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special duality schemes (the Lagrange-type duality, Wolfe duality and Mond-Weir duality)
for a constrained extremum problem by virtue of the image space analysis. Very recently, Li
et al. [13,19–21] obtained some saddle-point sufficient optimality conditions and some neces-
sary and sufficient optimality conditions associated with the constrained extremum problem
by using the image space analysis.

On the other hand, as the unified model of vector optimization problems, vector varia-
tional inequality problems, variational inclusion problems and vector complementarity prob-
lems, generalized Ky Fan inequalities have been intensively studied. The existence results
for various kinds of generalized Ky Fan inequalities have been established, e.g., see [1–3]
and the references therein. There are many papers which deal with the properties of the
solutions for the generalized Ky Fan inequalities. Gong [6] obtained the connectedness and
path connectedness of weak efficient solution sets and various proper efficient solution sets
of generalized Ky Fan inequalities. Gong [7,8] obtained some optimality conditions and the
scalarization results for weakly efficient solution, Henig efficient solution, globally efficient
solution and superefficient solution to the generalized Ky Fan inequalities with constraints
by using the separation theorem of convex sets.

To the best of our knowledge, there are few papers to investigate optimality conditions
for generalized Ky Fan inequalities with constraints by using the image space analysis.
Motivated by the work of [7,13,19,21], two weak separation functions and strong separation
functions are obtained. Then, some optimality conditions for weakly efficient solution and
globally efficient solution to the generalized Ky Fan inequalities with constraints are also
obtained.

The paper is organized as follows. In Section 2, we recall the main notions and defini-
tions concerning the ISA. In Sections 3, we introduce two weak separation functions and
strong separation functions. By virtue of the separation function, we obtain some optimality
conditions for weakly efficient solution and globally efficient solution to the generalized Ky
Fan inequalities with constraints.

2 Preliminaries

Let X, Y and Z be real Hausdorff topological vector spaces. Assume that S and C are
two pointed closed convex cones in Y and Z with nonempty interior, i.e., intS ̸= Ø and
intC ̸= Ø, respectively.

Definition 2.1 ([14]). Given e ∈ intS, the Gertewitz nonconvex separation function ξe :
Y → R is defined by

ξe(z) := sup{t ∈ R : z ∈ te+ S}, z ∈ Y.

Next, we give some useful properties of the above scalarization functions.

Lemma 2.2 ([14,15]). Let e ∈ intS. The following properties hold:

(i) ξe(z) > r ⇔ z ∈ re+ intS;

(ii) ξe(z) ≥ r ⇔ z ∈ re+ S;

(iii) ξe(z) < r ⇔ z ̸∈ re+ S;

(iv) ξe(z) ≤ r ⇔ z ̸∈ re+ intS;

(v) ξe(·) is a continuous function.
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Let E be a nonempty subset of X, f : E × E → Y be a vector-valued mapping and
g : E → Z be a vector-valued mapping.

Consider the following Generalized Ky Fan Inequality with constraints (for short GK-
FIC): a vector x̄ ∈ K satisfying

f(x̄, y) ̸∈ −intS, ∀y ∈ K, (2.1)

is called a weakly efficient solution to the GKFIC, where the constraint set

K = {x ∈ E : g(x) ∈ −C}.

Definition 2.3 ([6]). A vector x̄ ∈ K is called a globally efficient solution to the GKFIC if
there exists a pointed convex cone H ⊂ Y with S\{0} ⊂ intH such that

f(x̄, y) ̸∈ −H\{0}, ∀y ∈ K.

If f(x, y) = v(y)−v(x), x, y ∈ K, and if x̄ ∈ K is a weakly efficient solution or a globally
efficient solution to the GKFIC, then x̄ ∈ K is a weakly efficient solution or a globally
efficient solution to a vector optimization problem, where v is a vector-valued mapping.

We recall the main features of the ISA for the problem (1). Let x̄ ∈ E; define the map

Ax̄ : E → Y × Z, Ax̄(y) := (f(x̄, y), g(y)),

and consider the sets

Kx̄ := {(u, v) ∈ Y × Z : (u, v) = Ax̄(y), y ∈ E},

H := {(u, v) ∈ Y × Z : u ∈ intS, v ∈ C},

and
H1 := {(u, v) ∈ Y × Z : u ∈ H\{0}, v ∈ C}.

Kx̄ is called the image of the problem (1), while Y ×Z is the image space (IS). Obviously,
x̄ ∈ K is a weakly efficient solution to the GKFIC if and only if the generalized system

Ax̄(y) ∈ −H, y ∈ E, (2.2)

has no solutions, or, equivalently,

Kx̄ ∩ (−H) = ∅.

Similarly, x̄ ∈ K is a globally efficient solution to the GKFIC if and only if the generalized
system

Ax̄(y) ∈ −H1, y ∈ E,

has no solutions, or, equivalently,

Kx̄ ∩ (−H1) = ∅.

In the sequel, Π will denote a set of parameters to be specified case by case (see [13]).

Definition 2.4 ([5]). The class of all the functions w : Y × Z ×Π → R, such that

(i) lev≥0 w(·;π) ⊇ H(or, respectively,H1), ∀π ∈ Π,

(ii)
∩

π∈Π lev>0 w(·;π) ⊆ H(or, respectively,H1),
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is called the class of weak separation functions with respect to H (or, H1). The level sets
lev≥0 f and lev>0 f are defined by

lev≥0 f := {x ∈ X : f(x) ≥ 0}, lev>0 f := {x ∈ X : f(x) > 0}.

Besides the weak separation functions, another type of separation functions has been
introduced in [5].

Definition 2.5 ([5]). The class of all the functions s : Y × Z ×Π → R, such that

(i) lev>0 s(·;π) ⊆ H(or, respectively,H1), ∀π ∈ Π,

(ii)
∪

π∈Π lev>0 s(·;π) = riH(or, respectively, riH1),

is called the class of strong separation functions with respect to H (or, H1).

Remark 2.1 riH = intH when intH ̸= ∅. Hence,
∪

π∈Π lev>0s(·;π) = riH is equivalent
to

∪
π∈Π lev>0s(·;π) = intH when intH ̸= ∅.

Remark 2.2 It is clear that clH and clH1 are closed convex cones, and int (clH) = intH ̸= Ø
and int (clH1) = intH1 ̸= Ø. However, clH and clH1 are not always pointed. In fact, if a
pointed closed convex cone S ⊂ Y has a base, then

S♯ = {y∗ ∈ Y ∗ : y∗(y) > 0, ∀y ∈ S\{0}} ̸= ∅.

Take y∗ ∈ S♯, set H = {y ∈ Y : y∗(y) > 0}
∪
{0}. Then H is a pointed convex cone and

S\{0} ⊂ intH. We have
clH = {y ∈ Y : y∗(y) ≥ 0}.

There is y ̸= 0 such that y ∈ (clH)
∩
(−clH). It is clear that

(y, 0) ∈ (clH1)
∩

(−clH1) and (y, 0) ̸= (0, 0).

Thus, clH and (clH1) are not pointed cones.

3 Separation functions and optimality conditions

In this section, we first introduce two nonlinear separation functions in the sense of image
space analysis by using the Gertewitz separation functional.

Lemma 3.1. The nonlinear function h1 : Y × Z ×Π → R, if clH ̸= Y × Z, then

h1(z, e) := sup{t ∈ R : z ∈ te+ clH}, z ∈ Y × Z and e ∈ Π = intH

is a weak separation function and strong separation function, and the nonlinear function
h2 : Y × Z ×Π → R, if clH1 ̸= Y × Z, then

h2(z, e) := sup{t ∈ R : z ∈ te+ clH1}, z ∈ Y × Z and e ∈ Π = intH1

is also a weak separation function and strong separation function.

Proof. First, we show h1 is a weak separation function.
For any z ∈ H ⊆ clH, by Lemma 2.2 (ii), for each e ∈ Π,

h1(z, e) ≥ 0, ∀z ∈ clH.
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Hence, we have
lev≥0h1(·, e) ⊇ H, ∀e ∈ Π.

Now, we show ∩
e∈Π

lev>0h1(·, e) ⊆ H. (3.1)

Assume that (3.1) doesn’t hold. Then, there exists z ̸∈ H such that

h1(z, e) > 0, ∀e ∈ Π.

By Lemma 2.2 (i), we have
z ∈ intH ⊆ H,

which contradicts z ̸∈ H. Hence, (3.1) holds and h1 is a weak separation function.
Next, we show h1 is also a strong separation function. First, we claim that

lev>0h1(·, e) ⊆ H, ∀e ∈ Π.

In fact, for any z ∈ lev>0h1(·, e),∀e ∈ Π, by Lemma 2.2 (i),

z ∈ intH ⊆ H.

Now we show that ∪
e∈Π

lev>0h1(·, e) = intH.

By Lemma 2.2 (i), it is clear that

lev>0h1(·, e) ⊆ intH, ∀e ∈ Π.

Namely, ∪
e∈Π

lev>0h1(·, e) ⊆ intH.

On the other hand, for each z ∈ intH, by Lemma 2.2 (i), for each e ∈ Π, h1(z, e) > 0. Thus,
we have that for each e ∈ Π,

intH ⊆ lev>0h1(·, e) ⊆
∪
e∈Π

lev>0h1(·, e).

Namely, h1 is a strong separation function.
By assumptions and Lemma 2.16 in [10], for each z ∈ Y × Z, e ∈ intH, we have

h1(z, e) < ∞.

Similarly, we can prove that h2 is also a weak and strong separation function. This completes
the proof.

Remark 3.2. In [13,19,21], the authors also have been obtained some different separation
functions by virtue of the oriented distance function and a set of parameters to be specified
case by case. However, by using the Gertewitz separation functional, we obtained two new
separation functions, which are weak and strong separation functions. Obviously, our results
are different from ones in [13].
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In all the sequel of this section, we discuss optimality conditions to the GKFIC by the
above separation functions.

Theorem 3.3. Let E be a nonempty subset of X and f : E × E → Y be a vector-valued
mapping. Let g : E → Z be a vector-valued mapping. If x̄ ∈ K is a weakly efficient solution
to the GKFIC, then for any e ∈ intH,

h1((−f(x̄, y),−g(y)), e) ≤ 0, ∀y ∈ E.

Proof. Let x̄ ∈ K be a weakly efficient solution to the GKFIC and e ∈ intH. Thus, by
image space analysis approach,

Kx̄ ∩ (−H) = ∅.

Then,

Kx̄ ∩ (−intH) = ∅,

i.e.,

(−f(x̄, y),−g(y)) ̸∈ intH, ∀y ∈ E.

By Lemma 2.2 (iv), we have

h1((−f(x̄, y),−g(y)), e) ≤ 0, ∀y ∈ E.

This completes the proof.

When f(x, y) = v(y) − v(x), x, y ∈ K, we can obtain the next result for the vector
optimization problem with constraints.

Corollary 3.4. Let E be a nonempty subset of X and v : E → Y be a vector-valued
mapping. Let g : E → Z be a vector-valued mapping. If x̄ ∈ K is a weakly efficient solution
to the vector optimization problem with constraints, then for any e ∈ intH,

h1((v(x̄)− v(y),−g(y)), e) ≤ 0, ∀y ∈ E.

Next, we give an example to explain Corollary 3.1.

Example 3.5. Let X = R and Y = Z = R2. Let E = [−1, 1] and

S = C = {(u, v) ∈ R2|u ≥ 0, v ≥ 0}.

We define two vector-valued mappings v, g : [−1, 1] → R2 by

v(x) = (x, x2), x ∈ [−1, 1] and g(x) = (x, x), x ∈ [−1, 1].

It is clear that clH = R4
+. We take e = (1, 1, 1, 1) ∈ intH. Then, by computing, we have

K = [−1, 0] and Vopw = [−1, 0],

where Vopw is the solution set of vector optimization. Thus, all conditions of Corollary 3.1
hold. Then, by computing, we have that for any x̄ ∈ [−1, 0],

h1((v(x̄)− v(y),−g(y)), e) ≤ 0, ∀y ∈ [−1, 1].
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Theorem 3.6. Let E be a nonempty subset of X and f : E × E → Y be a vector-valued
mapping. Let g : E → Z be a vector-valued mapping. For any e ∈ intH, if there exists
x̄ ∈ K such that

h1((−f(x̄, y),−g(y)), e) < 0, ∀y ∈ E \ {x̄},

then x̄ is a weakly efficient solution to the GKFIC.

Proof. Assume that x̄ ∈ K is not a weakly efficient solution to the GKFIC. Then there
exists ȳ ∈ K such that

f(x̄, ȳ) ∈ −intS.

Since ȳ ∈ K,

g(ȳ) ∈ −C.

Thus, by the definition of H,

(−f(x̄, ȳ),−g(ȳ)) ∈ H ⊆ clH.

Then, by Lemma 2.2 (ii),

h1((−f(x̄, ȳ),−g(ȳ), e)) ≥ 0.

This is a contradiction. Hence, x̄ ∈ K is a weakly efficient solution to the GKFIC. This
completes the proof.

When f(x, y) = v(y) − v(x), x, y ∈ E, we can also obtain the next result for the vector
optimization problem with constraints.

Corollary 3.7. Let E be a nonempty subset of X and v : E → Y be a vector-valued
mapping. Let g : E → Z be a vector-valued mapping. For any e ∈ intH, if there exists
x̄ ∈ K such that

h((v(x̄)− v(y)),−g(y)), e) < 0, ∀y ∈ E \ {x̄},

then x̄ is a weakly efficient solution of the vector optimization problem with constraints.

Next, we give an example to explain Corollary 3.2.

Example 3.8. Considering the Example 3.1. By Example 3.1, we have

K = [−1, 0] and Vopw = [−1, 0].

Take e = (1, 1, 1, 1) ∈ intH and x̄ = −1 ∈ K. By computing, we have

max
∪
y∈E

h((v(−1)− v(y)),−g(y)), e) = −2 < 0.

Then, we have −1 ∈ Vopw.

Theorem 3.9. Let E be a nonempty subset of X and f : E × E → Y be a vector-valued
mapping. Let g : E → Z be a vector-valued mapping. If x̄ ∈ K is a globally efficient solution
to the GKFIC, then for any e ∈ intH1 such that

h2((−f(x̄, y),−g(y)), e) ≤ 0, ∀y ∈ E.
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Proof. Let x̄ ∈ K be a globally efficient solution to the GKFIC and e ∈ intH1. Thus, by
image space analysis approach,

Kx̄ ∩ (−H1) = ∅.

Then,

Kx̄ ∩ (−intH1) = ∅,

i.e.,

(−f(x̄, y),−g(y)) ̸∈ intH1, ∀y ∈ E.

By Lemma 2.2 (iv), we have

h2((−f(x̄, y),−g(y)), e) ≤ 0, ∀y ∈ E.

This completes the proof.

Theorem 3.10. Let E be a nonempty subset of X and f : E × E → Y be a vector-valued
mapping. Let g : E → Z be a vector-valued mapping. For any e ∈ intH1, if there exists
x̄ ∈ K such that

h2((−f(x̄, y),−g(y)), e) < 0, ∀y ∈ E \ {x̄},

then x̄ is globally efficient solution to the GKFIC.

Proof. Assume that x̄ ∈ K is not a globally efficient solution to the GKFIC. Then there
exists ȳ ∈ K such that

f(x̄, ȳ) ∈ −H\{0}.

Since ȳ ∈ K,

g(ȳ) ∈ −C.

Thus, by the definition of H1,

(−f(x̄, ȳ),−g(ȳ)) ∈ H1 ⊆ clH1.

Then, by Lemma 2.2 (ii),

h2((−f(x̄, ȳ), e)) ≥ 0.

This is a contradiction. Hence, x̄ ∈ K is a weakly efficient solution to the GKFIC. This
completes the proof.

Remark 3.11. In [7], under some convexity assumptions, the author has investigated the
optimality conditions for weakly efficient solution and globally efficient solution to GKFIC
by applying the separation theorem of convex sets. However, we also obtain some optimality
conditions for weakly efficient solution and globally efficient solution to GKFIC without any
convexity assumptions in the sense of image space analysis.

4 Concluding Remarks

In this paper, we first established two weak and strong separation functions by virtu of the
Gertewitz nonlinear scalarization function. Then, by the separation function, we obtained
some optimality conditions for weakly efficient solution and globally efficient solution to the
GKFIC in the sense of image space analysis without any convexity assumptions, which are
different from existing results in the literatures.
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