x in (2.5), we have

M(x)− µ(x−)1/k = −q. (2.6)

This is a penalized equation with respect to SCLCP (2.4), where the penalty term penal-
izes the projection onto the symmetric cone of x. We expect that the solution of NE (2.6)
converges to that of SCLCP (2.4) as µ → +∞. Clearly, the rate of convergence depends on
the parameters µ and k in the penalty term.

It is known that the SCLCP (2.4) is equivalent to the following variational inequality
problem: Find x ∈ K such that, for all y ∈ K,

⟨y − x,M(x) + q⟩ ≥ 0. (2.7)

As mentioned in introduction, penalty methods for LCP and variational inequality problem
have been discussed in the literature. Recently, Wang and Yang [17] established convergence
rates of the power penalty method for solving LCP for a positive definite matrix where the
diagonal entries are positive and off-diagonal entries are less than zero, and an indefinite
matrix where only the diagonal entries are nonzero. However, there is a limited study of
penalty methods for SCLCP, even for special cases of SDLCP and SOCLCP.

In order to study the power penalty methods for SCLCP, we introduce the following
definitions of a linear transformation M on V.
We say a linear transformation M is strongly monotone if there exists a constant a0 > 0
such that

⟨x,M(x)⟩ ≥ a0∥x∥22 ∀x ∈ V.
We say a linear transformation M is a Z-transformation (see [8]) if

x, y ∈ K, and ⟨x, y⟩ = 0 ⇒ ⟨M(x), y⟩ ≤ 0.

3 Main Results

In this section, we assume that M is strongly monotone and Z-transformation.

Example 3.1. LA(X) := AX + XAT for a real n × n matrix A on the space Sn. It is
easy to verify that LA is a Z-transformation. Also, when A is positive definite matrix, LA

is strongly monotone.

Now, we present two lemmas.

Lemma 3.2. Let V be a simple Euclidean Jordan algebra of rank r. Let x, y ∈ K and
0 < k ∈ R. Then ⟨x− y, x1/k − y1/k⟩ ≥ 0.

Proof.

⟨x− y, x1/k − y1/k⟩ = ⟨x, x1/k⟩ − ⟨y, x1/k⟩ − ⟨x, y1/k⟩+ ⟨y, y1/k⟩

≥
r∑
1

(λi(x))
1+1/k −

r∑
1

λi(y)(λi(x))
1/k

−
r∑
1

λi(y)(λi(y))
1/k +

r∑
1

(λi(y))
1+1/k

=

r∑
1

(λi(x)− λi(y))((λi(x))
1/k − (λi(y))

1/k)

≥ 0.



POWER PENALTY METHOD FOR SCLCP 369

Note that the first inequality is from (2.2).

Lemma 3.3. Let V be a simple Euclidean Jordan algebra of rank r. Let f(x) = (x+)1/k

for 0 < k ∈ R. Then ⟨x− y, f(x)− f(y)⟩ ≥ 0 for x, y ∈ V .

Proof. Since

⟨x− − y−, (x+)1/k − (y+)1/k⟩ = ⟨x−, (x+)1/k⟩ − ⟨x−, (y+)1/k⟩ − ⟨y−, (x+)1/k⟩+ ⟨x−, (x+)1/k⟩
= −⟨x−, (y+)1/k⟩ − ⟨y−, (x+)1/k⟩
≤ 0,

we have

⟨x− y, f(x)− f(y)⟩ = ⟨x+ − x− − (y+ − y−), (x+)1/k − (y+)1/k⟩
= ⟨x+ − y+, x1/k − y1/k⟩ − ⟨x− − y−, (x+)1/k − (y+)1/k⟩
≥ ⟨x+ − y+, (x+)1/k − (y+)1/k⟩
≥ 0.

Note that the last inequality is from Lemma 3.2.

Remark 3.4. The above two lemmas also can be deduced from Theorem 3 in [?].

Theorem 3.5. Let V be a simple Euclidean Jordan algebra of rank r. Then

(i) For any q ∈ V , (2.4) has a unique solution.

(ii) For any q ∈ V , (2.5) has a unique solution.

Proof. (i) When M is strongly monotone, by Theorem 17 in [6], q ∈ V , (2.4) had a unique
solution.

(ii) Let F (x) := M(x) + µ(x+)1/k. When M is strongly monotone, by Lemma 3.3, it
is easy to show that F is strong monotone. Thus, apply VI (K,F ), where K = V (see
Theorem 2.3.3 in [4]), we have the conclusion.

Remark 3.6. It is easy to see that xµ is a solution of (2.5) if and only if −xµ is a solution
of (2.6).

Lemma 3.7. Let V be a simple Euclidean Jordan algebra of rank r. Let xµ be the so-
lution to NE (2.5). Then for given q ∈ V , k, and a0, there exists a positive constant

C = max{∥q∥kk+1,
√

∥q∥k+1
k+1/a0} such that

∥(xµ)
+∥p ≤ C

µk
, (3.1)

∥(xµ)
+∥2 ≤ C

µk/2
, (3.2)

where µ and k are the parameters used in (2.5), and p = 1 + 1/k.
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Proof. Since xµ is the solution to NE (2.5), M(xµ) + µ[(xµ)
+]1/k = q. Taking the inner

product both sides, we obtain

⟨(xµ)
+,M(xµ)⟩+ ⟨(xµ)

+, µ[(xµ)
+]1/k⟩ = ⟨(xµ)

+, q⟩.

Using p = 1 + 1/k and xµ = (xµ)
+ − (xµ)

−, we get

⟨(xµ)
+,M((xµ)

+)⟩ − ⟨(xµ)
+,M((xµ)

−)⟩+ µ∥(xµ)
+∥pp = ⟨(xµ)

+, q⟩. (3.3)

Since (xµ)
+, (xµ)

− ∈ K and ⟨(xµ)
+, (xµ)

−⟩ = 0, and M is strongly monotone and Z-
transformation, we have ⟨(xµ)

+,M((xµ)
+)⟩ ≥ 0 and ⟨(xµ)

+,M((xµ)
−)⟩ ≤ 0. These to-

gether with (3.3) yields
µ∥(xµ)

+∥pp ≤ ⟨(xµ)
+, q⟩.

From (2.3), we obtain
µ∥(xµ)

+∥pp ≤ ∥(xµ)
+∥p · ∥q∥k+1.

Since p− 1 = 1/k, direct calculations derives that

∥(xµ)
+∥p ≤ 1

µk
∥q∥kk+1 ≤ C

µk
.

Now, from (3.3) and (3.1), we have

⟨(xµ)
+,M((xµ)

+)⟩ ≤ ⟨(xµ)
+, q⟩ ≤ ∥(xµ)

+∥p · ∥q∥k+1 ≤ 1

µk
∥q∥k+1

k+1.

Since a0∥(xµ)
+∥2 ≤ ⟨(xµ)

+,M((xµ)
+)⟩, we have ∥(xµ)

+∥2 ≤ C
µk/2 .

Theorem 3.8. Let V be a simple Euclidean Jordan algebra of rank r. Let x∗ and x∗
µ be

the solutions of the SCLCP (2.4) and NE (2.6), respectively. Then there exists a positive
constant C ′ such that

∥x∗ − x∗
µ∥2 ≤ C ′

µk/2
, (3.4)

where µ and k are the parameters used in (2.5).

Proof. Let xµ be the solution to (2.5). From the decomposition xµ = (xµ)
+− (xµ)

−, letting
w = −x∗ + (xµ)

−, we can rewrite the vector −x∗ − xµ as

−x∗ − xµ = −x∗ − (xµ)
+ + (xµ)

− = w − (xµ)
+. (3.5)

We will consider the estimation of w, as the estimates for (xµ)
+ have been established in

Lemma 3.7. Since (xµ)
− ∈ K and M(x∗) + q ∈ K, it holds

⟨(xµ)
−,M(x∗) + q⟩ ≥ 0.

Noting that ⟨x∗,M(x∗) + q⟩ = 0, we have

−⟨x∗ − (xµ)
−,M(x∗) + q⟩ ≥ 0.

Thus,

−⟨w,M(−x∗)− q⟩ ≥ 0. (3.6)
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Taking the inner product on the both sides of the equation M(xµ) + µ[(xµ)+]
1/k = q with

w, we obtain

⟨w,M(xµ)⟩+ ⟨w, µ[(xµ)+]
1/k⟩ − ⟨w, q⟩ = 0. (3.7)

Adding up (3.6) and (3.7), we obtain

⟨−w,M(−x∗ − xµ)⟩+ ⟨w, µ[(xµ)+]
1/k⟩ ≥ 0.

That is,

⟨w,M(−x∗ − xµ)⟩ ≤ µ⟨w, [(xµ)+]
1/k⟩. (3.8)

Note that ⟨w, [(xµ)
+]1/k⟩ = ⟨−x∗ + (xµ)

−, [(xµ)
+]1/k⟩ = ⟨−x∗, [(xµ)

+]1/k⟩ ≤ 0 because of
x∗ ∈ K and ⟨(xµ)

−, ((xµ)
+)1/k⟩ = 0. Thus, we have

⟨w,M(w − (xµ)
+)⟩ = ⟨w,M(−x∗ − xµ)⟩ ≤ 0.

Hence, ⟨w,M(w)⟩ ≤ ⟨w,M((xµ)
+)⟩ ≤ ||M|| ∥w∥2 ∥(xµ)

+∥2. Therefore, it is straightforward
to derive from strong monotonicity of M and (3.2) of Lemma 3.7 that

∥w∥2 ≤ ||M|| ∥(xµ)
+∥2 ≤ ||M||C/a0

µk/2
. (3.9)

This together with (3.2), (3.5) and the triangular inequality yields

∥x∗ + xµ∥2 ≤ ∥w∥2 + ∥(xµ)
+∥2 ≤ ||M||C/a0 + C

µk/2
. (3.10)

Now, letting C ′ = ||M||C/a0 + C, we have

∥x∗ + xµ∥2 ≤ C ′

µk/2
.

Now, from Remark 3.6, we have xµ
∗ = −xµ. Thus,

∥x∗ − xµ
∗∥2 ≤ ∥w∥2 + ∥(xµ)

+∥2 ≤ C ′

µk/2
.

Since all norms in a finite dimensional space are equivalent, we can improve the error
bound in (3.4) in the following theorem.

Theorem 3.9. Let V be a simple Euclidean Jordan algebra of rank r. Let x∗ and xµ
∗ be

the solutions to the SCLCP (2.4) and NE (2.6), respectively. Then there exists a positive
constant C ′′ such that

∥x∗ − xµ
∗∥2 ≤ C ′′

µk
, (3.11)

where µ and k are the parameters used in (2.5).
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Proof. Since all norms on V are equivalent, there exists d > 0 such that

∥(xµ)
+∥2 ≤ d∥(xµ)

+∥p.

Thus, from Lemma 3.7, we have

∥(xµ)
+∥2 ≤ dC

µk
,

Now, letting C ′′ = dC ′, where C ′ is in Theorem 3.8, we have from (3.9) and (3.10),

∥x∗ − xµ
∗∥2 ≤ C ′′

µk
.

4 Conclusion

In this paper, we have generalized the power penalty method for LCP in [17] to SCLCP.
As noted in [17], one advantage of these estimates is that, to obtain the same level of
accuracy of the approximate solution to that of SCLCP, the penalty parameter required for
k > 1 is smaller than that required for k = 1, while the penalized problem with k > 1 is
non-smooth and non-Lipschitz. In the standard LCP, Wang, Yang and Teo [16] proposed a
smoothing technique in real computation. Clearly, one interesting research topic is to extend
the smoothing or nonsmooth techniques in the power penalty approach of SCLCP.
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