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mappings. They also presented a Lagrange multiplier theorem for a set-valued optimization
problem in terms of the Borwein-strong subgradient [3] with the multiple of the objec-
tive and the inverse of the constrained set-valued mapping being a cone-convex set-valued
mapping. Song [16] introduced a weak subdifferential in terms of contingent epideriva-
tive, and presented some property of this weak subdifferential. Li and Guo [9] presented
some existence theorems of the Yang-weak subgradient and the Chen-Jahn-weak subgra-
dient for set-valued mappings by the Hahn-Banach extension theorem given by Zǎlinescu
[22]. In terms of the Chen-Jahn-weak subgradient, they also obtained a Sandwich theorem
for cone-convex set-valued mappings, and obtain a formula for the subdifferentials of the
sum of two cone-convex set-valued mappings. Finally, they discussed Lagrange rules for
set-valued optimization problems in terms of the Yang-weak subdifferential and the Chen-
Jahn-weak subdifferential, respectively, in which the multiple of the objective and the inverse
of the constrained set-valued mapping is a cone-convex set-valued mapping. Hernández and
Rodŕıguez-Maŕın [7] obtained some existence theorems of the Chen-Jahn subgradient and
strong subgradient introduced by themselves, respectively. They also established several
optimality conditions for set-valued optimization problems. Taa [19] established a formula
for the Yang-weak subdifferential of the sum of two cone-convex set-valued mappings under
the condition that the domain of one set-valued mapping and the interior of the domain of
another have nonempty intersection. Using this formula, he obtained a Lagrange multiplier
rule for a set-valued optimization with the objective and the constraint set-valued mappings
being cone-subconvexlike. Taa [18] established a formula for the Yang-weak subdifferential
of the sum of two cone-convex set-valued mappings under the Attouch-Brezis qualification
condition which is weaker than [19]. Using this formula and the Attouch-Brezis qualification
condition, he also established a Lagrange multiplier theorem for a set-valued optimization
problem with the objective and the constraint set-valued mappings being cone-convex. Long,
Peng and Li [10] obtained two existence theorems of the Chen-Jahn subgradient in terms of
the contingent derivatives. They also discussed some properties of the Chen-Jahn subdiffer-
ential. All Lagrange multiplier theorems mentioned above require cone-convexity or nearly
cone subconvexlike property of the considered set-valued mappings since these theorems are
obtained by applying the separation theorem for convex sets in essence. However, in some
nonconvex set-valued optimization problems, the Yang-weak subdifferential, Chen-Jahn sub-
differential, Borwein-strong subdifferential and Song-weak subdifferential of the considered
set-valued mappings are maybe empty. For example, all kinds of subdifferentials mentioned
above of F at (0, 0) are empty, where F (x) = [−|x|,+∞) for all x ∈ R. In order to avoid
this drawback in dealing with the optimality conditions of nonconvex set-valued optimization
problems, we introduce a new kind of weak subdifferential for set-valued mappings by the
circatangent epiderivatives (Clarke epiderivative). In the special case when the set-valued
mapping is cone-convex, this subdifferential is equivalent to the Yang-weak subdifferential
and the Song-weak subdifferential. Then using this subdifferential, we established a La-
grange multiplier rule for set-valued optimization problems which covers more class than [9]
and [18].

This paper is organized as follows. In Section 2, we recall some notions which will be
needed in the sequel. Section 3 and 4 are the main contribution of this paper. In section 3, we
introduce a new subdifferential, and present an existence theorem of this weak subgradient
by applying the Eidelheit’s separation theorem and the Closed Graph Theorem. In section
4, we derive a Lagrange multiplier rule as necessary and sufficient optimality condition for
a constrained optimization problem. Unlike [9] and [18], Theorem 4.4 and Corollary 4.5
do not require any convexity of the objective set-valued mapping and the geometric set.
Moreover, our Lagrange multiplier rule is given by the weak subdifferential of all set-valued
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mappings in the constrained optimization problem, which is consistent with the classic
Lagrange multiplier rule for convex optimization problems. See Remark 4.8.

2 Preliminaries

Throughout this paper, we let X, Y and Z be Banach spaces, and let X∗, Y ∗ and Z∗ be
the topological duals of X, Y and Z, respectively. Let B(X,Y ) denote the set of all linear
continuous operators from X into Y . Let BX and BY denote the unit open ball of X and
Y , respectively. Let A be a subset of Y . We denote the interior and the closure of A by
int(A) and cl(A), respectively. Let C ⊂ Y be a closed pointed cone with int(C) ̸= ∅. We
say that A is upper bounded if there exists b ∈ Y such that A ⊂ b− C. Let C∗ denote the
dual cone of C, that is,

C∗ = {y∗ ∈ Y ∗ : ⟨y∗, c⟩ ≥ 0, ∀ c ∈ C}.

We let WMin(A) denote the set of weak efficient points of A, that is,

WMin(A) = {a ∈ A : (A− a) ∩ (−int(C)) = ∅}.

Let a ∈ A. Let T (A, a) denote the contingent cone of A at a, that is, v ∈ T (A, a) if
and only if there exist a sequence {tn} in (0,+∞) decreasing to 0 and a sequence {vn} in
Y converging to v such that a + tnvn ∈ A for all n. Let Tc(A, a) denote the circatangent
(or Clarke tangent) cone of A at a, that is, v ∈ Tc(A, a) if and only if, for each sequence
{an} in A converging to a and each sequence {tn} in (0,+∞) decreasing to 0, there exists
a sequence {vn} in Y converging to v such that an + tnvn ∈ A for all n. It is known that
Tc(A, a) is a closed convex cone and Tc(A, a) ⊂ T (A, a). The Clarke normal cone of A at a
is denoted by Nc(A, a), that is,

Nc(A, a) = {y∗ ∈ Y ∗ : ⟨y∗, v⟩ ≤ 0, ∀ v ∈ Tc(A, a)}.

Clearly, if A is a convex set, then

Nc(A, a) = {y∗ ∈ Y ∗ : ⟨y∗, y − a⟩ ≤ 0, ∀ y ∈ A}.

Let f : X → R ∪ {+∞} be a proper lower semicontinuous function. Let Dom(f) and
epi(f) denote the domain and epigraph of f , respectively, that is,

Dom(f) = {x ∈ X : f(x) < +∞} and epi(f) = {(x, t) ∈ X × R : f(x) ≤ t}.

For x ∈ Dom(f), the Clarke-Rockafellar subdifferential [6] of f at x is denoted by ∂f(x),
and is defined as

∂f(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ Nc(epi(f), (x, f(x)))}.

It follows that x∗ ∈ ∂f(x) if and only if for all (u, v) ∈ Tc(epi(f), (x, f(x))),

v − ⟨x∗, u⟩ /∈ −int(R+). (2.1)

Let δA denote the indicator function of A. It is known [6] that ∂δA(a) = Nc(A, a).
Let F : X ⇒ Y be a set-valued mapping. The domain, graph and epigraph of F are

defined respectively by
Dom(F ) = {x ∈ X : F (x) ̸= ∅},
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Gr(F ) = {x, y) ∈ X × Y : y ∈ F (x)},

epi(F ) = {x, y) ∈ X × Y : y ∈ F (x) + C}.

Let (x̄, ȳ) ∈ Gr(F ). The contingent epiderivative of F at (x̄, ȳ) is defined by Gr(DF (x̄, ȳ)) =
T (epi(F ), (x̄, ȳ)). Clearly, v ∈ DF (x̄, ȳ)(u) if and only if (u, v) ∈ T (epi(F ), (x̄, ȳ)). The
circatangent epiderivative of F at (x̄, ȳ) is defined by Gr(DcF (x̄, ȳ)) = Tc(epi(F ), (x̄, ȳ)).
We say that F is closed if Gr(F ) is a closed set. We say that F is a C-convex set-valued
mapping, if for all x1, x2 ∈ X, t ∈ [0, 1],

tF (x1) + (1− t)F (x2) ⊂ F (tx1 + (1− t)x2) + C.

We say that F is a convex process if Gr(F ) is a convex cone. Clearly, DcF (x̄, ȳ) is a closed
convex process. We say that F is locally Lipschitz at x̄ ∈ Dom(F ), if there exist η > 0 and
an open neighborhood U of x̄ such that

F (x1) ⊂ F (x2) + η∥x1 − x2∥BY , ∀ x1, x2 ∈ U.

Definition 2.1 ([21]). Let (x̄, ȳ) ∈ Gr(F ). T ∈ B(X,Y ) is called a Yang-weak subgradient
of F at (x̄, ȳ) if

(F (x)− ȳ − T (x− x̄)) ∩ (−int(C)) = ∅, ∀ x ∈ X.

The set of all Yang-weak subgradients of F at (x̄, ȳ), denoted by ∂y−wF (x̄, ȳ), is called the
Yang-weak subdifferential of F at (x̄, ȳ).

Definition 2.2 ([5]). Let x̄ ∈ Dom(F ). T ∈ B(X,Y ) is called a Chen-Jahn-weak subgradi-
ent of F at x̄ if

(F (x)− F (x̄)− T (x− x̄)) ∩ (−int(C)) = ∅, ∀ x ∈ X.

The set of all Chen-Jahn-weak subgradients of F at x̄, denoted by ∂c−wF (x̄), is called the
Chen-Jahn-weak subdifferential of F at x̄.

Definition 2.3 ([16]). Let x̄ ∈ Dom(F ) and ȳ ∈ F (x̄). T ∈ B(X,Y ) is called a Song-weak
subgradient of F at x̄ if

(DF (x̄, ȳ)(u)− T (u)) ∩ (−int(C)) = ∅, ∀ u ∈ X.

The set of all Song-weak subgradients of F at (x̄, ȳ), denoted by ∂s−wF (x̄, ȳ), is called the
Song-weak subdifferential of F at (x̄, ȳ).

Definition 2.4 ([3]). Let x̄ ∈ Dom(F ), ȳ ∈ F (x̄). T ∈ B(X,Y ) is called a Borwein-strong
subgradient of F at x̄ if for all x ∈ Dom(F ) and y ∈ F (x), we have

y − ȳ − T (x− x̄) ⊂ C.

The set of all Borwein-strong subgradients of F at (x̄, ȳ), denoted by ∂b−sF (x̄, ȳ), is called
the Borwein-strong subdifferential of F at (x̄, ȳ).

Definition 2.5 ([2]). Let x̄ ∈ Dom(F ), ȳ ∈ F (x̄). T ∈ B(X,Y ) is called a Baier-Jahn-strong
subgradient of F at x̄ if

DF (x̄, ȳ)(u)− T (u) ⊂ C.

The set of all Baier-Jahn-strong subgradients of F at (x̄, ȳ), denoted by ∂b−jF (x̄, ȳ), is called
the Baier-Jahn-strong subdifferential of F at (x̄, ȳ).
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The following result gives a little improvement of [18, Theorem 3.1]. However, its proof
is very similar to [19, Theorem 3.2], so we omit it.

Lemma 2.6. Let Gi : X ⇒ Y (i = 1, 2, ..., n) be n C-convex set-valued mappings with

closed epigraphs, x̄ ∈
n
∩
i=1

Dom(Gi), yi ∈ Gi(x̄), T ∈ B(X,Y ) and T ∈ ∂y-w(G1 +G2 + · · ·+
Gn)(x̄, y1 + y2 + · · ·+ yn). Suppose that

R+(Dom(Gi)−
n
∩

j=i+1
Dom(Gj)) (i = 1, 2, ..., n− 1)

are closed vector subspaces of X. Then the following statements hold:

(a) There exist Ti ∈ B(X,Y ), x∗
i ∈ X∗ and c0 ∈ int(C) such that Ti(x) = ⟨x∗

i , x⟩c0,
Ti ∈ ∂y-wGi(x̄, yi) (i = 2, 3, ..., n) and T − (T2 + T3 + · · ·+ Tn) ∈ ∂y-wG1(x̄, y1).

(b) ∂y-w(G1 +G2 + · · ·+Gn)(x̄, y1 + y2 + · · ·+ yn) ⊂ ∂y-wG1(x̄, y1) + ∂y-wG2(x̄, y2) +
· · ·+ ∂y-wGn(x̄, yn).

Lemma 2.7 ([16]). Let F : X ⇒ Y be a set-valued mapping, x̄ ∈ X and ȳ ∈ F (x̄). If
ȳ ∈ WMin(F (X)), then DF (x̄, ȳ)(u) ∩ (−int(C)) = ∅ for all u ∈ X.

3 Existence of Weak Subgradient

In this section, we establish some existence results of weak subgradients for set-valued map-
pings.

Motivated by (2.1), we introduce the following definition.

Definition 3.1. Let (x̄, ȳ) ∈ Gr(F ). T ∈ B(X,Y ) is called a weak subgradient of F at
(x̄, ȳ) if

(DcF (x̄, ȳ)(u)− T (u)) ∩ (−int(C)) = ∅, ∀ u ∈ X.

The set of all weak subgradients of F at (x̄, ȳ), denoted by ∂F (x̄, ȳ), is called the weak
subdifferential of F at (x̄, ȳ).

Now, we compare the difference among new subdifferential, Yang-weak subdifferential,
Jahn-Chen subdifferential, Song-weak sudifferential, Borwein-strong subdifferential
and Baier-Jahn-strong subdifferential. It is known [5] that ∂c-wF (x̄) ⊂ ∂y-wF (x̄, ȳ),

but the converse is not true. It is also known [2] that ∂b-sF (x̄, ȳ) ⊂ ∂b-jF (x̄, ȳ), and

∂b-sF (x̄, ȳ) = ∂b-jF (x̄, ȳ) if F is C-convex. By Definition 2.3 and 2.5, we can easily obtain

that ∂b-jF (x̄, ȳ) ⊂ ∂s-wF (x̄, ȳ).

Proposition 3.2. Let x̄ ∈ Dom(F ) and ȳ ∈ F (x̄). Then

∂y-wF (x̄, ȳ) ⊂ ∂s-wF (x̄, ȳ) ⊂ ∂F (x̄, ȳ). (3.1)

Furthermore, if F is a C-convex set-valued mapping, then they are equal.

Proof. By [16, Proposition 2.2], we have ∂y-wF (x̄, ȳ) ⊂ ∂s-wF (x̄, ȳ). Suppose that T ∈
∂s-wF (x̄, ȳ). Then

(DF (x̄, ȳ)(u)− T (u)) ∩ (−int(C)) = ∅, ∀ u ∈ X.
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Since DcF (x̄, ȳ)(u) ⊂ DF (x̄, ȳ)(u), we have

(DcF (x̄, ȳ)(u)− T (u)) ∩ (−int(C)) = ∅, ∀ u ∈ X.

which implies that T ∈ ∂F (x̄, ȳ).
Now, suppose that F is a C-convex set-valued mapping. Let T ∈ ∂F (x̄, ȳ). Then

(DcF (x̄, ȳ)(u)− T (u)) ∩ (−int(C)) = ∅, ∀ u ∈ X.

Since F is a C-convex set-valued mapping, we have F (x)− ȳ ⊂ DcF (x̄, ȳ)(x− x̄). It follows
that

(F (x)− ȳ − T (x− x̄)) ∩ (−int(C)) = ∅, ∀ x ∈ X,

which implies that T ∈ ∂y-wF (x̄, ȳ).

Remark 3.3. The inclusion in equation (3.1) may be strict. See the following example.

Example 3.4. Let F : R ⇒ R be defined as

F (x) =

{
[x2 sin 1

x , x
2 sin 1

x + 1], x ̸= 0,
{0}, x = 0.

It is easy to calculate that DF (0, 0)(u) = [0,+∞), DcF (0, 0)(u) = [|u|,+∞) for all u ∈ R,
∂y-wF (0, 0) = ∅, ∂s-wF (0, 0) = {0} and ∂F (0, 0) = [−1, 1].

Remark 3.5. T ∈ ∂F (x̄, ȳ) if and only if T ∈ ∂y-w(DcF (x̄, ȳ))(0, 0).

Remark 3.6. According to the above analysis, for a given set-valued mapping, the Yang-
weak subdifferential, Jahn-Chen subdifferential, Song-weak sudifferential, Borwein-strong
subdifferential and Baier-Jahn-strong subdifferential are subsets of our new subdifferential
at the same point.

Theorem 3.7. Let F : X ⇒ Y be a set-valued mapping and (x̄, ȳ) ∈ Gr(F ). Suppose that
the following conditions are satisfied:

(i) 0 ∈ int(Dom(DcF (x̄, ȳ)));

(ii) Tc(epi(F ), (x̄, ȳ)) is a proper subset of X × Y .

Then ∂F (x̄, ȳ) ̸= ∅.

Proof. Firstly, we prove that int(Tc(epi(F ), (x̄, ȳ))) ̸= ∅. By the definition of circatangent
epiderivative, we have C ⊂ DcF (x̄, ȳ)(0). Take c̄ ∈ int(C). Then there exists ρ > 0 such
that c̄+ ρBY ⊂ DcF (x̄, ȳ)(0) ∩ C. Clearly,

2c̄− (c̄+ ρBY ) ⊂ C. (3.2)

Since DcF (x̄, ȳ) is a closed convex process, by (i), we have Dom(DcF (x̄, ȳ)) = X. By the
Closed Graph Theorem [1, Theorem 2.2.6], there exists η > 0 such that

c̄ ∈ DcF (x̄, ȳ)(0) ⊂ DcF (x̄, ȳ)(x) + η∥x∥BY , ∀ x ∈ X. (3.3)

Let x ∈ ρ
ηBX . By (3.3), there exists bx ∈ BY such that c̄ + η∥x∥bx ∈ DcF (x̄, ȳ)(x). Since

∥η∥x∥bx∥ < ρ, we have c̄+η∥x∥bx ∈ c̄+ρBY . It follows from (3.2) that 2c̄−(c̄+η∥x∥bx) ∈ C,
and so,

2c̄ ∈ c̄+ η∥x∥bx + C ⊂ DcF (x̄, ȳ)(x) +DcF (x̄, ȳ)(0) ⊂ DcF (x̄, ȳ)(x),
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which leads to

2c̄+ int(C) ∈ DcF (x̄, ȳ)(x) +DcF (x̄, ȳ)(0) ⊂ DcF (x̄, ȳ)(x).

This implies that (x, 2c̄ + int(C)) ∈ Tc(epi(F ), (x̄, ȳ)). Therefore, ( ρηBX , 2c̄ + int(C)) ⊂
Tc(epi(F ), (x̄, ȳ)), and so int(Tc(epi(F ), (x̄, ȳ))) ̸= ∅.

Secondly, we show that

(0, 0) /∈ int(Tc(epi(F ), (x̄, ȳ))). (3.4)

Suppose to the contrary that there exists τ > 0 such that

τBX × τBY ⊂ Tc(epi(F ), (x̄, ȳ)).

Since Tc(epi(F ), (x̄, ȳ)) is a cone, one has

X × Y =
∪
λ>0

λ(τBX × τBY ) = Tc(epi(F ), (x̄, ȳ)),

which contradicts the assumption that Tc(epi(F ), (x̄, ȳ)) is a proper subset of X×Y . There-
fore, (3.4) is justified. Applying the Eidelheit’s separation theorem to (3.4), there exists
(x∗, y∗) ∈ X∗ × Y ∗ with ∥x∗∥+ ∥y∗∥ = 1 such that

0 ≤ ⟨x∗, x⟩+ ⟨y∗, y⟩, ∀ (x, y) ∈ Tc(epi(F ), (x̄, ȳ)). (3.5)

For each c ∈ C, taking (x, y) = (0, c) ∈ Tc(epi(F ), (x̄, ȳ)) in (3.5), we have ⟨y∗, c⟩ ≥ 0, and
so y∗ ∈ C∗. We claim that y∗ ̸= 0. Suppose to the contrary that y∗ = 0. Then by (3.5), we
have

0 ≤ ⟨x∗, x⟩, ∀ x ∈ Dom(DcF (x̄, ȳ)) = X.

This implies that x∗ = 0, which contradicts (x∗, y∗) ̸= (0, 0). Hence y∗ ̸= 0. Then there
exists c0 ∈ int(C) such that ⟨y∗, c0⟩ = 1. Now, we define a mapping T : X → Y by

T (x) = −⟨x∗, x⟩c0, ∀ x ∈ X.

Clearly, T is linear and continuous. We claim that T satisfies

(DcF (x̄, ȳ)(u)− T (u)) ∩ (−int(C)) = ∅, ∀ u ∈ X. (3.6)

Suppose to the contrary that there exist ū ∈ X and v̄ ∈ DcF (x̄, ȳ)(ū) such that v̄ − T (ū) ∈
−int(C). Since y∗ ∈ C∗ \ {0}, we have

⟨y∗, v̄ − T (ū)⟩ = ⟨y∗, v̄⟩+ ⟨x∗, ū⟩⟨y∗, c0⟩
= ⟨y∗, v̄⟩+ ⟨x∗, ū⟩ < 0.

(3.7)

On the other hand, taking (x, y) = (ū, v̄) in (3.5), we have ⟨x∗, ū⟩ + ⟨y∗, v̄⟩ ≥ 0, which
contradicts (3.7). Therefore, (3.6) is justified, and so T ∈ ∂F (x̄, ȳ).

Corollary 3.8. Let F : X ⇒ Y be a set-valued mapping, x̄ ∈ Dom(F ) and ȳ ∈ F (x̄).
Suppose that the following conditions are satisfied:

(i) F (x̄) is upper bounded and F is upper semicontinuous at x̄;

(ii) there exists u0 ∈ X such that DcF (x̄, ȳ)(u0) ̸= Y.



410 HUI HUANG

Then Dom(DcF (x̄, ȳ)) = X and ∂F (x̄, ȳ) ̸= ∅.

Proof. Since F (x̄) is upper bounded and F is upper semicontinuous at x̄, by [7, Lemma 4.1],
there exists an open neighborhood U of x̄ such that

ȳ + int(C) ⊂ F (x) + int(C), ∀ x ∈ U.

Take τ > 0 sufficiently small such that x̄+ τBX ⊂ U . Then (x̄+ τBX , ȳ+int(C)) ⊂ epi(F ).
By the definition of circatangent cone, we obtain (τBX , int(C)) ⊂ Tc(epi(F ), (x̄, ȳ)). There-
fore τBX ⊂ Dom(DcF (x̄, ȳ)). Since DcF (x̄, ȳ) is a process, we obtain Dom(DcF (x̄, ȳ)) = X.
By condition (ii), there exists an v0 ∈ Y such that v0 /∈ DcF (x̄, ȳ)(u0), and so (u0, v0) /∈
Tc(epi(F ), (x̄, ȳ)). Therefore, Tc(epi(F ), (x̄, ȳ)) is a proper subset of X × Y . By Theorem
3.7, ∂F (x̄, ȳ) ̸= ∅.

Now, we give an example to illustrate Theorem 3.7.

Example 3.9. Let X = R, Y = R2, C = R2
+ and the set-valued mapping F : R ⇒ R2 be

defined as
F (x) = {(u, v) : x3 ≤ u, v ≤ x3 + 1}, ∀ x ∈ R.

Let x̄ = 0 and ȳ = (0, 0). Then

Tc(epi(F ), (x̄, ȳ)) = {(u, v, w) : u ∈ R, v ≥ 0, w ≥ 0}.

It is easy to verify that all conditions of Theorem 3.7 are satisfied. Therefore, ∂F (x̄, ȳ) ̸= ∅.
In fact,

∂F (x̄, ȳ) = {(T1, T2) ∈ R2 : (T1 ≤ 0, T2 ≥ 0) or (T1 ≥ 0, T2 ≤ 0)}.

4 Generalized Lagrange Multiplier Rule

In this section, in terms of Lagrange multiplier, we give necessary and sufficient conditions
for the solution of set-valued optimization problems.

Let K ⊂ Z be a closed convex cone, F : X ⇒ Y be a set-valued mapping, H : X ⇒ Z
be a K-convex set-valued mapping, and Ω ⊂ X be a nonempty closed set. Consider the
following two set-valued optimization problems:

(SOP1)

{
min F (x),
s.t. H(x) ∩ (−K) ̸= ∅, x ∈ Ω.

(SOP2)

{
min F (x),
s.t. x ∈ Ω.

Definition 4.1. We say that (x̄, ȳ) ∈ X × Y is a weak minimizer of optimization problem
(SOP1) if x̄ ∈ D := {x ∈ X : H(x) ∩ (−K) ̸= ∅, x ∈ Ω} and ȳ ∈ F (x̄) ∩WMin(F (D)).
We say that (x̄, ȳ) ∈ X × Y is a weak minimizer of optimization problem (SOP2) if x̄ ∈ Ω
and ȳ ∈ F (x̄) ∩WMin(F (Ω)).

For convenience in the sequel, we define the set

L = {T ∈ B(X,Y ) : there exist x∗ ∈ X∗ and c ∈ int(C) such that T = ⟨x∗, ·⟩c} .

We need the following blanket assumption.
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Assumption (A) Let z̄ ∈ H(x̄) ∩ (−K). Suppose that for each v ∈ Tc(−K, z̄), each
sequence {tn} ⊂ (0,+∞) decreasing to 0, each sequence {(un, vn)} ⊂ X × Z satisfying
(un, vn) → (u, v), z̄+tnvn ∈ H(x̄+tnun)+K and x̄+tnun ∈ Ω, there exist two subsequences
{tnl

} ⊂ {tn}, {unl
} ⊂ {un} and a sequence {ṽl} ⊂ Z with ṽl → v such that z̄ + tnl

ṽl ∈
H(x̄+ tnl

unl
) +K and z̄ + tnl

ṽl ∈ −K when l sufficiently large.

Remark 4.2. Clearly, if z̄ ∈ H(x̄)∩ (−int(K)), then Assumption (A) is satisfied by taking
tnl

= tn, unl
= un and ṽl = vn.

Example 4.3. Let X = Z = R, H(x) = [x, x + 1] for all x ∈ R, K = [0,+∞), Ω =
[−π, 0], x̄ = 0 and z̄ = 0. Let v ∈ Tc(−K, z̄) = (−∞, 0], {tn} ⊂ (0,+∞) decreasing to 0,
{(un, vn)} ⊂ X×Z satisfying (un, vn) → (u, v), z̄+tnvn ∈ H(x̄+tnun)+K and x̄+tnun ∈ Ω.
In the case when v = 0, we take ṽn = 0. In the case when v < 0, we take ṽn = vn. Then
z̄ + tnṽn ∈ H(x̄+ tnun) +K and z̄ + tnṽn ∈ −K when n sufficiently large. The assumption
(A) is satisfied.

Theorem 4.4. Suppose that x̄ ∈ D, ȳ ∈ F (x̄), z̄ ∈ H(x̄) ∩ (−K), F and H are locally
Lipschitz at x̄, F (x̄) and H(x̄) have upper bound, Assumption (A) is satisfied, and

Tc(−K, z̄)−DcH(x̄, z̄)(Tc(Ω, x̄)) = Z. (4.1)

If (x̄, ȳ) is a weak minimizer of (SOP1), then there exist Λ ∈ B(Z, Y ), z∗ ∈ Z∗ and c0 ∈
int(C) such that

(i) Λ(z) = ⟨z∗, z⟩c0, ∀ z ∈ Z;

(ii) Λ(K) ⊂ C;

(iii) Λ(z̄) = 0;

(iv) 0 ∈ ∂F (x̄, ȳ) + ∂(Λ ◦H)(x̄,Λ(z̄)) ∩ L+Nc(Ω, x̄)int(C),

where Nc(Ω, x̄)int(C) := {⟨x∗, ·⟩c : x∗ ∈ Nc(Ω, x̄), c ∈ int(C)}.

Proof. Suppose that (x̄, ȳ) is a weak minimizer of (SOP1). Let Fi : X×Z ⇒ Y (i = 1, 2, 3, 4)
be defined by

F1(x, z) = F (x), ∀ (x, z) ∈ X × Z,

F2(x, z) = δ−K(z), ∀ (x, z) ∈ X × Z,

F3(x, z) = δΩ(x), ∀ (x, z) ∈ X × Z,

F4(x, z) = δepi(H)(x, z), ∀ (x, z) ∈ X × Z,

where δ−K(z) equals to {0} if z ∈ −K, ∅ otherwise. Then (x̄, z̄, ȳ) is a weak minimizer of
the following optimization problem{

min F1(x, z) + F2(x, z) + F3(x, z) + F4(x, z),
s.t. (x, z) ∈ X × Z.

By Lemma 2.7, we have

D(F1 + F2 + F3 + F4)(x̄, z̄, ȳ)(u, v)
∩

(−int(C)) = ∅, ∀ (u, v) ∈ X × Z. (4.2)
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Now, we show that for all (u, v) ∈ X × Z,

DcF1(x̄, z̄, ȳ)(u, v) +DcF2(x̄, z̄, 0)(u, v) +DcF3(x̄, z̄, 0)(u, v)

+DcF4(x̄, z̄, 0)(u, v) ⊂ D(F1 + F2 + F3 + F4)(x̄, z̄, ȳ)(u, v).
(4.3)

Let w1 ∈ DcF1(x̄, z̄, ȳ)(u, v) and wi ∈ DcFi(x̄, z̄, 0)(u, v) (i = 2, 3, 4). Let {tn} be a sequence
in (0,+∞) decreasing to 0. By the definition of circatangent epiderivative, there exist

{(u(i)
n , v

(i)
n , w

(i)
n )} ⊂ X × Z × Y (i = 1, 2, 3, 4) with (u

(i)
n , v

(i)
n , w

(i)
n ) → (u, v, w) such that

ȳ + tnw
(1)
n ∈ F1(x̄+ tnu

(1)
n , z̄ + tnv

(1)
n ) + C = F (x̄+ tnu

(1)
n ) + C,

0 + tnw
(2)
n ∈ F2(x̄+ tnu

(2)
n , z̄ + tnv

(2)
n ) + C = δ−K(z̄ + tnv

(2)
n ) + C, (4.4)

0 + tnw
(3)
n ∈ F3(x̄+ tnu

(3)
n , z̄ + tnv

(3)
n ) + C = δΩ(x̄+ tnu

(3)
n ) + C, (4.5)

0 + tnw
(4)
n ∈ F4(x̄+ tnu

(4)
n , z̄ + tnv

(4)
n ) + C = δepi(H)(x̄+ tnu

(4)
n , z̄ + tnv

(4)
n ) + C. (4.6)

Since F is locally Lipschitz at x̄, there exist a positive integer number n1 and η1 > 0 such
that

ȳ + tnw
(1)
n ∈ F (x̄+ tnu

(1)
n ) + C ⊂ F (x̄+ tnu

(3)
n ) + η1tn∥u(1)

n − u(3)
n ∥BY + C

when n > n1. Then there exists b
(1)
n ∈ BY such that

ȳ + tn

(
w(1)

n + η1∥u(1)
n − u(3)

n ∥b(1)n

)
∈ F (x̄+ tnu

(3)
n ) + C (4.7)

when n > n1. By the definition of the indicator function and (4.6), we have tnw
(4)
n ∈ C and

z̄ + tnv
(4)
n ∈ H(x̄ + tnu

(4)
n ) + K. Since H is locally Lipschitz at x̄, there exist a sequence

{b(4)n } ⊂ BZ , a positive integer number n4 and η4 > 0 such that

z̄ + tn

(
v(4)n + η4∥u(4)

n − u(3)
n ∥b(4)n

)
∈ H(x̄+ tnu

(3)
n ) +K

when n > n4. By (4.4), we have z̄ + tnv
(2)
n ∈ −K, and so v ∈ Tc(−K, z̄). By (4.5), we have

x̄+ tnu
(3)
n ∈ Ω. Noting (

u(3)
n , v(4)n + η4∥u(4)

n − u(3)
n ∥b(4)n

)
→ (u, v),

by Assumption (A), we may assume that there exist a positive integer number n3 and a
sequence {ṽn} ⊂ Z with ṽn → v such that

z̄ + tnṽn ∈ H(x̄+ tnu
(3)
n ) +K (4.8)

and
z̄ + tnṽn ∈ −K (4.9)

when n > n3. It follows from (4.6) and (4.8) that

0 + tnw
(4)
n ∈ δepi(H)

(
x̄+ tnu

(3)
n , z̄ + tnṽn

)
+ C (4.10)

when n > {n3, n4}. It follows from (4.4) and (4.9) that

0 + tnw
(2)
n ∈ δ−K (z̄ + tnṽn) + C (4.11)
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when n > {n3, n4}. Adding (4.5), (4.7), (4.10) and (4.11), we have

ȳ + tn

(
w(1)

n + η1∥u(1)
n − u(3)

n ∥b(1)n + w(2)
n + w(3)

n + w(4)
n

)
∈ F (x̄+ tnu

(3)
n ) + δ−K (z̄ + tnṽn) + δΩ(x̄+ tnu

(3)
n )

+ δepi(H)

(
x̄+ tnu

(3)
n , z̄ + tnṽn

)
+ C

= (F1 + F2 + F3 + F4)
(
x̄+ tnu

(3)
n , z̄ + tnṽn

)
+ C

(4.12)

when n > max{n1, n3, n4}. Since

w(1)
n + η1∥u(1)

n − u(3)
n ∥b(1)n + w(2)

n + w(3)
n + w(4)

n → w1 + w2 + w3 + w4,(
u(3)
n , ṽn

)
→ (u, v),

it follows from (4.12) that w1+w2+w3+w4 ∈ D(F1+F2+F3+F4)(x̄, z̄, ȳ)(u, v). Therefore,
(4.3) holds. Combining (4.2) with (4.3), we have(

DcF1(x̄, z̄, ȳ)(u, v) +

4∑
i=2

DcFi(x̄, z̄, 0)(u, v)

)∩
(−int(C)) = ∅.

This implies that

(0, 0) ∈ ∂y-w(DcF1(x̄, z̄, ȳ) +

4∑
i=2

DcFi(x̄, z̄, 0))(0, 0, 0).

Now, we show that the condition of Lemma 2.6 is satisfied (taking G1 = DcF1(x̄, z̄, ȳ),
Gi = DcFi(x̄, z̄, 0) (i = 2, 3, 4)). Since F andH are locally Lipschitz at x̄, and F (x̄) andH(x̄)
have upper bound, by Corollary 3.8, we have Dom(DcF (x̄, ȳ)) = Dom(DcH(x̄, z̄)) = X. It
is easy to verify that

Dom(DcF1(x̄, z̄, ȳ)) = Dom(DcF (x̄, ȳ))× Z = X × Z,

Dom(DcF2(x̄, z̄, 0)) = X × Tc(−K, z̄),

Dom(DcF3(x̄, z̄, 0)) = Tc(Ω, x̄)× Z,

Dom(DcF4(x̄, z̄, 0)) = Tc(epi(H), (x̄, z̄)).

It is easy to verify that

Dom(DcF1(x̄, z̄, ȳ))−
4∩

i=2

Dom(DcFi(x̄, z̄, 0)) = X × Z.

Now, we show that

Dom(DcF2(x̄, z̄, 0))−
4∩

i=3

Dom(DcFi(x̄, z̄, 0)) = X × Z,

that is,

X × Tc(−K, z̄)− (Tc(Ω, x̄)× Z)
∩

Tc(epi(H), (x̄, z̄)) = X × Z. (4.13)
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Let (x, z) ∈ X × Z. By (4.1), there exist v̄ ∈ Tc(−K, z̄), ũ ∈ Tc(Ω, x̄) and ṽ ∈ DcH(x̄, z̄)(ũ)
such that z = v̄ − ṽ. Clearly, (x + ũ, v̄) ∈ X × Tc(−K, z̄), (ũ, ṽ) ∈ (Tc(Ω, x̄) × Z) ∩
Tc(epi(H), (x̄, z̄)) and (x, z) = (x + ũ, v̄) − (ũ, ṽ). Therefore, (4.13) holds. Using the fact
Dom(DcH(x̄, z̄)) = X, we can easily show that

Tc(Ω, x̄)× Z − Tc(epi(H), (x̄, z̄)) = X × Z,

that is,
Dom(DcF3(x̄, z̄, 0))−Dom(DcF4(x̄, z̄, 0)) = X × Z.

By Lemma 2.6, there exist (x∗
i , z

∗
i )∈X∗×Z∗, c0∈ int(C), (Ti(x),Λi(z))=(⟨x∗

i , x⟩, ⟨z∗i , z⟩)c0
such that (T1,Λ1) ∈ ∂y-w(DcF1(x̄, z̄, ȳ))(0, 0, 0), (Ti,Λi) ∈ ∂y-w(DcFi(x̄, z̄, 0))(0, 0, 0) (i =
2, 3, 4) and

(0, 0) = (T1 + T2 + T3 + T4,Λ1 + Λ2 + Λ3 + Λ4). (4.14)

Since DcF1(x̄, z̄, ȳ)(u, v) = DcF (x̄, ȳ)(u) and (T1,Λ1) ∈ ∂y-w(DcF1(x̄, z̄, ȳ))(0, 0, 0), one has

(DcF (x̄, ȳ)(u)− ⟨x∗
1, u⟩c0 − ⟨z∗1 , v⟩c0) ∩ (−int(C)) = ∅, ∀ (u, v) ∈ X × Z. (4.15)

Taking u = 0 in (4.15) and noting 0 ∈ DcF (x̄, ȳ)(0), one obtain

(−⟨z∗1 , v⟩c0) /∈ −int(C), ∀ v ∈ Z.

As c0 ∈ int(C), the above relation implies that

⟨z∗1 , v⟩ ≤ 0, ∀ v ∈ Z,

and so z∗1 = 0, that is, Λ1 = 0. Replacing z∗1 by 0 in (4.15), one has

(DcF (x̄, ȳ)(u)− ⟨x∗
1, u⟩c0) ∩ (−int(C)) = ∅, ∀ u ∈ X,

which implies that T1 ∈ ∂F (x̄, ȳ).
It is not hard to verify that w ∈ DcF2(x̄, z̄, 0)(u, v) if and only if w ∈ C, u ∈ X and

v ∈ Tc(−K, z̄). As (T2,Λ2) ∈ ∂y-w(DcF2(x̄, z̄, 0))(0, 0, 0), we have

(C − ⟨x∗
2, u⟩c0 − ⟨z∗2 , v⟩c0) ∩ (−int(C)) = ∅, ∀ u ∈ X and v ∈ Tc(−K, z̄).

Since 0 ∈ C, we get

⟨x∗
2, u⟩c0 + ⟨z∗2 , v⟩c0 /∈ int(C), ∀ u ∈ X and v ∈ Tc(−K, z̄). (4.16)

Taking v = 0 in (4.16), we get

⟨x∗
2, u⟩ ≤ 0, ∀ u ∈ X.

This implies that x∗
2 = 0, and so T2 = 0. Replacing x∗

2 by 0 in (4.16), we get

⟨z∗2 , v⟩ ≤ 0, ∀ v ∈ Tc(−K, z̄). (4.17)

As −K− z̄ ⊂ Tc(−K, z̄) and z̄ ∈ −K, taking v = 0− z̄ and v = 2z̄− z̄ in (4.17), respectively,
we obtain ⟨z∗2 , z̄⟩ ≥ 0 and ⟨z∗2 , z̄⟩ ≤ 0, and so ⟨z∗2 , z̄⟩ = 0. Therefore,

Λ2(z̄) = 0. (4.18)
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Taking v = −k − z̄ in (4.17) for all k ∈ K, we have

⟨z∗2 ,−k − z̄⟩ = ⟨z∗2 ,−k⟩ ≤ 0,

and so
Λ2(K) = ⟨z∗2 ,K⟩c0 ⊂ C. (4.19)

It is not hard to verify that w ∈ DcF3(x̄, z̄, 0)(u, v) if and only if w ∈ C, u ∈ Tc(Ω, x̄)
and v ∈ Z. As (T3,Λ3) ∈ ∂y-w(DcF3(x̄, z̄, 0))(0, 0, 0), we have

(C − ⟨x∗
3, u⟩c0 − ⟨z∗3 , v⟩c0) ∩ (−int(C)) = ∅, ∀ u ∈ Tc(Ω, x̄) and v ∈ Z. (4.20)

Taking u = 0 in (4.20) and noting 0 ∈ C, we get

⟨z∗3 , v⟩ ≤ 0, ∀ v ∈ Z.

This implies that z∗3 = 0, and so Λ3 = 0. Replacing z∗3 by 0 in (4.20), we get

⟨x∗
3, u⟩ ≤ 0, ∀ u ∈ Tc(Ω, x̄).

This implies that x∗
3 ∈ Nc(Ω, x̄), and so T3 = ⟨x∗

3, ·⟩c0 ∈ Nc(Ω, x̄)int(C).
It is not hard to verify that w ∈ DcF4(x̄, z̄, 0)(u, v) if and only if w ∈ C and (u, v) ∈

Tc(epi(H), (x̄, z̄)). Since (T4,Λ4) ∈ ∂y-w(DcF4(x̄, z̄, 0))(0, 0, 0), then

(C − T4(u)− Λ4(v)) ∩ (−int(C)) = ∅, ∀ (u, v) ∈ Tc(epi(H), (x̄, z̄)).

Noting 0 ∈ C, we get

(0− T4(u)− Λ4(DcH(x̄, z̄)(u))) ∩ (−int(C)) = ∅, ∀ u ∈ X.

Since Λ1 = Λ3 = 0, by (4.14), we get Λ2 = −Λ4. The above relation can be rewritten as

(Λ2(DcH(x̄, z̄)(u))− T4(u)) ∩ (−int(C)) = ∅, ∀ u ∈ X. (4.21)

Now, let u ∈ X and v ∈ Dc(Λ2◦H)(x̄,Λ2(z̄))(u). Since H is a C-convex set-valued mapping,
by [1, Proposition 5.3.4], we have Gr(Dc(Λ2 ◦H)(x̄,Λ2(z̄))) = cl(Gr(Λ2(DcH(x̄, z̄)))). Then
there exists {(un, vn)} ⊂ X × Y with vn ∈ Λ2(DcH(x̄, z̄)(un)) such that (un, vn) → (u, v).
By (4.21), we have vn − T4(un) ∈ Y \ (−int(C)). Letting n → ∞, we have v − T4(u) ∈
Y \ (−int(C)). This implies that

(Dc(Λ2 ◦H)(x̄,Λ2(z̄))(u)− T4(u)) ∩ (−int(C)) = ∅, ∀ u ∈ X.

Therefore, T4 ∈ ∂(Λ2 ◦H)(x̄,Λ2(z̄)).
Since T2 = 0, T3 = ⟨x∗

3, ·⟩c0, by (4.14), we have

0 = T1 + T4 + ⟨x∗
3, ·⟩c0

∈ ∂F (x̄, ȳ) + ∂(Λ2 ◦H)(x̄,Λ2(z̄)) ∩ L+Nc(Ω, x̄)int(C).
(4.22)

Letting z∗ := z∗2 , Λ := Λ2, then (i) holds. (ii)-(iv) follow from (4.18), (4.19) and (4.22).

Corollary 4.5. Suppose that x̄ ∈ Dom(F ) ∩ Ω, ȳ ∈ F (x̄), F is locally Lipschitz at x̄ and
F (x̄) has upper bound. If (x̄, ȳ) is a weak minimizer of optimization problem (SOP2), then

0 ∈ ∂F (x̄, ȳ) +Nc(Ω, x̄)int(C).
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Proof. In Theorem 4.4, we define Z = Y , K = Y , H(x) = 0, z̄ = 0. It is easy to see that all
conditions of Theorem 4.4 are satisfied. By (4.22), it suffices to show that T4 = 0. Since

T4 = ⟨x∗
4, ·⟩c0 ∈ ∂(Λ2 ◦H)(x̄,Λ2(z̄)) = ∂(0)(x̄, 0),

we have
−⟨x∗

4, u⟩c0 /∈ −int(C), ∀ u ∈ X.

The above inequality implies that x∗
4 = 0, and so T4 = 0.

Theorem 4.6. Let F be a C-convex set-valued mapping, Ω be a closed convex set, x̄ ∈ D,
ȳ ∈ F (x̄) and z̄ ∈ H(x̄) ∩ (−K). If there exists Λ ∈ B(Z, Y ) such that

(i) Λ(K) ⊂ C;

(ii) Λ(z̄) = 0;

(iii) 0 ∈ ∂F (x̄, ȳ) + ∂(Λ ◦H)(x̄,Λ(z̄)) ∩ L+Nc(Ω, x̄)int(C),

then (x̄, ȳ) is a weak minimizer of problem (SOP1).

Proof. Suppose that there exists Λ ∈ B(Z, Y ) such that (i), (ii) and (iii) hold. It suffices to
show that (x̄, ȳ) is a weak minimizer of (SOP1). Suppose to the contrary that there exist
x̃ ∈ Ω with H(x̃) ∩ (−K) ̸= ∅ and ỹ ∈ F (x̃) such that ỹ − ȳ ∈ −int(C). By (iii), there
exist T1 ∈ ∂F (x̄, ȳ), T2 ∈ ∂(Λ ◦ H)(x̄,Λ(z̄)) ∩ L, x∗

1 ∈ Nc(Ω, x̄) and c1 ∈ int(C) such that
0 = T1 + T2 + ⟨x∗

1, ·⟩c1. Since x∗
1 ∈ Nc(Ω, x̄), we have ⟨x∗

1, x̃− x̄⟩ ≤ 0, and so

⟨x∗
1, x̃− x̄⟩c1 ∈ −C.

Since H is a K-convex set-valued mapping, by (i), Λ ◦H is a C-convex set-valued mapping.
By Proposition 3.2 and condition (ii), we have T2 ∈ ∂(Λ ◦H)(x̄,Λ(z̄)) = ∂y-w(Λ ◦H)(x̄, 0),
and so

(Λ(H(x̃))− T2(x̃− x̄)) ∩ (−int(C)) = ∅. (4.23)

Take z̃ ∈ H(x̃)∩ (−K). By (i), there exists c̃ ∈ C such that Λ(z̃) = −c̃. Since T2 ∈ L, there
exist x∗

2 ∈ X∗ and c2 ∈ int(C) such that T2 = ⟨x∗
2, ·⟩c2. Replacing H(x̃) by z̃ in (4.23), we

obtain
−c̃− ⟨x∗

2, x̃− x̄⟩c2 /∈ −int(C).

Since c̃ ∈ C and c2 ∈ int(C) , the above relation implies that ⟨x∗
2, x̃− x̄⟩ ≤ 0. Therefore,

ỹ − ȳ − T1(x̃− x̄) ∈ −int(C) + T2(x̃− x̄) + ⟨x∗
1, x̃− x̄⟩c1

⊂ −int(C) + ⟨x∗
2, x̃− x̄⟩c2 + ⟨x∗

1, x̃− x̄⟩c1
⊂ −int(C)− C − C ⊂ −int(C).

(4.24)

On the other hand, since T1 ∈ ∂F (x̄, ȳ) = ∂y-wF (x̄, ȳ), we have

(F (x̃)− ȳ − T1(x̃− x̄)) ∩ (−int(C)) = ∅.

Since ỹ − ȳ ∈ F (x̃)− ȳ, we have

ỹ − ȳ − T1(x̃− x̄) /∈ −int(C),

which contradicts (4.24). Therefore, (x̄, ȳ) is a weak minimizer of (SOP1).
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Corollary 4.7. Let F be a C-convex set-valued mapping, Ω be a closed convex set, x̄ ∈
Dom(F ) ∩ Ω and ȳ ∈ F (x̄). If

0 ∈ ∂F (x̄, ȳ) +Nc(Ω, x̄)int(C), (4.25)

then (x̄, ȳ) is a weak minimizer of optimization problem (SOP2).

Proof. In Theorem 4.6, we define Z = Y , K = {0}, z̄ = 0, H(x) = 0 and Λ = 0. Then
(4.25) holds by Theorem 4.6.

Remark 4.8. In [9, Corollary 5.1], Li and Guo proved the following result. Let Ω = X and
x̄ ∈ D. If 0 ∈ int(H(X)), F ◦ H−1 is C-convex, then for every ȳ ∈ F (x̄), (x̄, ȳ) is a weak
minimizer of optimization problem (SOP1) if and only if there exists Λ ∈ B(Z, Y ) such that
Λ(K) ⊂ C, Λ ◦ (H(x̄) ∩ (−K)) = 0, and 0 ∈ ∂c-w(F + Λ ◦ (H(·) ∩ (−K)))(x̄).

In [18, Theorem 4.1], Taa proved the following result. If F is C-convex, H is K-convex,

inf{φe(y) : y ∈ F (x) + C} > −∞, ∀ x ∈ Dom(F ),

and R+(H(Dom(F ) ∩ Ω ∩ Dom(H)) +K) is a closed vector subspace of Z, then (x̄, ȳ) is a
weak minimizer of optimization problem (SOP1) if and only if for any z̄ ∈ H(x̄) ∩ (−K),
there exists Λ ∈ B(Z, Y ) such that Λ(K) ⊂ C, Λ(z̄) = 0, and 0 ∈ ∂y-w(F+δΩ+Λ◦H)(x̄, ȳ),
where φe(y) = inf{t ∈ R : y ∈ te− Y } for a given element e ∈ intC.

Now, we summarizes the differences between our results and the results mentioned above.
(i) Let us recall the classic Lagrange multiplier rule for convex optimization problems.

Let f, h : X → R ∪ {+∞} be two proper convex functions, Ω be a closed convex subset of
X. Consider the following convex optimization problem:

(SOP3)

{
min f(x),
s.t. h(x) ≤ 0, x ∈ Ω.

Suppose that D = {x ∈ X : x ∈ Ω, x ∈ dom(f), h(x) ≤ 0} ̸= ∅ and x̄ ∈ D. Consider the
following statements:

(a) x̄ is a solution of (SOP3);

(b) there exists µ ≥ 0 such that 0 ∈ ∂f(x̄) + µ∂h(x̄) +Nc(Ω, x̄).

It follows from [14] that (b)⇒(a). Moreover, if h(x̄) < 0, then (a) and (b) are equivalent.
Our Lagrange multiplier rule is expressed by the subdifferential of all set-valued mappings in
(SOP1), that is, 0 ∈ ∂F (x̄, ȳ) + ∂(Λ ◦H)(x̄,Λ(z̄)) ∩ L+Nc(Ω, x̄)int(C), which is consistent
with the form of the classical Lagrange multiplier rule for (SOP3) and different from [9,
Corollary 5.1] and [18, Theorem 4.1].

(ii) Theorem 4.4 and Corollary 4.5 do not require cone-convexity of F . Hence they can be
applied to some nonconvex optimization problems. See the following example. In Theorem
4.4, let X = Y = R, C = K = [0,+∞), Ω = [−π, 0], and F,H : R ⇒ R be defined as

F (x) =
[
x2| sinx|, x2| sinx|+ 1

]
, ∀ x ∈ R,

H(x) = [x, x+ 1], ∀ x ∈ R.

Clearly, F is not a C-convex set-valued mapping since

1

2
F (0) +

1

2
F (−π) = [0, 1] * F

(1
2
0 +

1

2
(−π)

)
+ C =

[π2

4
,+∞

)
.
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Therefore, [18, Theorem 4.1] can not be applied to optimization problem (SOP1). Similarly,
F ◦H−1 is not a C-convex set-valued mapping since

1

2
(F ◦H−1)(0) +

1

2
(F ◦H−1)(−π) =

[
0,

1

2
sin 1 +

1

2
(π + 1)2 sin 1 + 1

]
* (F ◦H−1)

(1
2
0 +

1

2
(−π)

)
+ C =

[π2

4
,+∞

)
.

Therefore, [9, Corollary 5.1] can not be applied to optimization problem (SOP1). Take
x̄ = ȳ = z̄ = 0. Now, we verify that all conditions of Theorem 4.4 are satisfied. Clearly,
(x̄, ȳ) is a weak minimizer of (SOP1). Since

F (x1) ⊂ F (x2) + 3|x1 − x2|BX , ∀ x1, x2 ∈ [−1, 1],

H(x1) ⊂ H(x2) + |x1 − x2|BX , ∀ x1, x2 ∈ R,

F and H are locally Lipschitz at x̄. F (x̄), H(x̄) have upper bound 1. By Example 4.3, the
assumption (A) is satisfied. It is easy to calculate that

DcH(x̄, z̄)(u) = DcH(0, 0)(u) = [u,+∞), ∀ u ∈ R,

Tc(−K, z̄)−DcH(x̄, z̄)(Tc(Ω, x̄)) = (−∞,+∞).

All conditions of Theorem 4.4 are fulfilled.
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