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problem. By transforming the semivectorial bilevel optimization problem into a mathemat-
ical programming with equilibrium constraint, she gave a necessary optimality condition.
Some algorithms have been proposed to solve this semivectoral bilevel optimization prob-
lem [3,26,36].

As we know that, it is needed to consider a bilevel optimization problem whose both
levels are multiobjective optimization problem, in transportation planning, management
problems, supply chain problem, cloud market and so on. This can be see in [21, 30, 35].
This problem is named bilevel multiobjective optimization problem (BMOP) and different
from the bilevel problem with upper-level multiobjective problem proposed in [34] by Ye.

In this paper we consider an optimistic BMOP described as follows. Let ≼Rl
+

be a

partial order for vectors in Rl, and ≼intRr
+
be a partial order for vectors in Rr, which are

induced by Rl+ and intRr+ respectively (See Section 2.2). We consider the following bilevel
multiobjective optimization problem.

(BMOP ) min
x,y

F (x, y) (1.1)

s.t. G(x) ≤ 0,
H(x) = 0,

y ∈ ψwe(x),
(1.2)

where x ∈ Rn and y ∈ Rm denote the upper level and the lower level decision variables
respectively. G : Rn → Rp1 and H : Rn → Rp2 denote the upper level constraint function.
F : Rn × Rm → Rl is the upper level objective function. The term “min” here is used
to symbolize that the upper level decision maker (leader) intends to minimize his objective
function F with respective to the variable x while taking into account the reaction y of the
lower level decision maker (follower). ψwe(x) is the weakly efficient optimal solutions set of
the following parametric multiobjective optimization problem

min
y

f(x, y) (1.3)

s.t. g(x, y) ≤ 0, (1.4)

where g : Rn × Rm → Rq is the lower level constraint function, f : Rn × Rm → Rr is the
lower level objective function. For simplicity, let

X := {x ∈ Rn : G(x) ≤ 0,H(x) = 0},

denotes the upper level constraint set. The lower level constraint set w.r.t. x is given by

K(x) := {y ∈ Rm : g(x, y) ≤ 0},

here K : Rn ⇒ Rm is a set-valued mapping. For x̄ ∈ X, a point ȳ ∈ ψwe(x̄) if (See Section
2.2)

f(x̄, ȳ)− f(x̄, y) ̸∈ intRr+, ∀y ∈ K(x).

This model can be suitably applied in cloud market pricing. The cloud computing
market pricing has evolved into a highly complex economic system made up of a variety of
services, which are typically classified into three categories [4]: Infrastructure-as-a-Service
(IaaS); Platform-as-a-Service (PaaS); Software-as-a-Service (SaaS). But the end user may
deal directly with SaaS. Both end-users and SaaS wish their multi-criteria attain to optimum.
Most of the time end-users and SaaS are noncooperative. If SaaS are able to influence
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the end-users’ choice, then the price-equilibrium of end-user and SaaS can be modeled by
BMOP. The same in principal-agent problem, of which bath principal and agent may wish
their multi-criteria attain to the optimum. It also can be modeled by BMOP, if principal
and agent are noncooperative, and principal is able to influence the agent’s choice.

In the decade years, many algorithms ware proposed to solve this problem. Dempe
and Franke [15] proposed a k-th best algorithm for a class of BMOP whose both levels are
liner multiobjective optimization problem. Zheng, Wan and Wang [37] proposed a fuzzy
interactive method to solve it in this linear case also. Alves and Costa [2] proposed a
particle swarm algorithm to solve BMOP, same other evolutionary algorithms can been see
in [11,12,39].

To the best of our knowledge, there are few results on the optimality conditions for the
bilevel multiobjective optimization problem. Since optimality conditions are essential to
the design of algorithm and the convergence analysis, thus in this paper, we will discuss
the optimality conditions for BMOP. In order to get the optimality conditions for BMOP,
we firstly need to construct an auxiliary semivectorial bilevel programming problem by
transforming the lower level multiobjective programming problem into a scalar optimization
problem. Then we transform the auxiliary semivectorial bilevel programming problem into
two kinds of different multiobjective optimization problems by KKT approach and optimal
value function approach respectively. Finally, we obtain two necessary optimality conditions
via the two kinds of different multiobjective optimization problems.

The rest of this paper is organized as follows. In section 2, we recall some important
results about variational analysis and multiobjective optimization. In section 3, we firstly
transform the lower level multiobjective optimization problem into a scalar optimization
problem by weighted method, so the bilevel multiobjective optimization problem turn into
an auxiliary semivectorial bilevel programming problem whose upper level is a multiob-
jective optimization problem, and lower level is a scalar optimization problem. Then, we
discuss the relationship between BMOP and the auxiliary semivectorial bilevel programming
problem. In section 4, we replace the lower level scalar optimization problem of the aux-
iliary semivectorial bilevel programming problems by its KKT conditions, so the auxiliary
semivectorial bilevel programming problem is transformed into a multiobjective optimiza-
tion problem with equilibrium constraints. Then we give a necessary conditions for the
existence of efficient solution for BMOP via this multiobjective optimization problem with
equilibrium constraints. In section 5, we consider the optimal value function of the lower
level scalar optimization problem of auxiliary bilevel optimization problem as a penaliza-
tion, therefore the auxiliary semivectorial bilevel programming problem is transformed into
a multiobjective optimization problem with a feasible region which satisfy MFCQ. Then the
necessary conditions for the existence of efficient solution is considered via a direct approach.

2 Preliminaries

In this section, we mainly recall some basic definitions and results about variational analysis
and multiobjective optimization problem, which play an important role in getting our main
results.

2.1 Variational analysis

Definition 2.1 ([29]). Let Ω be a nonempty subset of a finite dimensional space Z, given
z ∈ Ω, the convex cone

Nπ(z; Ω) := {ξ ∈ Z : ∃σ ≥ 0, such that ⟨ξ, z′ − z⟩ ≤ σ ∥ z′ − z ∥2 ∀z′ ∈ Ω},
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is called the proximal normal cone to set Ω at point z. The cone

N̂(z; Ω) = {ξ : ⟨ξ, z′ − z⟩ ≤ o(∥z′ − z∥) ∀z′ ∈ Ω},

is called regularity normal cone. The cone

N(z; Ω) = {ξ : ∃ξk → ξ, zk → z(zk ∈ Ω) : ξk ∈ N̂(zk; Ω)},

is called the limiting (Mordukhovich) normal cone to Ω at point z.

Definition 2.2 ([27, 29]). Given a point z̄, lim supz→z̄ Ξ(z) is said to be the Kuratowski-
Painlevée outer upper limit of a set-valued mapping Ξ : Rn ⇒ Rm at z̄, if

lim sup
z→z̄

Ξ(z) := {v ∈ Rm : ∃zk → z̄, vk → v̄ with vk ∈ Ξ(zk) as k → ∞}.

Its graph gphΞ is denoted as follow:

gphΞ := {(u, v) ∈ Rn ×Rm : v ∈ Ξ(u)}.

The coderivative of Ξ at (ū, v̄) ∈ ghpΞ is a positively homogeneous mapping D∗Ξ(ū, v̄) :
Rm ⇒ Rn which is defined as follows:

D∗Ξ(ū, v̄)(v∗) := {u∗ ∈ Rn|(u∗, v∗) ∈ N((ū, v̄), gphΞ)}, for v∗ ∈ Rm.

Definition 2.3 ([27, 29]). For an extended real-valued function ψ : Rn → R̄, ∂̂ψ(z̄) is said
to be the Fréchet subdifferential of ψ at a point z̄ of it’s domain, if

∂̂ψ(z̄) =

{
v ∈ Rn : lim inf

z→z̄

ψ(z)− ψ(z̄)− ⟨v, z − z̄⟩
∥z − z̄∥

≥ 0

}
,

given a point z̄, ∂ψ(z̄) is said to be the basic/Mordukovich subdifferential of ψ at z̄, if

∂ψ(z̄) = lim sup
z→z̄

∂̂ψ(z).

If ψ is convex, ψ(z̄) ̸= ∅, then ∂ψ(z̄) reduce to the subdifferential in the sense of convex
analysis:

∂ψ(z̄) = {v ∈ Rn : ψ(z)− ψ(z̄) ≥ ⟨v, z − z̄⟩, ∀z ∈ Rn},

the two subdifferentials coincide in this case.
∂ψ(z̄) is nonempty and compact when ψ is local Lipschitz continuous, its convex hull is

the Clarke subdifferential ∂̄ψ(z̄):

∂̄ψ(z̄) = co∂ψ(z̄).

here,”co” stands for the convex hull of the set in question. Via this link between the basic and
Clarke subdifferential, we have the following convex hull property which plays a important
role in this paper:

co∂(−ψ)(z̄) = −co∂ψ(z̄). (2.1)
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Definition 2.4 ([29, 32]). Let Z, W be two finite dimensional spaces, S : Z ⇒ W be a
set-valued mapping, and (r, s) ∈ gphS. Then

N+(z;S(r)) := { lim
k→∞

ξk ∈ Nπ(zk;S(rk)), zk ∈ S(rk), zk → z, rk → r},

is the extended normal cone to S(r) at z. The mapping S is normally semicontinuous at
(r, s) if

N+(z;S(r)) = N(z;S(r)).

For a lower semicontinuous function ψ : Rn → R̄, the Mordukhvich subdifferential of ψ
is defined by:

∂ψ(z̄) := {z′ ∈ Rn : (z′,−1) ∈ N((z̄, ψ(z̄)); epiψ)},

here, epiψ is the epigraph of ψ. If ψ is continuous differentiable, then ∂ψ(z̄) = {∇∂(z̄)}.
Let NΩ denotes the set-valued mapping x 7→ N(x; Ω). The coderivative D∗NΩ(x̄, ȳ)(v

∗)
satisfied the following equation.

ξ ∈ D∗NΩ(x̄, ȳ)(v
∗) ⇔ (ξ,−v∗) ∈ N((x̄, ȳ); gphNΩ).

Proposition 2.5 ([29]). Let X ⊂ Rn and D ⊂ Rm be two closed sets, F : Rn → Rm be
a continuously differentiable mapping. Here F (x) = (f1(x), · · · , fm(x)). Let C = {x ∈ X :
F (x) ∈ D}, at any x̄ ∈ C one has

N̂(x̄;C) ⊃ {
m∑
i=1

yi∇fi(x̄) + z : y ∈ N̂(F (x̄);D), z ∈ N̂(x̄;X)},

where y = (y1, y2, · · · , ym). On the other hand, one has

N(x̄;C) ⊂ {
m∑
i=1

yi∇fi(x̄) + z : y ∈ N(F (x̄);D), z ∈ N(x̄;X)},

at any x̄ satisfying the constraint qualification that, the only vector y ∈ N(F (x̄);D) for
which

−
m∑
i=1

yi∇fi(x̄) ∈ N(x̄;X),

is y = (0, · · · , 0).

2.2 Multiobjective optimization

Definition 2.6 ([20,24]). Let M be a finite dimensional Banach space K ⊆M be a closed
convex cone with nonempty interior. K is said to be pointed convex cone if K ∩−K = {0}.
We say the partial order relation for two vector x, y ∈ W is defined by x ≼K y if and only
if y − x ∈ K and x ̸= y.

Remark 2.7. In this paper the term “ ≼K ” stands for the partial order induced by K.

Definition 2.8 ([34]). Let l(r) := {t ∈ W : t ≼K r} denotes the level set at r ∈ W with
respect to the given partial order ≼K , B(δ, r) with radius δ > 0 sufficiently small denotes
the neighborhood of r. We say that a partial order ≼K is closed around r̄ ∈ W provided
that:

(i) for any r ∈ W , there exist a δ > 0, such that r ∈ l(r), for all r ∈ B(δ, r̄), here l(r)
denotes the closure of the level set l(r);

(ii) for any r ≼K s, t ∈ l(r) implies that t ≼K s.
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Definition 2.9 ([32]). We say that a partial order ≼K is regular at r̄ ∈W , provided that
(i) for any r ∈W , r ∈ l(r);
(ii) for any r ≼K s, t ∈ l(r) implies that t ≼K s;
(iii) for any sequences rk, θk → r̄ in W ,

{ lim
k→∞

v∗k : v∗k ∈ N(θk; l(rk))} ⊂ N(r̄; l(r̄)).

Proposition 2.10. If a partial order ≼K is induced by Rn+, then it is a closed and regular
partial order.

Proof. Combing Definition 2.8 and Definition 2.9 it is easy to get the result.

Proposition 2.11. If W = Rn and the partial order ≼ is induced by Rn+, then the following
equality hold:

N+(r
∗; l(r∗)) = N(r∗; l(r∗)).

Proof. Combing Definition 2.8 and Proposition 2.10, we see that ≼Rn
+
is closed and regular.

By Example 3.8 in [38], we can get the results easily.

Let M be a finite dimensional Banach space, K ⊆M be a closed convex point cone with
nonempty interior, ≼K be a partial order for vectors in M . Considering the the following
multiobjective optimization problem with abstract constraint (See Chapter 4 in [23])

min
z
f(z) s.t. z ∈ Z (2.2)

where f : Rn →M is a vector-valued function and Z is a nonempty feasible set.

Definition 2.12 ([25]). The point z∗ ∈ Z is said to be an efficient (resp. weakly efficient)
solution of problem (2.2) if there is no other feasible point z ∈ Z such that f(z) ≼K f(z∗)
(resp. f(z) ≼intK f(z∗)).

Definition 2.13 ([25]). The point z∗ ∈ Z is said to be an local efficient (resp. weakly
efficient) solution of problem (2.2) if there exists a neighborhood B(δ, z∗) of z∗ with radius
δ > 0 sufficiently small such that there is no other feasible point z ∈ Z ∩ B such that
f(z) ≼K f(z∗) (resp. f(z) ≼intK f(z∗)).

Definition 2.14. [25] We said a vector-valued function f : Rn → Rm is called K-convex
with respect to a partial order ≼K induced by a closed convex pointed cone K, if we have

f(λz1 + (1− λ)z2) ≼K λf(z1) + (1− λ)f(z2), ∀z1, z2 ∈ Rn,∀λ ∈ (0, 1).

Next we will define the efficient (local efficient) solution of BMOP (1.1)-(1.2) the same
as Definition 2.12 and Definition 2.13. Let

Υ := {(x, y) : x ∈ Rn, y ∈ Rm, G(x) ≤ 0,H(x) = 0, y ∈ ψwe(x)}

be the feasible set of bilevel level multiobjective optimization problem.

Definition 2.15. The vector (x∗, y∗) ∈ Υ is said to be an efficient solution of BMOP
(1.1)-(1.2), if there is no other vector (x, y) ∈ Υ such that F (x, y) ≼Rl

+
F (x∗, y∗).

Definition 2.16. The vector (x∗, y∗) ∈ Z is said to be an local efficient solution of problem
BMOP (1.1)-(1.2), if there exists a neighborhood B(δ, (x∗, y∗)) of (x∗, y∗) with radius δ > 0
sufficiently small such that there is no vector (x, y) ∈ Υ∩B such that F (x, y) ≼Rl

+
F (x∗, y∗).
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Remark 2.17. We pointed out that even though the lower level problem is solved weakly,
the solution of the BMOP (1.1)-(1.2) is said to be efficient.

Consider the multiobjective optimization problem with equilibrium constraints (MOPEC)
defined as follows:

(MOPEC) min
z
F (z) (2.3)

s.t. g(z) ≤ 0, h(z) = 0,
G(z) ≥ 0, H(z) ≥ 0, G(z)⊤H(z) = 0,

(2.4)

here, M is a finite dimensional Banach space, K ∈ M is a closed convex point cone with
nonempty interior. ≼K is a partial order for vectors in M . F : Rn → M , g : Rn → Rp,
h : Rn → Rq, G : Rn → Rm, H : Rn → Rm. We assume that F is Lipschitz continuous
near z∗ and all of other functions are continuously differentiable. Let C = {z ∈ Rn :
g(z) ≤ 0, h(z) = 0, G(z) ≥ 0,H(z) ≥ 0, G(z)TH(z) = 0}. Then, MOPEC (2.3)-(2.4) can be
described as the following multiobjective optimization problem with abstract constraint:

(MOP ) min
z
F (z) (2.5)

s.t. z ∈ C. (2.6)

Proposition 2.18 ([32]). Let z∗ be a local solution of the multiobjective optimization problem
(2.5)-(2.6). Supposed that F is Lipschitz continuous at a neighborhood B(δ, z∗) with radius
δ > 0 sufficiently small of z∗ and the partial order ≼K is regular at F (z∗). Then there exists
a unit vector λ ∈ N+(F (z

∗), l(F (z∗))), and ρ0 ∈ {0, 1} such that

0 ∈ ρ0∂⟨λ, F ⟩(z∗) +N(z∗;C). (2.7)

If C = {z ∈ Rn : g(z) ≤ 0, h(z) = 0} condition (2.7) also holds. In this papaer unit vector
λ means ∥λ∥ = 1

In the next section we will translate the BMOP (1.1)-(1.2) into an auxiliary semivector
bilevel programming problem (3.4)-(3.5), and consider the relationship between the two
bilevel programming problems.

3 The transformation of BMOP

In this section, we will discuss the reformulation of BMOP (1.1)-(1.2). Firstly, we transform
the lower level parametric multiobjective optimization problem (1.3)-(1.4) into a parametric
scalar optimization problem by using scalar technique.

min
y
f̄(x, y, z) := ⟨z, f(x, y)⟩ (3.1)

s.t. y ∈ K(x), (3.2)

where K(x) was defined in Section 1, and the parameter z is a nonnegative vector of the
unit space:

z ∈ Z := {z ∈ Rr : z ≥ 0, z⊤er = 1}, (3.3)

here er means a r dimensional vector with ith component equal to 1.
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Since it is very difficult to find the best y(x) on the Pareto front for a given upper level
strategy x, we consider the set Z in (3.3) as a constraint set for the upper-level problem,
the same as [16]. Let φ : X × Z → R denotes the optimal valued function of optimization
problem (3.1)-(3.2):

φ(x, z) := min
y

{⟨z, f(x, y)⟩ : y ∈ K(x)},

and ψ : X × Z ⇒ Y denotes the solution set mapping of this problem:

ψ(x, z) := {y ∈ K(x) : ⟨z, f(x, y)⟩ ≤ φ(x, z)}.

In order to built a bridge between the solution set of the parametric multiobjective
optimization problem and the solution set of its parametric scalar optimization problem, we
give the following theorem.

Theorem 3.1 ([16]). Assume that the functions y 7→ g(x, y) and y 7→ f(x, y) are Rq+-convex
and Rr+-convex, respectively. Then, we have

ψwe(x) = ψ(x,Z) :=
∪

{ψ(x, z) : z ∈ Z}.

According to the above analysis, the bilevel multiobjective programming problem (1.1)-
(1.2) can be transformed into the following auxiliary semivectorial bilevel programming
problem:

min
x,y,z

F (x, y) (3.4)

s.t. x ∈ X, z ∈ Z, y ∈ ψ(x, z). (3.5)

Next, we will discuss the relationship between auxiliary semivectorial bilevel program-
ming problem (3.4)-(3.5) and BMOP (1.1)-(1.2). In order to show it more clearly, we defined
another set-valued mapping Γ : X × Y ⇒ Rr as follows:

Γ(x, y) := {z ∈ Z : y ∈ ψ(x, z)}.

Before showing the main theorem of this section, we need to firstly prove the following
lemma which plays an important role in the main theorem.

Lemma 3.2. Let f be a continuous function, K(x) be a lower semicontinuous and closed
mapping at x̄. Then φ is upper semicontinuous at (x̄, z) where z ∈ Z, and ψ is closed at
(x̄, z).

Proof. Since f is a continuous function, it follows that, for any z ∈ Z, f̄(x, y, z) = ⟨z, f(x, y)⟩
is also a continuous function. According to Theorem 4.2.1 and Theorem 4.2.2 in [5] we can
get the results easily.

Theorem 3.3. (i) Let (x̄, ȳ) be a local efficient solution ( efficient solution) of BMOP
(1.1)-(1.2). Assume that the functions y 7→ g(x, y) and y 7→ f(x, y) are Rq+-convex
and Rr+-convex, respectively. Then for any z̄ ∈ Γ(x, y), the point (x̄, ȳ, z̄) is a lo-
cal efficient solution (efficient solution) of auxiliary semivectorial bilevel programming
problem (3.4)-(3.5).

(ii) Let (x̄, ȳ, z̄) be an efficient solution of auxiliary semivectorial bilevel programming prob-
lem (3.4)-(3.5). Assume that the functions y 7→ g(x, y) and y 7→ f(x, y) are Rq+-convex
and Rr+-convex, respectively. Then (x̄, ȳ) is an efficient solution of BMOP (1.1)-(1.2).
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(iii) Let (x̄, ȳ, z) be a local efficient solution of auxiliary semivectorial bilevel programming
problem (3.4)-(3.5) for all z ∈ Γ(x̄, ȳ). Assume that the functions y 7→ g(x, y) and y 7→
f(x, y) are Rq+-convex and Rr+-convex, respectively. If K(x) is lower semicontinuous
and closed mapping at x̄, then (x̄, ȳ) is a local efficient solution of BMOP (1.1)-(1.2).

Proof. (i) We only need to prove the case of local efficient solution, and the case of efficient
solution can be got by choosing δ = ∞.

Supposed that (x̄, ȳ) is a local efficient solution of BMOP (1.1)-(1.2), then we can find a
δ > 0, and there is no vector (x, y) ∈ B(δ, (x̄, ȳ)) feasible to BMOP (1.1)-(1.2), such that

F (x, y) ≼Rl
+
F (x̄, ȳ).

On the contrary, supposed that there exists a z̄ ∈ Γ(x̄, ȳ) such that (x̄, ȳ, z̄) is not a local
efficient solution of auxiliary semivectorial bilevel programming problem (3.4)-(3.5), then for
δ, there exists at least one vector (x∗, y∗, z∗) ∈ B(δ, (x̄, ȳ, z̄)) feasible to auxiliary semivecto-
rial bilevel programming problem (3.4)-(3.5), such that F (x∗, y∗) ≼Rl

+
F (x̄, ȳ). Combining

Theorem 3.1 and y∗ ∈ ψ(x∗, z∗), we can get that y∗ ∈ ψwe(x
∗). This contradicts the fact

that (x̄, ȳ) is a local efficient solution of BMOP (1.1)-(1.2).
(ii) Let (x̄, ȳ, z̄) be a global efficient solution of auxiliary semivectorial bilevel program-

ming problem (3.4)-(3.5). On the contrary, supposed that (x̄, ȳ) is not an efficient solution
of BMOP (1.1)-(1.2), then we can find at least one vector (x, y) ∈ X ×Y which is a feasible
vector of BMOP (1.1)-(1.2), such that

F (x, y) ≼Rl
+
F (x̄, ȳ).

Combining y ∈ ψwe(x) and Theorem 3.1 we can derive that, there exist a z ∈ Z such that
(x, y, z) is a feasible vector of auxiliary semivectorial bilevel programming problem (3.4)-
(3.5). This contradicts the fact that (x̄, ȳ, z̄) is an efficient solution problem (3.4)-(3.5).

(iii) Let (x̄, ȳ, z̄) be a local efficient solution of auxiliary semivectorial bilevel programming
problem (3.4)-(3.5), then there exist a δ > 0, and there is no vector (x, y, z) ∈ B(δ, (x̄, ȳ, z̄))
feasible to problem (3.4)-(3.5), such that

F (x, y) ≼Rl
+
F (x̄, ȳ).

On the contrary, supposed that (x̄, ȳ) is not a local efficient solution of BMOP (1.1)-(1.2),
then we can find xk ∈ X, xk → x̄, yk ∈ Y , yk → ȳ such that (xk, yk) is a feasible vector of
BMOP (1.1)-(1.2) and

F (xk, yk) ≼Rl
+
F (x̄, ȳ).

According to Theorem 3.1 we can see that there exist zk ∈ Z such that all {(xk, yk, zk)} are
feasible vectors of problem (3.4)-(3.5) for every k. Since Z is a compact set, there exists a
subsequence {zkv} of {zk} such that zkv → z̄, z̄ ∈ Z. Combining the lower semicontinuous
and closed property of K(x) and Lemma 3.2 we can derived that ψ is closed at (x̄, z̄). Duo
to the closed property of ψ at (x̄, z̄), we have ȳ ∈ ψ(x̄, z̄), so, (x̄, ȳ, z̄) is a feasible vector of
auxiliary semivectorial bilevel programming problem (3.4)-(3.5), but it is not a local efficient
solution. This is a contradiction.

4 Necessary condition via KKT approach

In this part, we will firstly transform auxiliary semivectorial bilevel programming problem
(3.4)-(3.5) into a single level multiobjective problem by using KKT approach. Then we will
consider the necessary condition of the existence of efficient solution.
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As we know that the KKT conditions of nonlinear programming are not always necessary
and sufficient (See Chapter 3 in [7] ), therefore we give the following definition. It can be
used to guarantee that the bilevel programming problem which the lower level is a convex
optimization problem is equal to its transformation problem, this can be see in [14].

Definition 4.1 ([29]). We say thatK(x) is satisfied Slater’s constraint qualification (Slater’s
CQ) if x ∈ Rn there exists ȳ(x) ∈ Rm such that gi(x, ȳ(x)) < 0, i = 1, 2, · · · , q.

Since the KKT conditions of problem (3.1)-(3.2) are taken as follows:

z⊤∇yf(x, y) + µ⊤∇yg(x, y) = 0, µ ≥ 0, ⟨g(x, y), µ⟩ = 0.

Therefore, auxiliary semivectorial bilevel programming problem (3.4)-(3.5) can be changed
into the following single level multiobjective optimization problem with equilibrium con-
straint (4.1):

min
x,y,z,µ

F (x, y) (4.1)

s.t. G(x) ≤ 0, H(x) = 0,
−z ≤ 0, z⊤er = 1,
z⊤∇yf(x, y) + µ⊤∇yg(x, y) = 0,
µ ≥ 0, ⟨g(x, y), µ⟩ = 0,
g(x, y) ≤ 0.

Next we will consider the relationship between auxiliary semivectorial bilevel program-
ming problem (3.4)-(3.5) and multiobjective optimization problem (4.1).

Theorem 4.2. (i) Let (x̄, ȳ, z̄) be a local efficient solution (efficient solution) of auxiliary
semivectorial bilevel programming problem (3.4)-(3.5). Supposed that the functions
y 7→ g(x, y) and y 7→ f(x, y) are Rq+-convex continuously differentiable, and Rr+-convex
continuously differentiable respectively. Also supposed that Slater‘s CQ is satisfied for
the lower level parametric problem at x̄. Then for each

µ̄ ∈ Λ(x̄, ȳ, z̄) := {µ ≥ 0 : z̄⊤∇yf(x̄, ȳ) + µ⊤∇yg(x̄, ȳ) = 0, µ ≥ 0, ⟨g(x̄, ȳ), µ⟩ = 0}

the point (x̄, ȳ, z̄, µ̄) is a local efficient solution (efficient solution) of single level mul-
tiobjective optimization problem (4.1).

(ii) Let (x̄, ȳ, z̄, µ̄) be an efficient solution of multiobjective optimization problem (4.1).
Supposed that the functions y 7→ g(x, y) and y 7→ f(x, y) are Rq+-convex continuously
differentiable, and Rr+-convex continuously differentiable respectively. Also assumed
that Slater’s CQ is satisfied for the lower level parametric problem for all x ∈ X.
Then (x̄, ȳ, z̄) is an efficient solution of auxiliary semivectorial bilevel programming
problem (3.4)-(3.5).

(iii) Let (x̄, ȳ, z̄, µ̄) be a local efficient solution of multiobjective optimization problem (4.1)
for all µ̄ ∈ Λ(x̄, ȳ, z̄). Supposed that the functions y 7→ g(x, y) and y 7→ f(x, y)
are Rq+-convex continuously differentiable, and Rr+-convex continuously differentiable
respectively. Also assumed that Slater’s CQ is satisfied for the lower level parametric
problem at x̄. Then (x̄, ȳ, z̄) is a local efficient solution of auxiliary semivectorial bilevel
programming problem (3.4)-(3.5).
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Proof. For the proof of condition (i) and (ii). Since the function y 7→ f(x, y) is Rr+-convex,
it follows that f̄(x, y, z) = ⟨z, f(x, y)⟩ is convex function w.r.t y, for any z ∈ Z, x ∈ X. From
the Rq+-convexity of y 7→ g(x, y), we know that the lower level optimization problem (3.1)-
(3.2) is a convex parametric optimization problem which satisfied Slater’s CQ, so the KKT
conditions of the lower level parametric optimization problem are sufficient and necessary.
The remainder of the argument is analogous to that in proposition 3.1 [34], so we omit it
here.

For the proof of condition (iii). Generalizing Theorem 3.2 in [14] we can get condition
(iii) easily, so we also omit it here.

Remark 4.3. Since the Slater’s CQ is used to guarantee the existence of KKT conditions,
we can replace the Slater’s CQ in Theorem 4.2 by more weaker CQ such as Cottle constraint
qualification (definition see [10]). This also can see from (ii) of Remark 3.1 in [34].

Remark 4.4. The assumption of convexity of lower level problem is used to guarantee
the sufficient of KKT conditions, KKT point is also a globally optimal solution under this
assumption.

In the next of this section, we will discuss the necessary optimality condition of BMOP
(1.1)-(1.2). Before doing that we firstly need to get the necessary conditions of the existence
of efficient solution of multiobjective optimization problem with equilibrium constraint (4.1),
this can be used as a bridge.

Let (x̄, ȳ, z̄, µ̄) be a feasible point of multiobjective optimization problem (4.1). For
simplicity, we define the following index sets:

IG = IG(x̄, ȳ, z̄, µ̄) = {i : Gi(x̄) = 0},

Iz̄ = Iz(x̄, ȳ, z̄, µ̄) = {i : z̄i = 0},

I0+ = I0+(x̄, ȳ, z̄, µ̄) = {i : gi(x̄, ȳ) = 0, µ̄i > 0},

I+0 = I+0(x̄, ȳ, z̄, µ̄) = {i : gi(x̄, ȳ) < 0, µ̄i = 0},

I00 = I00(x̄, ȳ, z̄, µ̄) = {i : gi(x̄, ȳ) = 0, µ̄i = 0}.

We now give a necessary optimality conditions for multiobjective optimization problem
with equilibrium constraint (4.1)

Theorem 4.5. Let (x̄, ȳ, z̄, µ̄) be a local efficient solution of problem (4.1). Assume that F ,
G, H are continuously differentiable. Also assume that f , g are continuously differentiable
w.r.t x at a neighbourhood of (x̄, ȳ), and twice continuously differentiable w.r.t y at a neigh-
bourhood of (x̄, ȳ). Then there exist µ0 ∈ {0, 1}, ηkkt ∈ Rm, ηG ∈ Rp1 , ηH ∈ Rp2 , ηg ∈ Rq,
ηze ∈ R, ηz ∈ Rr not all zero and a unit vector λ ∈ N(F (x̄, ȳ, z̄, µ̄), l(F (x̄, ȳ, z̄, µ̄))) such
that

µ0λ
⊤∇xF (x̄, ȳ) +∇x(z̄

⊤∇yf + µ̄⊤∇yg)(x̄, ȳ)
⊤ηkkt +∇H(x̄)⊤ηH (4.2)

+∇G(x̄)⊤ηG +∇xg(x̄, ȳ)
⊤ηg = 0,

µ0λ
⊤∇yF (x̄, ȳ) +∇y(z̄

⊤∇yf + µ̄⊤∇yg)(x̄, ȳ)
⊤ηkkt +∇yg(x̄, ȳ)

⊤ηg = 0, (4.3)

ηzeer − ηz +∇yf(x̄, ȳ)
⊤ηkkt = 0, (4.4)
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ηgi = 0, ∀i ∈ I+0, (∇yg(x̄, ȳ)
⊤ηkkt)i = 0, ∀i ∈ I0+, (4.5)

ηGi ≥ 0, ∀i ∈ IG, ηGi = 0, ∀i ̸∈ IG, ηzi ≥ 0, ∀i ∈ Iz, ηzi = 0,∀i ̸∈ Iz, (4.6)

either ηgi > 0, (∇yg(x̄, ȳ)
⊤ηkkt)i > 0 or ηgi (∇yg(x̄, ȳ)

⊤ηkkt)i = 0, ∀i ∈ I00. (4.7)

Proof. Noting that problem (4.1) is a multiobjective optimization problem with equilibrium
constraint, it follows from Theorem 5.2 and Theorem 5.3 in [32] that, there exist µ0 ∈ {0, 1},
ηkkt ∈ Rm, ηG ∈ Rp1 , ηH ∈ Rp2 , ηg ∈ Rq, ηze ∈ R, ηz ∈ Rr, ηµ ∈ Rq not all zero and a
unit vector λ ∈ N(F (x̄, ȳ, z̄, µ̄), l(F (x̄, ȳ, z̄, µ̄))) such that

µ0λ
⊤∇x,y,z,µF (x̄, ȳ) +∇x,y,z,µ(z̄

⊤∇yf + µ̄⊤∇yg)(x̄, ȳ)
⊤ηkkt +∇x,y,z,µH(x̄)⊤ηH +

∇x,y,z,µG(x̄)
⊤ηG +∇x,y,z,µg(x̄, ȳ)

⊤ηg +∇x,y,z,µ(−z)⊤ηz +∇x,y,z,µ(−µ)⊤ηz = 0, (4.8)

ηGi ≥ 0, ∀i ∈ IG, ηGi = 0, ∀i ̸∈ IG,

ηzi ≥ 0, ∀i ∈ Iz, ηzi = 0, ∀i ̸∈ Iz,

(−ηµi , η
g
i ) ∈ N((µ̄, g(x̄, ȳ)); gphNRq

+
).

Further calculation of the partial derivatives we have

µ0λ
⊤∇xF (x̄, ȳ) +∇x(z̄

⊤∇yf + µ̄⊤∇yg)(x̄, ȳ)
⊤ηkkt (4.9)

+∇H(x̄)⊤ηH +∇G(x̄)⊤ηG +∇xg(x̄, ȳ)
⊤ηg = 0,

µ0λ
⊤∇yF (x̄, ȳ) +∇y(z̄

⊤∇yf + µ̄⊤∇yg)(x̄, ȳ)
⊤ηkkt +∇yg(x̄, ȳ)

⊤ηg = 0, (4.10)

ηzeer − ηz +∇yf(x̄, ȳ)
⊤ηkkt = 0, (4.11)

ηµ −∇yg(x̄, ȳ)
⊤ηkkt = 0, (4.12)

ηGi ≥ 0, ∀i ∈ IG, ηGi = 0, ∀i ̸∈ IG, (4.13)

ηzi ≥ 0, ∀i ∈ Iz, ηzi = 0, ∀i ̸∈ Iz, (4.14)

(−ηµi , η
g
i ) ∈ N((µ̄, g(x̄, ȳ)); gphNRq

+
). (4.15)

Equality (4.12) is the partial derivative of (4.8) with respect to µ. Since we can derive that
ηµ = ∇yg(x̄, ȳ)

⊤ηkkt, so we can replace ηµ with∇yg(x̄, ȳ)
⊤ηkkt. This is the reason why there

is no ηµ in (4.2)-(4.7). From Proposition 1.4 in [32] we can calculate N((µ̄, g(x̄, ȳ)); gphNRq
+
)

as follow

N((µ̄, g(x̄, ȳ)); gphNRq
+
) (4.16)

=

(−ηµi , η
g
i ) ∈ R2q :

ηµi = 0 if i ∈ I0+
ηgi = 0 if i ∈ I+0

ether ηgi > 0 and ηµi > 0 or ηgi η
µ
i = 0 if i ∈ I00

 .

Combining (4.9)-(4.15) and (4.16) we can obtain conditions (4.2)-(4.7) easily.
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If µ0 = 0, then there is no information about F (x, y) in the conditions (4.2)-(4.7) of
Theorem 4.5. To avoid this situation, we can add an assumption to guarantee µ0 = 1.

Corollary 4.6. If there is no nonzero vector (ηkkt, ηG, ηH , ηg, ηze, ηz) ∈ Rm+p1+p2+q+1

(here ηkkt ∈ Rm, ηG ∈ Rp1 , ηH ∈ Rp2 , ηg ∈ Rq, ηze ∈ R, ηz ∈ Rr ), such that

∇x(z̄
⊤∇yf + µ̄⊤∇yg)(x̄, ȳ)

⊤ηkkt +∇H(x̄)⊤ηH +∇G(x̄)⊤ηG +∇xg(x̄, ȳ)
⊤ηg = 0,

∇y(z̄
⊤∇yf + µ̄⊤∇yg)(x̄, ȳ)

⊤ηkkt +∇yg(x̄, ȳ)
⊤ηg = 0,

ηzeer − ηz +∇yf(x̄, ȳ)
⊤ηkkt = 0,

ηgi = 0, ∀i ∈ I+0, (∇yg(x̄, ȳ)
⊤ηkkt)i = 0, ∀i ∈ I0+,

ηGi ≥ 0, ∀i ∈ IG, ηGi = 0, ∀i ̸∈ IG, ηzi ≥ 0, ∀i ∈ Iz, ηzi = 0, ∀i ̸∈ Iz,

either ηgi > 0, (∇yg(x̄, ȳ)
⊤ηkkt)i > 0 or ηgi (∇yg(x̄, ȳ)

⊤ηkkt)i = 0, ∀i ∈ I00.

Then µ0 can be taken as 1.

Proof. The proof of this corollary is not particularly difficult, we omit it here.

With the help of the preceding Theorem 4.5, we now give a necessary condition for the
existence of local efficient solution for BMOP (1.1)-(1.2).

Theorem 4.7. Let (x̄, ȳ) be a local efficient solution of BMOP (1.1)-(1.2). Assume that
F , G, H are continuously differentiable. Also we assume that f , g are continuously dif-
ferentiable w.r.t x, and twice continuously differentiable w.r.t y, in the neighbourhood of
(x̄, ȳ). Supposed that the functions y 7→ g(x, y) is Rq+-convex and y 7→ f(x, y) is Rr+-
convex. Moreover supposed that Slater‘s CQ is satisfied for the lower level parametric
problem at x̄. Then there exist z̄ ∈ Z, µ̄ ∈ Λ(x̄, ȳ, z̄) such that (x̄, ȳ, z̄, µ̄) is a local ef-
ficient solution of multiobjective optimization problem (4.1), and there exist µ0 ∈ {0, 1},
ηkkt ∈ Rm, ηG ∈ Rp1 , ηH ∈ Rp2 , ηg ∈ Rq, ηze ∈ R, ηz ∈ Rr not all zero and an unit vector
λ ∈ N(F (x̄, ȳ, z̄, µ̄), l(F (x̄, ȳ, z̄, µ̄))) such that conditions (4.2)-(4.7) hold.

Proof. Combining condition (i) of Theorem 3.3, condition (i) of Theorem 4.2 and Theorem
4.5, we can obtain the results of this theorem easily.

Remark 4.8. The Slater’s CQ in Theorem 4.7 can be replaced by more weaker CQ such
as Cottle CQ, this can be see from Remark 4.3.

5 Necessary condition via penalization

In order to derive the necessary optimality conditions for the auxiliary semivectorial bilevel
programming problem (3.4)-(3.5), we translate the problem (3.4)-(3.5) into the following
multiobjective optimization problem (5.1), by replacing the lower level programming prob-
lem with its optimal value function φ.

min
x,y,z

F (x, y) (5.1)
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s.t. f̄(x, y, z)− φ(x, z) ≤ 0
x ∈ X, z ∈ Z, y ∈ K(x).

It is easy to show that multiobjective optimization problem (5.1) is equal to auxiliary
semivectorial bilevel programming problem (3.4)-(3.5).

Theorem 5.1. Let (x̄, ȳ, z̄) be a local efficient solution ( efficient solution) of auxiliary
semivectorial bilevel programming problem (3.4)-(3.5), then it’s a local efficient solution
(efficient solution) of multiobjective optimization problem (5.1). Reverse, if (x̄, ȳ, z̄) is a
local efficient solution (efficient solution) of multiobjective optimization problem (5.1), then
it’s a local efficient solution (efficient solution) of auxiliary semivectorial bilevel programming
problem (3.4)-(3.5).

Proof. Since the proof is simple, we omit it here.

As we know that, the MFCQ is not satisfied at the constraint set of multiobjective
optimization problem (5.1) because of the constraint condition f̄(x, y, z) − φ(x, z) ≤ 0. So
we consider this constraint condition as a penalty, and discuss the property of partially
calm for multiobjective optimization problem (5.1). We give the definition of partially calm
property similar to the Definition 3.1 in [31] .

Definition 5.2. Let (x̄, ȳ, z̄) be a feasible point of problem (5.1). We said problem (5.1)
is partially calm at (x̄, ȳ, z̄) if there is a τ ∈ R, τ > 0 and a neighborhood B(δ, (x̄, ȳ, z̄, 0))
with radius δ > 0 sufficiently small such that there is no vector (x, y, z, υ) ∈ B feasible to
the following partially perturbed problem to

min
x,y,z

F (x, y) (5.2)

s.t. f̄(x, y, z)− φ(x, z) + υ = 0,
x ∈ X, z ∈ Z, y ∈ K(x),

such that
F (x, y) + τ |υ|el ≼Rl

≥
F (x̄, ȳ).

Theorem 5.3. Let (x̄, ȳ, z̄) be a local efficient solution of multiobjective optimization prob-
lem (5.1), we say that problem (5.1) is partially calm at (x̄, ȳ, z̄) if there exist τ ∈ R, τ > 0
such that (x̄, ȳ, z̄) is a local efficient solution of the following partially penalized problem
(5.3):

min
x,y,z

F (x, y) + τ(f̄(x, y, z)− φ(x, z))el (5.3)

s.t. x ∈ X, z ∈ Z, y ∈ K(x)

here, el is a l-dimensional unit vector, F (x, y) + τ(f̄(x, y, z) − φ(x, z))el stands for the
l-dimensional vector which the i th component equal to F (x, y)i + τ(f̄(x, y, z)− φ(x, z)).

Proof. Since x̄, ȳ, z̄ is a local efficient solution of multiobjective optimization problem (5.1),
so

f̄(x̄, ȳ, z̄)− φ(x̄, z̄)) = 0.

Duo to (x̄, ȳ, z̄) is also a local efficient solution of problem (5.3) for τ̄ > 0, there exists a
neighborhood B(δ, (x̄, ȳ, z̄)) with radius δ > 0 sufficiently small such that there is no other
vector (x, y, z) ∈ B feasible to problem (5.3) such that

F (x, y) + τ̄(f̄(x, y, z)− φ(x, z))el ≼Rl
+
F (x̄, ȳ) + τ̄(f̄(x̄, ȳ, z̄)− φ(x̄, z̄))el = F (x̄, ȳ) (5.4)
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Let (x, y, z, υ) ∈ B(δ, (x̄, ȳ, z̄, 0)) feasible to (5.2), obviously, (x, y, z) is feasible vector of
problem 5.3. Since f̄(x, y, z)− φ(x, z)) = −υ and f̄(x, y, z)− φ(x, z)) ≥ 0 then

F (x, y) + τ̄ |υ|el = F (x, y) + τ̄(f̄(x, y, z)− φ(x, z))el.

According to (5.4), it follows that there is no other vector (x, y, z, υ) ∈ B(δ, (x̄, ȳ, z̄, 0))
feasible to (5.2), such that

F (x, y) + τ̄ |υ|el ≼Rl
+
F (x̄, ȳ),

that is problem (5.1) is partially calm at (x̄, ȳ, z̄).

Remark 5.4. It is easy to verify that the reverse of Theorem 5.3 also hold.

In the following part of this section, we will consider another necessary condition for
the existence of local efficient solution of BMOP (1.1)-(1.2) via multiobjective optimization
problem (5.3). We need to consider the necessary optimality condition of problem (5.3)
firstly.

The following regularity conditions which are similar to [19] are necessary for the proof
of main theorem of this section.

Definition 5.5. Let (x̄, ȳ) be a feasible point of problem (1.1)-(1.2), if g is a continuously
differentiable at (x̄, ȳ). H, G are continuously differentiable at x̄. Then the following
conditions p1∑

j=1

αj∇Gj(x̄) +
p2∑
k=1

∇βjH(x̄) = 0, αj ≥ 0, αjGj(x̄) = 0


=⇒

{
αj = 0, j = 1, 2, · · · , p1,
βk = 0, k = 1, 2, · · · , p2,

(5.5)

[
w∑
i=1

µi∇ygi(x̄, ȳ) = 0, µi ≥ 0, µigi(x̄, ȳ) = 0

]
=⇒ µi = 0, i = 1, 2, · · · , q, (5.6)

define the upper level regularity condition at x̄ and the lower level regularity condition at
(x̄, ȳ) respectively. Here, the function Gi, i = 1, . . . , p1, Hj , j = 1, . . . , p2, are assumed to be
differentiable at x̄, and gi, i = 1, . . . , q are assumed to be differentiable at (x̄, ȳ).

The next lemma shows the method of calculating the basic subdifferential of φ which
is essential in the proof of main theorem of this section. For simplicity, we first define the
follow index set

Ig(x, y) = {i : gi(x, y) = 0},

IG(x) = {i : Gi(x) = 0},

Iz(z) = {i : zi = 0}.

Lemma 5.6. Assume that ψ is inner semicompact set at (x̄, z̄) and the lower level regularity
condition (5.6) hold at (x̄, ȳ). Then φ is Lipschitz continuous around x̄. From Theorem 7
in [28] we have

∂φ(x̄, z̄) ⊂
∪

y∈ψ(x̄,z̄)

∪
β∈Λ(x̄,y,z̄)

{[
z̄⊤∇xf(x̄, y) + β⊤∇xg(x̄, y)

f(x̄, y)

]}
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here Λ(x̄, y, z̄) is the lower level Lagrange multipliers set which is defined as:

Λ(x̄, y, z̄) := {β ∈ Rq : z̄⊤∇yf(x̄, y) + β⊤∇yg(x̄, y) = 0,

βi ≥ 0, βi ∈ Ig(x̄, y), βi = 0, βi ̸∈ Ig(x̄, y)}.

Proof. According to the proof process of Theorem 7 in [28], we can obtain this lemma easily,
we omit it here.

The next theorem shows the necessary optimality conditions of multiobjective optimiza-
tion problem (5.3).

Theorem 5.7. Let (x̄, ȳ, z̄) be a local efficient solution of optimization problem (5.3), where
F is Lipschitz continuous and differentiable at a neighborhood of (x̄, ȳ), G, H, g are con-
tinuously differentiable, and the upper level regular condition (5.5) is satisfied at x̄. Assume
that ψ is an inner semicompact set at (x̄, z̄), and the lower level regular condition (5.6) is
satisfied at (x̄, ȳ). Then there exist an unit vector λ ∈ N(F (x̄, ȳ), l(F (x̄, ȳ))), ρ0 ∈ {0, 1}
and ηG ∈ Rp1 , ηH ∈ Rp2 , ηg ∈ Rq, ηze ∈ R, ηz ∈ Rr, ηk ∈ Rq ξk ∈ R, and yk ∈ ψ(x̄, z̄),
k = 1, 2, · · · , s with

∑s
k=1 ξk = 1 such that the following conditions hold:

ρ0λ
⊤∇xF (x̄, ȳ) + ρ0τ z̄

⊤∇xf(x̄, ȳ)λ
⊤el −

s∑
k=1

ρ0ξkτ z̄
⊤∇xf(x̄, yk)λ

⊤el −

s∑
k=1

ρ0ξkτβ
⊤
k ∇xg(x̄, yk)λ

⊤el +∇G(x̄)⊤ηG +∇xg(x̄, ȳ)
⊤ηg +∇H(x̄)⊤ηH = 0,

ρ0λ
⊤∇yF (x̄, ȳ) + ρ0τ z̄

⊤∇yf(x̄, ȳ)λ
⊤el +∇yg(x̄, ȳ)

⊤ηg = 0,

ρ0τf(x̄, ȳ)λ
⊤el −

s∑
k=1

ρ0ξkτf(x̄, yk)λ
⊤el − (er)⊤ηz + ηze = 0,

z̄⊤∇yf(x̄, yk) + β⊤
k ∇yg(x̄, yk) = 0,

ηGi ≥ 0, ∀i ∈ IG(x̄), ηGi = 0, ∀i ̸∈ IG(x̄),

ηgi ≥ 0,∀i ∈ Ig(x̄, ȳ), ηgi = 0,∀i ̸∈ Ig(x̄, ȳ),

ηzi ≥ 0, ∀i ∈ Iz(z̄), ηzi = 0, ∀i ̸∈ Iz(z̄),

βgki ≥ 0, ∀i ∈ Ig(x̄, yk), βzki = 0, ∀i ̸∈ Ig(x̄, yk).

Proof. According to Proposition 2.18, it follows that there exist an unit vector

λ ∈ N+(F (x̄, ȳ) + τ(f̄(x̄, ȳ, z̄)− φ(x̄, z̄)), l(F (x̄, ȳ) + τ(f̄(x̄, ȳ, z̄)− φ(x̄, z̄))),

and ρ0 ∈ {0, 1} such that

0 ∈ ρ0∂⟨λ, (F (x̄, ȳ) + τ(f̄(x̄, ȳ, z̄)− φ(x̄, z̄))el)⟩+N((x̄, ȳ, z̄),Ω), (5.7)

here Ω = {(x, y, z) : G(x) ≤ 0, g(x, y) ≤ 0,−z ≤ 0,H(x) = 0, z⊤er − 1 = 0}.
Since (x̄, ȳ, z̄) is a local efficient solution of optimization problem (5.3), it follows that

f̄(x̄, ȳ, z̄)− φ(x̄, z̄) = 0,
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so according to Definition 2.4 and Proposition 2.11, we have

N+(F (x̄, ȳ) + τ(f̄(x̄, ȳ, z̄)− φ(x̄, z̄)), l(F (x̄, ȳ) + τ(f̄(x̄, ȳ, z̄)− φ(x̄, z̄)))

= N+(F (x̄, ȳ), l(F (x̄, ȳ))) = N(F (x̄, ȳ), l(F (x̄, ȳ))).

We are now turn to the formula (5.7). Simply calculating, we have

0 ∈ ρ0∇x,y,z(λ
⊤F )(x̄, ȳ) + ρ0τ∇x,y,z f̄(x̄, ȳ, z̄)λ

⊤el

+ ρ0τ∂x,y,z(−φ)(x̄, z̄)λ⊤el +N((x̄, ȳ, z̄),Ω).
(5.8)

Further calculating we can obtain that:

ρ0∇x,y,z(λ
⊤F )(x̄, ȳ) =


 ρ0λ

⊤∇xF (x̄, ȳ)
ρ0λ

⊤∇yF (x̄, ȳ)
0

 (5.9)

and

ρ0τ∇x,y,z f̄(x̄, ȳ, z̄)λ
⊤el =


 ρ0τ z̄

⊤∇xf(x̄, ȳ)λ
⊤el

ρ0τ z̄
⊤∇yf(x̄, ȳ)λ

⊤el

ρ0τf(x̄, ȳ)λ
⊤el

 . (5.10)

Next we will evaluate the basic normal cone Ω.
Applying Proposition 2.5, and through some calculations we know that there exist ηG ∈

Rp1 , ηH ∈ Rp2 , ηg ∈ Rq, ηze ∈ R, ηz ∈ Rr such that

N((x̄, ȳ, z̄),Ω) ⊂


 ∇G(x̄)⊤ηG +∇xg(x̄, ȳ)

⊤ηg +∇H(x̄)⊤ηH

∇yg(x̄, ȳ)
⊤ηg

−(er)⊤ηz + ηze

 : (5.11)

ηGi ≥ 0, i ∈ IG(x̄); η
G
i = 0, i ̸∈ IG(x̄).

ηzi ≥ 0, i ∈ Iz(z̄); η
z
i = 0, i ̸∈ Iz(z̄).

ηgi ≥ 0, i ∈ Ig(x̄, ȳ); η
g
i = 0, i ̸∈ Ig(x̄, ȳ).


and ∇G(x̄)⊤τ1 +∇xg(x̄, ȳ)

⊤τ2 +∇H(x̄)⊤υ1 = 0, τ1 ≥ 0, τ⊤1 G(x̄) ≥ 0,
∇yg(x̄, ȳ)

⊤τ2 = 0 : τ2 ≥ 0, τ⊤2 g(x̄, ȳ) = 0
−τ3 + υ2e

r = 0 τ3 ≥ 0, τ⊤3 z = 0


⇒

 τ1 = 0, τ2 = 0,
τ3 = 0,
υ1 = 0, υ1 = 0.

(5.12)

Here τ1 ∈ Rp1 , τ2 ∈ Rq, τ3 ∈ Rr, υ1 ∈ Rp2 , υ2 ∈ R. It can easily be verified that, condition
(5.12) can be derived by upper level regular condition (5.5) and lower level regular condition
(5.6) easily.

Duo to Lemma 5.6, it follows that

ρ0τ∂x,y,zφ(x̄, z̄)λ
⊤el (5.13)

⊂
∪

yk∈ψ(x̄,z̄)

∪
βk∈Λ(x̄,yk,z̄)


 ρ0τ z̄

⊤∇xf(x̄, yk)λ
⊤el + ρ0τβ

⊤
k ∇xg(x̄, yk)λ

⊤el

0
ρ0τf(x̄, yk)λ

⊤el

 .
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Here Λ(x̄, yk, z̄) is the lower level Lagrange multipliers set which is defined as follows:

Λ(x̄, yk, z̄) := {βk ∈ Rq : z̄⊤∇yf(x̄, yk) + β⊤
k ∇yg(x̄, yk) = 0,

βki ≥ 0, βki ∈ Ig(x̄, yk), βki = 0, βki ̸∈ Ig(x̄, yk)}.

According to (2.1), it is easy to verify that

∂(−φ)(x̄, z̄) ⊆ co∂(−φ)(x̄, z̄) = −co∂φ(x̄, z̄)

further, we have
∂x,y,z(−φ)(x̄, z̄) ⊆ −co∂x,y,zφ(x̄, z̄)

Taking ν ∈ co∂x,y,zφ(x̄, z̄) and we can find ξk ∈ R and νk ∈ Rm+n+q with k = 1, . . . , s such
that

ν =

s∑
k=1

ξkνk,

s∑
k=1

ξk = 1, ξk ≥ 0, νk ∈ ∂x,y,zφ(x̄, z̄), fork = 1, . . . , s.

Applying (5.13) we have yk ∈ ψx̄,z̄ and βk ∈ Λ(x̄, yk, z̄) such that

ρ0τνkλ
⊤el =

 ρ0τ z̄
⊤∇xf(x̄, yk)λ

⊤el + ρ0τβ
⊤
k ∇xg(x̄, yk)λ

⊤el

0
ρ0τf(x̄, yk)λ

⊤el.

 (5.14)

Combing (5.9), (5.10), (5.11), (5.14) and (5.8), we can get the results easily.

Corollary 5.8. For Theorem 5.7, if constraint set Ω satisfies that, there is no nonzero
vector (ηG, ηH , ηg, ηze, ηz) ∈ Rp1+p2+q+1+r (here ηG ∈ Rp1 , ηH ∈ Rp2 , ηg ∈ Rq, ηze ∈ R,
ηz ∈ Rr), such that

∇G(x̄)⊤ηG +∇xg(x̄, ȳ)
⊤ηg +∇H(x̄)⊤ηH = 0,

∇yg(x̄, ȳ)
⊤ηg = 0,

−(er)⊤ηz + ηze = 0,

ηGi ≥ 0, ∀i ∈ IG(x̄), η
G
i = 0, ∀i ̸∈ IG(x̄),

ηzi ≥ 0,∀i ∈ Iz(z̄), η
z
i = 0, ∀i ̸∈ Iz(z̄),

ηgi ≥ 0, ∀i ∈ Ig(x̄, ȳ), η
g
i = 0, ∀i ̸∈ Ig(x̄, ȳ).

Then ρ0 can be taken as 1.

Proof. The proof of this theorem is easy, we omit it here.

Next we will give another necessary condition of the existence of local efficient solution
for BMOP (1.1)-(1.2).

Theorem 5.9. Let (x̄, ȳ) be a local efficient solution of BMOP (1.1)-(1.2). Assume that F is
Lipschitz continuous and differentiable at a neighborhood of (x̄, ȳ), G, H, g are continuously
differentiable. The functions y 7→ g(x, y) and y 7→ f(x, y) are Rq+-convex and Rr+-convex
respectively. Also assume that the upper level regular condition (5.5) is satisfied at x̄, and
the lower level regular condition (5.6) is satisfied at (x̄, ȳ). Moreover supposed that ψ is
an inner semicompact set at (x̄, z̄), and problem (5.1) is partially calm at (x̄, ȳ, z̄). Then
, there exist an unit vector λ ∈ N(F (x̄, ȳ), l(F (x̄, ȳ))), ρ0 ∈ {0, 1}, τ > 0, and ηG ∈ Rp1 ,
ηH ∈ Rp2 , ηg ∈ Rq, ηze ∈ R, ηz ∈ Rr, ηk ∈ Rq ξk ∈ R, and yk ∈ ψ(x̄, z̄), k = 1, 2, · · · , s
with

∑s
k=1 ξk = 1 such that all conditions of Theorem 5.7 hold.
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Proof. Combining condition (i) of Theorem 3.3, Theorem 5.1, Theorem 5.3, and Theorem
5.7 we can obtain the results easily.

6 Conclusions

In this paper, we first considered the optimality conditions for bilevel multiobjective op-
timization problem(1.1)-(1.2). This BMOP is different from the bilevel problem proposed
in [34] by Ye. After transforming the lower level multiobjective optimization problem into a
scalar optimization problem (3.1)-(3.2) by weighted method, we get the auxiliary semivecto-
rial bilevel programming problem (3.4)-(3.5). Then we considered the relationship between
the two bilevel optimization problem. We got that they are equivalent when the have efficient
solution, but they are equivalent only whenK is an inner semicontinuous set-valued mapping
in the case that, they only have local efficient solution. After replacing the lower-level scalar
optimization problem by KKT conditions, we transformed the auxiliary semivectorial bilevel
programming problem (3.4)-(3.5) into a MOPEC, and got a necessary optimality condition
for BMOP which need the twice continuously differentiable property of f and g. Since the
feasible region of multiobjective optimization problem (5.1) may not satisfy MFCQ when
the constraint conditions contain optimal valued function, we transformed the problem (5.1)
into a multiobjective optimization problem with penalization, and obtained the necessary
conditions for the existence of solution which only need the first order continuously differ-
entiable properties of f and g. We will discuss the relationship between stationary point
sets and efficient solution set in our future work. The relationship between the two kinds of
necessary optimality condition is also a meaningful issue.
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