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while [11,29] are on the optimal control problem by considering product price and advertis-
ing cost. We also notice that [23] gives correlational studies on the uncertain situation.

In fact, we observe that all above studies focus only on the enterprise’s profit in dynamic
market. However, in practice, more and more enterprises are required to develop new prod-
ucts for quick potential market occupancy while keeping their market occupancy for their
current products. For example, Master Kong holds a dominant position in China’s Instant-
noodle market, and it also takes a certain percentage in soft drinks market. In this situation,
it is important to effectively improve their impact of their new products in the market in
a short time by advertising. With such motivation, we will investigate a new type problem
in this paper by considering the invest time and the advertising cost as objectives. For
simplicity, we assume that there are two enterprises selling one product in the market. One
enterprise has occupied a certain amount of market for such product with certain competi-
tiveness and it adopts the percentage of sales strategy [38] in advertise. The other enterprise
has zero market occupancy at the beginning as this is a new product for this enterprise and
the second enterprise aims to increase its market occupancy percentage in a short time with
an aim to share the same market percentage. Previously, a nonlinear differential-algebraic
model is developed but with different objectives in [33]. The main differences of this paper
and [33] are in two folds. In [33], the time interval is given with an aim to maximize the
occupancy of the product for the second enterprise and the time interval here is varying. On
the other hand, in [33], its aim is to maximize the occupancy of the product for the second
enterprise without constraint on investment cost and time length. In this paper, we put
equal market occupancy for the product as a constraint and try to minimize the investment
cost as well as invest time. The proposed problem in this paper is much harder than that
in [33] mathematically.

The proposed problem in this paper is a nonlinear optimal control problem for a
differential-algebraic system with free terminal time. This problem will be transformed
into an optimal control problem with fixed terminal time [18]. Then it is reformulated
to an equivalent nonlinear optimal control problem with continuous inequality constraints
and terminal state constraint, which is difficult if not impossible to obtain an analytical
solution. There are some approaches in the literature that we can use to solve this type of
converted problem described below, such as the multiple shooting method [30] and the direct
collocation method [6]. For the multiple shooting method, an accurate initial guess of the
co-state variables is required and the optimal solution is very sensitive to this initial guess.
Therefore, the failure of achieving convergence is common when using this method. For
the direct collocation method, the computational burden can become enormous for effective
implementation for large scale problems. Therefore, we shift our focus to find a numerical
solution with control parameterization technique [12–14,17,21,31,32]. The essential idea of
this method is to partition the time interval into a finite number of sub-intervals. Then,
we can approximate the control function by a piecewise constant function. The optimal
control problem is then transformed into a sequence of optimal parameter selection prob-
lems, which can be solved as nonlinear mathematical programing problems. It also needs
to be emphasized that the continuous state inequality constraints cannot be handled eas-
ily by traditional methods. We should stress a fact that there is infinite number of points
in the feasible time domain, leading to possible infinite number of constraints to be satis-
fied. To overcome this difficulty, a constraint transcription method is applied to convert
this constraint into a canonical form [10, 21, 31, 36, 37]. Furthermore, in order to determine
the switching time points, we consider two different types of partitions. The first one is to
partition the sub-intervals equally. The second partition is more flexible with possible much
more benefit to be obtained by applying the so-called ’time scaling transform’ [15,16,19,20],
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with an aim to optimize the switching time points. Finally, a practical beer sales example
is used to demonstrate the effectiveness of the proposed method with the equal-partition
method and time scaling transform for comparisons.

The rest of the paper is organized as follows. In Section 2 we present a nonlinear
differential-algebraic model to describe the commencing period of the oligopoly market and
then formulate the problem. In Section 3, some numerical computation methods are pro-
posed to solve the proposed problem. A beer sales example is used to show the effectiveness
of the proposed methods in Section 4. Finally, we conclude our paper in Section 5.

2 Problem Formulation

In this section, we consider the duopoly enterprises, i.e. enterprise 1 and enterprise 2 selling
the same product. In the initial stage, we assume that only enterprise 2’s product is in
current market, and it has gained considerable market occupancy. In this case, the enterprise
1 starts to put the same product on market and aims to achieve the same market occupancy
in a short time. Also the enterprise 1 is assumed to use the strategy of advertising to obtain
the market occupancy. A nonlinear differential-algebraic system based on the Vidale-Wolfe
Model is proposed in [33] as follows.

ẋ1(t) = k1u(t)(1− x1(t))− β2v(t)x1(t)− η1x1(t)
ẋ2(t) = k2v(t)(1− x2(t))− β1u(t)x2(t)− η2x2(t)
0 = N(δ1x1(t) + δ2x2(t))[a− bN(x1(t) + x2(t))]− v(t)
x1(0) = 0, x2(0) = x20, v(0) = v0

(2.1)

For each corresponding enterprise i, (i = 1, 2), xi(t) represents the occupancy rate of the
product, βi > 0 represents the advertising competition coefficient, ki > 0 is the influence
coefficient of the advertising efficiency, and δi > 0 represents the adjusting parameter of the
investment intensity. v(t) is the advertising cost of the enterprise 2, which is described by
the percentage of sales method [38] and the inverse demand function [1]. a and b are positive
constants, and N > 0 is the total number of customers in market. x2,0 denotes the initial
market share of the enterprise 2. v0 is the initial advertising cost of the enterprise 2. The
control variable u(t) ∈ U represents the advertising cost of the enterprise 1 and U denotes
the admissible control set U = {u(t)|0 < umin ≤ u(t) ≤ umax}. We should notice that the
market share variable xi(t) satisfies 0 ≤ xi(t) ≤ 1 according to the actual requirement, so
x1(t) + x2(t) ≥ 0 would be satisfied automatically.

For more details of this system, one can refer to [33]. With this model, we would study
the problems of the optimal time and the lowest advertising cost as described below. The
goal is to make the product market occupancy for the enterprise 1 to reach the same level as
that for the enterprise 2 in the minimum time interval with the minimum advertising cost,
i.e., x1(T ) = x2(T ). We should notice that the customers are allowed to buy the product
from both these two enterprises at the same time. In this case, x1(T ) = x2(T ) does not
imply that they are equal to 0.5. Also, the terminal time T in the following formulation is
a variable and it will satisfy 0 < T < +∞. In summary, the objective function is defined as
below.

min
u,T

J(u, T ) =

∫ T

0

u2(t)dt+ T (2.2)

Remark 2.1. In fact, the objective function in (2.2) can be in a weighted form

J(u, T ) = w1

∫ T

0

u2(t)dt+ w2T
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where w1 and w2 are the weighted coefficients, which can be used to adjust the impacts of
corresponding parts on the whole performance index. In this paper, we consider the case of
w1 = w2 = 1. Technically, the solving process is the same when the weighted coefficients
are constants different from 1. In Section 4, we will investigate the influence of different
weighted coefficients for the system.

As Problem (2.2) for system (2.1) is a nonlinear generalized optimal control problem, to
best of our knowledge, there is no existing theoretical solution for such problem. Next we
will try to develop a numerical approach to solve it in different situations.

3 Computational Solution

The aim of the optimal control problem mentioned above is to obtain the optimal investment
strategy. It is difficult to solve an optimal control problem with nonlinear differential-
algebraic system directly by using the optimal control theory in general. In this section, the
above optimal control problem with free terminal time is first transformed into an optimal
control problem with fixed terminal time [18], and then we apply a constraint transcription
method [21, 31] together with the control parameterization technique [12–14, 17, 21, 31, 32]
to solve the converted problem. In addition, the optimal control software package, MISER
3.2 [9], which is implemented based on the control parameterization technique, is suitable for
this proposed problem. Particularly, for determining the switching points of the piece-wise
constant function, we consider two possible partitions: the equal-partition and the partition
with time scaling method to obtain two different investment strategies.

To begin with, we first convert system (2.1) into an equivalent nonlinear system as below

ẋ(t) = f(x(t), u(t)) (3.1)

where

x(t) =

(
x1(t)
x2(t)

)
f(x(t), u(t))

=

[
k1u(t)(1− x1(t))− β2Nx1(t)(δ1x1(t) + δ2x2(t))[a− bN(x1(t) + x2(t))]− η1x1(t)
k2N(1− x2(t))(δ1x1(t) + δ2x2(t))[a− bN(x1(t) + x2(t))]− β1u(t)x2(t)− η2x2(t)

]
We should notice that although the differential-algebraic system is transformed into a normal
system involving only differential equations, the algebraic equation still puts constraint on
the value range of the system. The initial condition is now written as x(0) = [0, x20]

T .
There are four continuous inequality constraints for this problem, i.e.,

x1(t) ≥ 0, 1− x1(t) ≥ 0, x2(t) ≥ 0, 1− x2(t) ≥ 0.

which are denoted as gj(x(t)) ≥ 0, j = 1, 2, 3, 4. Then, we can define the Problem (P ) as
follows

min
u,T

J(u, T ) =
∫ T

0
u2(t)dt+ T

s.t. (3.1)
x1(T )− x2(T )=0
gj(x(t)) ≥ 0 , j = 1, 2, 3, 4
u(t) ∈ U

(3.2)

Next we will present how to solve Problem (P ) in general.
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3.1 Constraint Transcriptions

In order to handle the continuous inequality constraints gj(x(t)) ≥ 0 in Problem (P ), we
now introduce a constraint transcription method [21, 31] and transform these constraints,
in which there are infinite constraints in nature, into the ones in a canonical form, in which
the number of the constraints becomes finite. More specifically, we use

γ +Gj,ε(u, T ) ≥ 0 (3.3)

to approximate gj(x(t)), for each j = 1, 2, 3, 4, where

Gj,ε(u, T ) =

∫ T

0

Lj,ε(x(t))dt (3.4)

Lj,ε(x(t)) =


gj(x(t)),

−(gj(x(t))− ε)
2
/4ε ≥ 0,

0,

if
if
if

gj(x(t)) < −ε
−ε ≤ gj(x(t)) ≤ ε

gj(x(t)) > ε
(3.5)

By replacing gj(x(t)) ≥ 0 with (3.3) in Problem (P ), we can formulate a related approx-
imated problem based on Problem (P ), referred to as Problem (P ε,γ,T ) in this paper. Since
the terminal time in Problem (P ε,γ,T ) is also free, we now need to transform the problem
into an equivalent problem with a fixed new time interval [0, 1] by introducing a new vari-
able z as stated in next section with technique reported in [8, 18], so that the problem can
be transformed into an optimal control problem with fixed terminal time. In fact, z is the
terminal time, which can be optimized in the following equivalent problem, which is denoted
as Problem (P ε,γ)

min
u,z

J(u, z) = z
∫ 1

0

(
1 + u2(s)

)
ds

s.t. ẋ(s) = zf(x(s), u(s))
x1(1)− x2(1) = 0
γ +Gj,ε(u(s)) ≥ 0 , j = 1, 2, 3, 4

x(0) = [0, x2,0]
T

u(s) ∈ U

(3.6)

Problem (P ε,γ) is in a canonical form with a fixed terminal time, which can be solved by
applying the control parameterization method, and this will be investigated in next section.

Next, we will explore the relation between the optimal solution of Problem (P ) and
the optimal solution of Problem (P ε,γ). The following lemma illustrates the relationship of
feasible controls for Problem (P ε,γ) and Problem (P ), which was reported in [31].

Lemma 3.1. There exists a γ(ε) > 0 such that for all γ, 0 < γ < γ(ε), any feasible control
uε,γ(t) for Problem (P ε,γ) is also a feasible control for Problem (P ).

Before we formally present the algorithm to solve Problem (P ), we assume that Problem
(P ε,γ) can be solved numerically with the optimal solution u∗

ε,γ(t), and in this optimal case,
the continuous inequality constraints gj(x(t)) ≥ 0 should become gj(x(t|u∗

ε,γ(t))) ≥ 0. The
algorithm for solving Problem (P ε,γ) can be stated as follows.

Algorithm 1. Choose ε0 > 0, and γ0 > 0.
Step 1. Solve Problem (P ε,γ) to obtain the optimal solution u∗

ε,γ(t).
Step 2. Check the feasibility of gj(x(t|u∗

ε,γ(t))) ≥ 0 for all t ∈ [0, 1] and all j = 1, 2, 3, 4.
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Step 3. If u∗
ε,γ(t) is infeasible, go to Step 4. If u∗

ε,γ(t) is a feasible control and ε meets the
tolerance requirement, then stop. Otherwise go to Step 5.
Step 4. Set γ=γ

2 and go to Step 1.
Step 5. Set ε= ε

10 , γ=
γ
10 and go to Step 1.

The convergence of Algorithm 1 is guaranteed by the following results reported in [31].

Lemma 3.2. Let u∗
ε,γ(t) be the optimal control produced by Algorithm 1, then,

J(u∗
ε,γ(t)) → J(u∗(t)) (3.7)

as ε → 0, where u∗(t) is an optimal control of Problem (P ), which is obtained by using
control parameterization method.

Remark 3.3. According to Lemma 3.1 and Lemma 3.2, we can see that, in Algorithm 1,
γ is used to ensure the feasibility of u∗

ε,γ(t), while ε is related to the accuracy of u∗
ε,γ(t).

In summary, we can achieve an optimal solution of Problem (P ) by adjusting γ and ε in
Algorithm 1 if Problem (P ε,γ) has an optimal solution.

Remark 3.4. Lemma 3.1, Lemma 3.2 and Algorithm 1 are the results for optimal control
problem with fixed terminal time. But so far, the optimal control problem in this paper
is a free terminal time problem. We will transform such optimal control problem into one
optimal control problem with a fix terminal time as shown in next section.

3.2 Control Parameterization

In this section, we will show how to solve Problem (P ε,γ) numerically via the control pa-
rameterization method. The essential idea of this method is to parameterize the control
function by partioning the time interval into a group of sub-intervals. Here, we consider
two different types of partitions. One is the simple equal-partition, and the other is a time
scaling transform method.

3.2.1 Equal-partition

We introduce a monotonically non-decreasing sequence {τ0, τ1, . . . , τp}, which carries out
on an equal-partition of the time interval [0, 1] with 0 = τ0 < τ1 < · · · < τp = 1. With
such partition, the control function u(s) is approximated by a piecewise constant function
as follows

up(s) =

p∑
k=1

σkχ[τk−1,τk](s) (3.8)

where σk ∈ U, χI is the indicator function of I defined by

χI =

{
1, s ∈ I
0, otherwise

Accordingly, we can denote the system (3.1) as

ẋ(s) = zf̄(x(s), σp) (3.9)

where

f̄(x(s), σp) = f(x(s),

p∑
k=1

σkχ[τk−1,τk](s))
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σp = [ σ1, σ2, · · · , σp ]T

and the initial condition remains the same as x(0). Now let xσp(s) be the solution of the

system (3.9) with up(s) =
p∑

k=1

σkχ[τk−1,τk](s) and define

Ḡj,ε(σ
p, z) = z

∫ 1

0

Lj,ε(xσp(s))ds

By using these notations and transformations, one can change (3.6) into
ẋ(s) = zf̄(x(s), σp)
x(0) = [0, x20]

T

x1(1)− x2(1) = 0
γ + Ḡj,ε(σ

p, z) ≥ 0
σp ∈ U, s ∈ [0, 1]

(3.10)

Then the optimal control problem can be redefined as follows

(P̄ ε,γ(p)) : min
σp,z

J̄(σp, z) = z
∫ 1

0

(
1 + (up(s))

2
)
ds

s.t. (3.10)

Problem (P̄ ε,γ(p)) is in fact a sequence of optimal parameter selection problems in canonical
form. To solve Problem (P̄ ε,γ(p)) as a nonlinear optimization problem, the gradient formulas
of the objective function and the constraint functions need to be derived. Next we will
provide these gradient formulas in the following theorem and the proof is omitted here due
to its similarity to that of Theorem 5.2.1 in [31].

Theorem 3.5. The gradients of the objective function J̄(σp, z) and corresponding inequality
continuous constraints with respect to σp are as follows.

∂J̄(σp, z)

∂σp
=

∫ 1

0

∂H̄0(x(s), σ
p, λ̄0(s), z)

∂σp
ds

∂J̄(σp, z)

∂z
=

∫ 1

0

∂H̄0(x(s), σ
p, λ̄0(s), z)

∂z
ds

∂Ḡj,ε(σ
p, z)

∂σp
=

∫ 1

0

∂H̄j(x(s), σ
p, λ̄j(s), z)

∂σp
ds

∂Ḡj,ε(σ
p, z)

∂z
=

∫ 1

0

∂H̄j(x(s), σ
p, λ̄j(s), z)

∂z
ds

where H̄0 is the Hamiltonian for the objective function, H̄j , j = 1, .., 4 is the Hamiltonian
for the canonical constraints,

H̄0(x(s), σ
p, λ̄0(s), z) = z(1 + (σp)2 + λ̄T

0 (s)f̄(x(s), σ
p))

H̄j(x(s), σ
p, λ̄j(s), z) = Lj,ε(x(s)) + zλ̄T

j (s)f̄(x(s), σ
p)

λ̄0(s) and λ̄j(s) are the solutions of the following co-state differential equations, respectively

(̇̄λ0(s))
T = −∂H̄0(x(s), σ

p, λ̄0(s), z)

∂x(s)



392 F. WANG, Q. ZHANG, B. LI AND W. LIU

(̇̄λj(s))
T = −∂H̄j(x(s), σ

p, λ̄j(s), z)

∂x(s)

with the boundary conditions
(λ̄0(1))

T = [0, 0]

(λ̄j(1))
T = [0, 0], j = 1, 2, 3, 4.

It should be reminded that Problem (P̄ ε,γ(p)) can be solved easily with Theorem 3.5.
Next we will discuss another flexible partition, which usually has more benefits as illustrated
in experimental simulations.

3.2.2 Time Scaling Transform

In this section, we focus on the case in which the switching times can be varied. We inves-
tigate the problem of choosing optimal values for the switching times so that the switched
system under consideration operates in the best possible manner. This is a switching time
optimization problem [19]. In this section, we can obtain the optimal time intervals of adver-
tising investment by switching time optimization. The time intervals are not equal-partition
any more so that the advertising strategy can be better and more efficient, in the sense that
the enterprise can predict when to invest on advertising can achieve better result.

In order to optimize the switching time points, we introduce a time scaling transform
method as reported in [15, 19, 20]. For such purpose, we introduce a monotonically non-
decreasing sequence {τ0, τ1, . . . , τp} which satisfies 0 = τ0 < τ1 < · · · < τp = T . Here,
the switching time points τk, 1 ≤ k ≤ p − 1 , are regarded as decision variables. Then, we
map these switching time points into fixed time points k/p, k = 1, 2, . . . , p− 1, are regarded
as decision variables. Then, we map these switching time points into fixed time points
k/p, k = 1, 2, . . . , p− 1 in a new time horizon [0, 1]. This process is achieved by introducing
the following differential equation{

ṫ(s) = vp(s), s ∈ [0, 1]
t(0) = 0

(3.11)

where

vp(s) =

p∑
k=1

θkχ[ k−1
p , kp )

(s) (3.12)

with θk ≥ 0, k = 1, 2, . . . , p. We denote θp = [θ1, θ2, . . . , θp]
T and let Θ be the set containing

all possible θp. From (3.11) and (3.12), it follows that, for k = 1, 2, . . . , p− 1,

τk =
k∑

i=1

θi
p

(3.13)

and

t(1) =

p∑
i=1

θi
p

= T (3.14)

In this case, system (3.1) can be rewritten in a new time horizon as follows

dx(t)

dt

dt(s)

ds
= ṫ(s)f(x(t(s)), u(t(s))) = vp(s)f(x(t(s)), u(t(s))) (3.15)
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In this case, the continuous state inequality constraints and the terminal constraint in the
new time domain can be rewritten as

x1(t(s)) ≥ 0, 1− x1(t(s)) ≥ 0, x2(t(s)) ≥ 0, 1− x2(t(s)) ≥ 0 (3.16)

x1(1)− x2(1) = 0 (3.17)

Let u(t(s)) =
p∑

k=1

σkχ[τk−1,τk](s), where σk is defined as in (3.8). Also define

f̃(x(s), σp, θp) = f(x(s),

p∑
k=1

σkχ[τk−1,τk](s)) (3.18)

If we denote xσp,θp(s) as the solution of system (3.18), and define

G̃j,ε(σ
p, θp) =

∫ 1

0

vp(s)Lj,ε(xσp,θp(t(s)))ds

then, we can formulate an optimal parameter selection problem in a canonical form in the
same manner as we defined Problem (P̄ ε,γ(p)), which is referred to as Problem (P̃ ε,γ(p))
here and is defined as follows

min
σp,θp

J̃(σp, θp) =
∫ 1

0
vp(s)

(
1 + (up(s))

2
)
ds

s.t. ẋ(s) = vp(s)f̃(x(s), σp, θp)
ṫ(s) = vp(s)
x(0) = [0, x20]

T

x1(1)− x2(1) = 0

γ + G̃j,ε(σ
p, θp) ≥ 0

t(1) = T
σk ∈ U, k = 1, 2, . . . ., p

(3.19)

The corresponding gradient formulas for this objective function and the constraint functions
are given as below.

Theorem 3.6. The gradients of the objective function J̃(σp, θp) and corresponding inequal-
ity continuous constraints with respect to σp and θp are

∂J̃(σp, θp)

∂σp
=

∫ 1

0

∂H̃0(x(t(s)), σ
p, θp, λ̃0(t(s)))

∂σp
ds

∂J̃(σp, θp)

∂θp
=

∫ 1

0

∂H̃0(x(t(s)), σ
p, θp, λ̃0(t(s)))

∂θp
ds

∂G̃j,ε(σ
p, θp)

∂σp
=

∫ 1

0

∂H̃j(x(t(s)), σ
p, θp, λ̃j(t(s)))

∂σp
ds

∂G̃j,ε(σ
p, θp)

∂θp
=

∫ 1

0

∂H̃j(x(t(s)), σ
p, θp, λ̃j(t(s)))

∂θp
ds

where H̃0 is the Hamiltonian for the objective function, H̃j , j = 1, .., 4 is the Hamiltonian
for the canonical constraints,

H̃0(x(t(s)), σ
p, θp, λ̃0(t(s))) =

p∑
k=1

θk
p
(1 + (σk)

2) + λ̃T
0 (t(s))v

p(s)f̃(x(t(s)), σp)
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H̃j(x(t(s)), σ
p, θp, λ̃j(t(s))) = Lj,ε(x(t(s))) + λ̃T

j (t(s))v
p(s)f̃(x(t(s)), σp)

and λ̃0(t(s)) and λ̃j(t(s)) are the solution of the following co-state differential equations,
respectively

(̇̃λ0(t(s)))
T = −∂H̃0(x(t(s)), σ

p, θp, λ̃0(t(s)))

∂x(t(s))

(̇̃λj(t(s)))
T = −∂H̃j(x(t(s)), σ

p, θp, λ̃j(t(s)))

∂x(t(s))

with the boundary conditions
(λ̃0(1))

T = [0, 0]

(λ̃j(1))
T = [0, 0], j = 1, 2, 3, 4.

With Theorem 3.5 and Theorem 3.6, Problem (P̄ ε,γ(p)) and Problem (P̃ ε,γ(p)) can be
solved easily by the optimal control software package MISER 3.2 [9].

4 Illustrative Example

In this section, we will use a beer sales dynamic system to verify the validity and practica-
bility of the obtained results in this paper. As we know that all kinds of beer advertisements
are a primary means to increase beer sales, and would have impact on consumers’ consump-
tion preferences. Moreover, high advertisement investment usually can achieve higher sales.
First, we use the data from [22] for beer advertisement and market share in America market
during 1993 − 2003. In detail, all the parameters related to the second enterprise in the
proposed model are from [22] and the following parameters are used: k1 = 0.5, k2 = 0.5,
β1 = 0.5, β2 = 0.7, η1 = 0.1, η2 = 0.2, δ1 = 15, δ2 = 10, a = 1.2×10−5, b = 10−10, N = 105.
The proposed system model is shown as below. ẋ1(t) = 0.5u(t)(1− x1(t))− 0.7v(t)x1(t)− 0.1x1(t)

ẋ2(t) = 0.5v(t)(1− x2(t))− 0.5u(t)x2(t)− 0.2x2(t)
0 = (15x1(t) + 10x2(t))[1.2− (x1(t) + x2(t))]− v(t)

(4.1)

where the initial conditions are x1(0) = 0, x2(0) = 0.6 and v(0) = 3.6. We now solve
Problem (P ) subject to (4.1). And the parameters ε0 and γ0 in Algorithm 1 are chosen
to be 1.0000e − 02 and 2.5000e − 03 respectively. With Algorithm 1, their final values are
obtained as ε = 1.0000e − 04 and γ = 2.5000e − 05. The implementation is carried out
by using the optimal control software MISER 3.2 [9]. Next we consider Problem (P ) in
following two cases.

4.1 The equal-partition case

We adopt the method mentioned in Section 3.1 to solve the problem (4.1) and set u ∈ [0, 10]
and p = 10. After transforming into an equivalent form shown in (3.10), the optimal states
and optimal control are shown in Fig.1, and the corresponding function value is 9.3827 and
the optimal terminal time (i.e. the value of the parameter z) is 0.5431.

We observe that the objective function value is decreasing as the upper bound of the
control umax is decreasing, and the results with different umax are shown in Table 1. The
cost functions are the same when umax is larger than 7.4462. More importantly, we can
imagine that there should have a critical value umax such that these two market occupancies
never reach a balance with any admissible control (if investment is not sufficient). In order
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Figure 1: The solutions of problem (4.1) with u ∈ [0, 10]
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Figure 2: The results of problem (4.1) with u ∈ [0, 4.1]

to find such critical value, we let the upper bound value decrease to a certain degree, such
as umax = 4.1. In this case, the optimal J̄ = 16.3109 and state changes in this are shown in
Fig.2. If we reduce umax slightly further to 4, we can see the result in Fig.3 showing that
the market occupancies never reach a balance. In fact, people are more interested on the
smallest upper bound of the advertising investment to make both market occupancies equal.
Next we will show that one can improve such upper bound via the time scaling approach.

4.2 The time scaling partition

Now we use the time scaling transform to solve problem (3.19). By setting u ∈ [0, 10] and
p = 10, we can obtain the optimal function value is 9.3704 and the corresponding optimal
states and optimal control are shown in Fig.4. In comparison with the results in Fig.1, it is
easy to observe that the results with time scaling are better than equal-partition method for
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Table 1: The results with different umax

umax 10 9 8 7 6 5
J 9.3827 9.3827 9.3827 9.3978 9.5715 10.3602

the same problem in terms of reducing the objective function value. Notice that each switch
time is derived rather than predetermined, and this shows that the time scaling method can
bring much more benefit for enterprise.

In order to compare the performance of the two partition methods in more detail, we
calculate the function values of equal-partition and that obtained from time scaling transform
with different number of partitions in Table 2. From Table 2, we can see the improvement
by applying the time scaling transform. We also obverse that, as expected, the more the
number of partition is, the more effective the time scaling transform becomes. Clearly, for
the cost function, we consider two factors, i.e., the investment time and the investment cost,
so the comparison results in Table 2 show that the time scaling method is better at the
expense of investment time, in terms of less advertising cost. And the notation ∆J is equal
to J̄ − J̃ in Table 2.

Furthermore, the function value would approach to the optimal value when we increase
value p according to [31], and they will approach to constant values. The results are shown
in Table 3.

Last, we investigate the effect of weighted coefficients in the original control problem,

i.e., J(u(t)) = w1

∫ T

0
u2(t)dt + w2T , where w1 and w2 represent the corresponding weights

respectively. Now we consider two situations, i.e., (1) w1 = 0.3, w2 = 0.7 and (2) w1 =
0.7, w2 = 0.3, and all other conditions are unchanged. The results are shown in Fig.5 and
Fig.6 respectively. We should notice that in order to show these results clearly, the numeric
value in time coordinates is magnified 10 times. And now we can compare the results of these
two situations in Table 4. First, there is an obvious difference between these cost functions
in these two cases. If w1 < w2, this implies that the enterprise 2 pay more attention to
the investment time. Oppositely, if w1 > w2, the enterprise 2 focuses on saving advertising
cost. So by adjusting the weight parameters w1 and w2, different advertising policies can be
provided to the enterprise.

5 Conclusions

In this paper, a duopoly competition system between two enterprises is investigated and
it can be formulated as a nonlinear differential-algebraic system with inequality continuous
constraints and free time terminal. In order to solve this problem effectively, we transfer the
free terminal time problem into a fixed terminal time problem. In addition, the continuous
inequality constraints are transformed into the constraints in a canonical form by applying
the constraint transcription technique. Hence, we can solve the original optimal control
problem by solving an approximated problem in a canonical form, and the corresponding
convergence results are also provided. Finally, the approximated problem can be solved by
control parameterization technique via two partitioning techniques: the equal-partition and
time scaling method so that two different investment strategies can be obtained. Particularly,
the required gradients for the objective function and the constraint functions are derived.
In the simulation, we illustrated the effectiveness of the proposed methods. By comparing
these two partitioning methods, we find that the time scaling method is superior to the
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Table 2: Comparing two methods

Equal-partition
p J̄ Terminal time Advertising investment
2 9.8980 0.3907 9.5073
4 9.5299 0.4809 9.0490
6 9.4381 0.5140 8.9241
8 9.4002 0.5327 8.8675
10 9.3827 0.5431 8.8396
12 9.3695 0.5479 8.8216

Time scaling

p J̃ Terminal time Advertising investment
2 9.8075 0.4280 9.3795
4 9.4727 0.5159 8.9568
6 9.4073 0.5396 8.8677
8 9.3815 0.5490 8.8325
10 9.3704 0.5538 8.8166
12 9.3608 0.5549 8.8059

Comparison results
p ∆J Terminal time Advertising investment
2 0.0905 −0.0373 0.1278
4 0.0573 −0.0350 0.0922
6 0.0308 −0.0256 0.0564
8 0.0187 −0.0163 0.0350
10 0.0123 −0.0107 0.0230
12 0.0087 −0.0070 0.0157

Table 3: The results of different segments by time scaling

p J̃ Terminal time Advertising investment
2 9.8075 0.4280 9.3795
4 9.4727 0.5159 8.9568
6 9.4073 0.5396 8.8677
8 9.3815 0.5490 8.8325
10 9.3704 0.5538 8.8166
12 9.3608 0.5549 8.8059
14 9.3571 0.5565 8.8006
16 9.3584 0.5573 8.8011
18 9.3641 0.5600 8.8041
20 9.3556 0.5588 8.7968
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Table 4: The results of different weights by time scaling

w1 = 0.3, w2 = 0.7 w1 = 0.7, w2 = 0.3

J̃ 3.0005 6.3083
Terminal time 9.0222 8.6928

Advertising investment 0.4198 0.7447

equal-partition method in terms of reducing the investment cost. But the equal-partition
investment strategy takes less time.
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