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Recently, existence and relaxation problems for nonconvex differential inclusions have
been received great attentions by many researchers from different points of view. Since
Bogolyubov first proved a theorem on relaxation for a class of problems of the classical
calculus of variations in 1930. Thereby, this theorem has been extended in several direc-
tions by many authors including Ekeland and Temam [6], Ioffe and Tikhomirov [12] and
Mcshane [21]. Among more recent generalizations are the works by De Blasi, ect. [5] and
Tolstonogov [24–27]. Very recently, Liu et al. [15] considered the relaxation in nonconvex
optimal problems described by fractional differential equations. In their work, A(t) ≡ A
and A generates a compact semigroup. However, their results clearly cannot apply to the
equations with a nonautonomous A(t) which is a more general and maybe more important
case.

The main purpose of this article is to extend and develop the above work, that is, we
shall discuss an analogue of Bogolyubov’s theorem for the following problem.

For a numerical function g : J ×X × Y → R, we consider the problem (P):

J (x, u) =

∫
J

g(t, x(t), u(t))dt→ inf,

on the solution set of the following control system described by the following nonautonomous
fractional evolution equation:{

CDα
t x(t) +A(t)x(t) = B(t)u(t), t ∈ J = [0, b], 0 < α < 1,
x(0) = x0,

(1.1)

subject to the mixed nonconvex constraints on the control

u(t) ∈ U(t, x(t)), a.e. on J, (1.2)

where CDα
t is the Caputo fractional derivative of order α with the lower limit zero and b > 0

is a finite real number. {A(t) : t ∈ J} is a family of linear closed densely defined operators
on Banach space X such that the domain of A(t) does not depend on t. B : J → L(Y,X),
where L(Y,X) is the space of continuous linear operators from Y into X and Y is a separable
reflexive Banach space modeling the control space. U : J ×X → 2Y \{∅} is a multivalued
map with closed values that is not necessarily convex.

Let R = (−∞,+∞] and gU : J ×X × Y → R be the function defined by

gU (t, x, u) =

{
g(t, x, u), u ∈ U(t, x),
+∞, u ̸∈ U(t, x),

and let g∗∗(t, x, u) be the bipolar of the function u→ gU (t, x, u) (see 1.4.2 of [6]).
Along with the problem (P), we also consider the relaxation problem (RP):

J ∗∗(x, u) =

∫
J

g∗∗U (t, x(t), u(t))dt→ inf,

on solutions of the control system (1.1) with the convexified constraints

u(t) ∈ coU(t, x(t)), a.e. on J, (1.3)

on the control. Here co stands for the closed convex hull of a set.
Our aim of this paper is to explore an interrelation between the solutions of the prob-

lems (P) and (RP). Under sufficiently general conditions, we show that for every solu-
tion (x∗(·), u∗(·)) of the control system (1.1) with constraints (1.3), there exists a sequence
(xn(·), un(·)) (n ≥ 1) of the control system (1.1) with constraints (1.2) such that

xn(·) → x(·) in C(J,X), (1.4)
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J

g(t, xn(t), un(t))dt→
∫
J

g
∗∗

U (t, x∗(t), u∗(t))dt. (1.5)

By using this result, we get that the problem (RP) has a solution and for any solution of
(RP), there is a minimizing sequence of (P) converging to the solution of (RP) which takes
place simultaneously with respect to the trajectory, the control and the functional in the
appropriate topologies. Usually, this property is called the relaxation (cf. [6]). Relations (1.4)
and (1.5) are an analogue of Bogolyubov’s theorem [15, 24–26] in the calculus of variations
being the set of solutions of the control systems (1.1), (1.2) and (1.1), (1.3).

The rest of this paper is organized as follows. Next, we will present some basic defini-
tions and preliminary facts, such as definitions, lemmas and theorems, which will be used
throughout the following sections. In section 3, some auxiliary results needed in the proof
of our main results are presented. We consider the existence result of the control systems
described by nonautonomous fractional evolution equations in section 4. In section 5, we
establish an interrelation between the solutions of the problems (P) and (RP) and prove our
main result. Finally, a concrete application is given to illustrate our main result.

2 Preliminaries

Let J = [0, b] be the closed interval of the real line with the Lebesgue measure µ and the
σ-algebra Σ of µ measurable sets. The norm of the Banach space X (or Y ) will be denoted
by ∥ · ∥X (or ∥ · ∥Y ). Let C(J,X) denote the Banach space of all continuous functions from
J into X with the norm ∥x∥C = supt∈J∥x(t)∥X . For a Banach space X, the symbol w-X
stands for X equipped with the weak σ(X,X∗) topology. The same notation will be used
for subsets of X. In all other cases we assume that X and its subsets are equipped with the
strong (normed) topology.

Firstly, let us recall the following definitions. For more details, one can see [13] and [23].

Definition 2.1. The integral

Iαt f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0, 0 < α < 1,

is called Riemann-Liouville fractional integral of order α, where Γ is the gamma function.

Definition 2.2. The Caputo fractional derivative for a function f of order α is defined by

Dα
t f(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−α[f(s)− f(0)]ds, t > 0, 0 < α < 1.

Remark 2.3. (i) The Caputo fractional derivative of a constant is equal to zero.
(ii) If the function f ∈ AC[0,∞), then we can get

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s)ds = I1−αt f ′(t), t > 0, 0 < α < 1.

(iii) If f is an abstract function with values in Banach space E, then integrals which
appear in Definition 2.1 and 2.2 are taken in Bochner’s sense.

Now we introduce some basic definitions and results from multivalued analysis. For more
details on multivalued analysis, see the books [1, 11].

We use the following notations: Pf (Y ) is the set of all nonempty closed subsets of
Y, Pfb(Y ) is the set of all nonempty, closed and bounded subsets of Y.
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On Pfb(Y ), we consider Hd : Pfb(X)×Pfb(X) → R+∪{∞}, then we can have a metric,
known as the “Hausdorff metric” and defined by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

where d(x,C) is the distance from a point x to a set C. We say a multivalued map is
h-continuous if it is continuous in the Hausdorff metric Hd(·, ·).

We say that a multivalued map F : J → Pf (X) is measurable if F−1(E) = {t ∈ J :
F (t)∩E ̸= ∅} ∈ Σ for every closed set E ⊆ X. If F : J×X → Pf (X), then measurability of
F means that F−1(E) ∈ Σ⊗BX , where Σ⊗BX is σ−algebra of subsets in J ×X generated
by the set A×B,A ∈ Σ, B ∈ BX and BX is the σ−algebra of the Borel sets in X.

Let U : J ×X → 2Y \ {∅} be a multifunction, for 1 ≤ p ≤ +∞, we define

Np
U,x = {u ∈ Lp(J, Y ) : u(t) ∈ U(t, x(t)) a.e. on t ∈ J}.

Besides the standard norm on Lp(J, Y )(1 < p <∞), we also consider the following weak
norm

∥u(·)∥w = sup
0≤t1≤t2≤b

∥∥∥∥ ∫ t2

t1

u(s)ds

∥∥∥∥
Y

, for u ∈ Lp(J, Y ). (2.1)

The space Lp(J, Y ) furnished with this norm will be denoted by Lpw(J, Y ). The following
result establishes a relation between convergence in w-Lp(J, Y ) and convergence in Lpw(J, Y ).

Lemma 2.4 ([24]). If a sequence {un}n≥1 ⊆ Lp(J, Y ), is bounded and converges to u in
Lpw(J, Y ), then it converges to u in w-Lp(J, Y ).

The following notation of solution for our problems is natural.

Definition 2.5. A solution of the control system (1.1), (1.2) is defined to be a pair (x(·), u(·))
consisting of a trajectory x ∈ C(J,X) and a control u ∈ L1(J, Y ) satisfying the equation
(1.1) and the inclusion (1.2) almost everywhere.

A solution of the control system (1.1), (1.3) is defined similarly. If (x(·), u(·)) is a solution
of system (1.1), (1.2), then x(·) is called a trajectory and u(·) is called a control.

We denote RU (x0), T rU (x0) (RcoU (x0), T rcoU (x0)) be the sets of all solutions, all tra-
jectories of the control system (1.1), (1.2) (the control system (1.1), (1.3)).

To obtain our main results in this paper, we make the following hypotheses:

H(A) The closed linear operator A(t) satisfies the following:

(1) the domain D(A(t)) of {A(t) : t ∈ J} is dense in X and independent of t, that is
D(A(t)) ≡ D(A);

(2) for each t ∈ J , the resolvent R(λ,A(t)) = [A(t) + λI]−1 exists in L(X) for all λ
with Reλ ≥ 0 and

∥R(λ,A(t))∥ ≤ C1

|λ|+ 1
,

where C1 is a positive constant independent both of t and λ;

(3) for any t, s, τ ∈ J ,

∥[A(t)−A(s)]A−1(τ)∥ ≤ C2|t− s|β ,

where 0 < β ≤ 1, C2 > 0 and the constants β and C2 are independents of t, s and τ ;

(4) for each t ∈ J and some λ ∈ ρ(A(t)) (the resolvent set of A(t)), the resolvent
R(λ,A(t)) is a compact operator.
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H(B) B ∈ L∞(J,L(Y,X)) and ∥B∥ stands for ∥B∥L∞(J,L(Y,X)).

H(U) U : J ×X → Pf (Y ) is the multivalued map such that:

(1) t→ U(t, x) is measurable for all x ∈ X;

(2) Hd(U(t, x), U(t, y)) ≤ k1(t)∥x− y∥X a.e. on J with k1 ∈ L∞(J,R+),

(3) there exist a positive function m ∈ Lp(J,R+) (p > max{ 1
α ,

1
β }) (where α is given

in system (1.1) and β appears in condition H(A)(3)) and a constant γ > 0 such that

∥U(t, x)∥Y = sup{∥v∥Y , v ∈ U(t, x)} ≤ m(t) + γ∥x∥X , for a.e. t ∈ J.

H(g) g : J ×X × Y → R is a function such that:

(1) the map t→ g(t, x, u) is measurable for all (x, u) ∈ X × Y ;

(2) |g(t, x, u)− g(t, y, v)| ≤ k2(t)∥x− y∥X + ρ∥u− v∥Y a.e., k2 ∈ L∞(J,R+) and ρ > 0;

(3) |g(t, x, u)| ≤ a1(t) + b1(t)∥x∥X + c1∥u∥Y a.e. t ∈ J with a1, b1 ∈ Lp(J,R+) and
c1 > 0.

In what follows, we assume that hypotheses H(A), H(B), H(U) and H(g) are satisfied.

Remark 2.6. (1) We remark that the conditions H(A)(1) and (2) imply that for each
s ∈ J, − A(s) is the infinitesimal generator of an analytic semigroup e−tA(s)(t > 0) and
there exists a constant C ≥ 1 such that ∥e−tA(s)∥X ≤ C ( [22, Theorem 2.5.2]). Moreover,
it follows from Lemma 2.4.2 and Theorem 2.5.2 of [22] that the semigroup e−tA(s)(t > 0)
is continuous in the uniform operator topology, then the assumption H(A)(4) insures that
e−tA(s)(t > 0) is compact ( [22, Theorem 2.3.3]).

(2) Since D(A(t)) ≡ D(A) is dense in X and 0 ∈ ρ(A(t)), then D(A) with the graph
norm ∥x∥1 = ∥A(0)x∥X is a Banach space ( [29, Proposition 2.10.1]).

If conditions H(A)(1)-(3) are satisfied, then according to the paper [7], we have:

Definition 2.7. A function x ∈ C(J,X) is said to be a mild solution of the system (1.1),
(1.2) if x(0) = x0 ∈ D(A) and there exists u ∈ Lp(J, Y ) (p > max{ 1

α ,
1
β }) (where α is given

in system (1.1) and β appears in condition H(A)(3)) such that u(t) ∈ U(t, x(t)) a.e. on t ∈ J
and

x(t) = x0 −
∫ t

0

ψ(t− η, η)A(η)x0dη −
∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)A(s)x0dsdη

+

∫ t

0

ψ(t− η, η)B(η)u(η)dη +

∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)u(s)dsdη.

where

ψ(t, s) = α

∫ ∞

0

tα−1θξα(θ)e
−tαθA(s)dθ,

ϕ1(t, s) = [A(t)−A(s)]ψ(t− s, s),

ϕ(t, s) = ϕ1(t, s) +

∫ t

s

ϕ1(t, τ)ϕ(τ, s)dτ,

and

ξα(θ) =
1

α
θ−1− 1

αϖα(θ
− 1

α ) ≥ 0,
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ϖα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nα−1Γ(nα+ 1)

n!
sin(nπα), θ ∈ (0,∞),

ξα is a probability density function defined on (0,∞), that is

ξα(θ) ≥ 0, θ ∈ (0,∞), and

∫ ∞

0

ξα(θ)dθ = 1.

Due to the paper [7], we can obtain the following:

Lemma 2.8. If the conditions H(A)(1)-(3) are satisfied, then we have:

(i) The operator-valued function ψ(t−s, s) is uniformly continuous in the uniform topology
in the varaibles t, s, where 0 ≤ s ≤ t− ϵ, 0 ≤ t ≤ b for any ϵ > 0. And

∥ψ(t− s, s)∥ ≤ Cψ(t− s)α−1,

where Cψ is a positive constant independent of t, s.

(ii) For any ϵ > 0 and 0 ≤ s ≤ t− ϵ, 0 ≤ t ≤ b, there exists a constant Cϕ > 0 such that

∥ϕ(t, s)∥ ≤ Cϕ(t− s)β−1,

where 0 < β ≤ 1 is given in condition H(A)(3).

3 Auxiliary Results

In this section, we shall give some auxiliary results needed in the proof of our main result.

Lemma 3.1. For any admissible trajectory x of the control system (1.1), (1.3), there exists
a constant ω > 0 such that

∥x∥C ≤ ω.

Proof. From definition 2.7, we know that there exists a u(t) ∈ coU(t, x(t)) such that

x(t) = x0 −
∫ t

0

ψ(t− η, η)A(η)x0dη −
∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)A(s)x0dsdη

+

∫ t

0

ψ(t− η, η)B(η)u(η)dη +

∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)u(s)dsdη.

Firstly, for x0 ∈ D(A), from H(A)(3), we have

∥A(t)x0∥ = ∥A(t)A−(0)A(0)x0∥ = ∥[A(t)−A(0) +A(0)]A−(0)A(0)x0∥
≤ ∥[A(t)−A(0)]A−(0)∥∥A(0)x0∥+ ∥A(0)x0∥
≤ C1t

β∥A(0)x0∥+ ∥A(0)x0∥
≤ (C1b

β + 1)∥A(0)x0∥ := CA∥A(0)x0∥.

Then for t ∈ J , we obtain

∥x(t)∥X ≤ ∥x0∥+
∥∥∥∥ ∫ t

0

ψ(t− η, η)A(η)x0dη

∥∥∥∥
+

∥∥∥∥ ∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)A(s)x0dsdη

∥∥∥∥
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+

∥∥∥∥∫ t

0

ψ(t− η, η)B(η)u(η)dη

∥∥∥∥
+

∥∥∥∥∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)u(s)dsdη

∥∥∥∥
≤ ∥x0∥+

∫ t

0

Cψ(t− η)α−1CA∥A(0)x0∥dη

+

∫ t

0

∫ η

0

Cψ(t− η)α−1Cϕ(η − s)β−1CA∥A(0)x0∥dsdη

+∥B∥
∫ t

0

Cψ(t− η)α−1[m(η) + γ∥x(η)∥X ]dη

+∥B∥
∫ t

0

∫ η

0

Cψ(t− η)α−1Cϕ(η − s)β−1[m(s) + γ∥x(s)∥X ]dsdη

≤ κ+ ϱ

∫ t

0

(t− s)α−1∥x(s)∥Xds,

where

κ = ∥x0∥+
1

α
CψCAb

α∥A(0)x0∥

+
Γ(α)Γ(β)

Γ(1 + α+ β)
CψCϕCAb

α+β∥A(0)x0∥+ Cψ∥B∥
[(

p− 1

pα− 1

) p−1
p

bα−
1
p

+
Γ(α)Γ(β)

Γ(α+ β)
Cϕ

(
p− 1

p(α+ β)− 1

) p−1
p

bα+β−
1
p

]
∥m∥Lp(J,R+),

ϱ = γCψ∥B∥
[
1 +

Γ(α)Γ(β)

Γ(α+ β)
Cϕb

β

]
.

For the last inequality, it follows from Corollary 2 of [30] that

∥x(t)∥X ≤ κEα(ϱΓ(α)t
α),

where Eβ is the Mittag-Leffler function defined by

Eβ(z) =
∞∑
k=0

zk

Γ(kβ + 1)
.

Therefore, ∥x∥C = supt∈J ∥x(t)∥X ≤ Eα(ϱΓ(α)b
α) := ω. The proof is completed.

Let prω : X → X be the ω-radial retraction as follows

prω(x) =

{
x, ∥x∥X ≤ ω,
ωx

∥x∥X
, ∥x∥X > ω.

This map is Lipschitz continuous (cf. [9]). Now, define U1(t, x) = U(t,prωx). Evidently, U1

satisfies H(U)(1) and H(U)(2). Moreover, by the properties of prω, we have for a.e. t ∈ J ,
all x ∈ X and all u(t) ∈ U1(t, x) such that

∥u∥Y ≤ m(t) + γ∥x∥X ≤ m(t) + γω.
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Hence, Lemma 3.1 is still valid with U(t, x) substituted by U1(t, x). Consequently, without
loss of generality, we can assume that for a.e. t ∈ J and all x ∈ X,

sup{∥v∥Y , v ∈ U(t, x)} ≤ m(t) + γω := φ(t), φ ∈ Lp(J,R+) (p > max{ 1
α
,
1

β
}). (3.1)

Now we consider the following auxiliary problem:{
CDα

t x(t) +A(t)x(t) = h(t), t ∈ J, 0 < α < 1, ,
x(0) = x0 ∈ D(A),

(3.2)

It is clear that for every h ∈ Lp(J,X), equation (3.2) has a unique solution S(h) ∈ C(J,X)
which is given by

(Sh)(t) = x0 −
∫ t

0

ψ(t− η, η)A(η)x0dη −
∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)A(s)x0dsdη

+

∫ t

0

ψ(t− η, η)h(η)dη +

∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)h(s)dsdη.

Let φ be defined by (3.1), we put

Yφ = {h ∈ Lp(J,X) : ∥h(t)∥X ≤ φ(t) a.e. t ∈ J}. (3.3)

The following property of the solution map S is crucial in our main result.

Lemma 3.2. The solution map S : Yφ → C(J,X) is continuous from w-Yφ to C(J,X).

Proof. Consider the operator F : Lp(J,X) → C(J,X) defined by

(Fh)(t) =

∫ t

0

ψ(t− η, η)h(η)dη +

∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)h(s)dsdη.

It is clear that F is linear. Moreover, from simple calculation, one has

∥Fh∥C ≤ Cψ

[(
p− 1

pα− 1

) p−1
p

bα−
1
p (3.4)

+
Γ(α)Γ(β)Cϕ
Γ(α+ β)

(
p− 1

p(α+ β)− 1

) p−1
p

bα+β−
1
p

]
∥h∥Lp(J,X).

Hence, the operator F is continuous from Lp(J,X) to C(J,X). Next, let us prove the
continuity of the operator F from w-Lp(J,X) to C(J,X).

Let Ξ ∈ Pfb(Lp(J,X)) and suppose that for any h ∈ Ξ, ∥h∥Lp(J,X) ≤ M (M > 0 is a
constant). Next we will show that F is completely continuous.

(a). From (3.4), we know that F maps bounded subsets into bounded subsets in C(J,X).
(b). {(Fh)(t) : h ∈ Ξ} is equicontinuous. Let 0 ≤ τ1 < τ2 ≤ b, we obtain∥∥∥∥(Fh)(τ2)− (Fh)(τ1)

∥∥∥∥
≤

∥∥∥∥∫ τ2

0

ψ(τ2 − η, η)h(η)dη −
∫ τ1

0

ψ(τ1 − η, η)h(η)dη

∥∥∥∥
+

∥∥∥∥∫ τ2

0

∫ η

0

ψ(τ2 − η, η)ϕ(η, s)h(s)dsdη −
∫ τ1

0

∫ η

0

ψ(τ1 − η)ϕ(η, s)h(s)dsdη

∥∥∥∥
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≤
∥∥∥∥ ∫ τ1

0

[ψ(τ2 − η, η)− ψ(τ1 − η, η)]h(η)dη

∥∥∥∥+

∥∥∥∥ ∫ τ2

τ1

ψ(τ2 − η, η)h(η)dη

∥∥∥∥
+

∥∥∥∥ ∫ τ1

0

∫ η

0

[ψ(τ2 − η, η)− ψ(τ1 − η)]ϕ(η, s)h(s)dsdη

∥∥∥∥
+

∥∥∥∥ ∫ τ2

τ1

∫ η

0

ψ(τ2 − η, η)ϕ(η, s)h(s)dsdη

∥∥∥∥
≤ Q1 +Q2 +Q3 +Q4.

By the assumption ∥h∥Lp(J,X) ≤M , Lemma 2.8 and the Holder’s inequality, we have

Q2 ≤ Cψ

∫ τ2

τ1

(τ2 − η)α−1∥h(η)∥dη ≤ Cψ

( p− 1

pα− 1

)1− 1
p

M(τ2 − τ1)
α− 1

p ,

Q4 ≤ CψCϕ

∫ τ2

τ1

∫ η

0

(τ2 − η)α−1(η − s)β−1∥h(η)∥dsdη

≤ 1

α
CψCϕ

( p− 1

pβ − 1

)1− 1
p

Mbβ−
1
p (τ2 − τ1)

α.

For τ1 = 0, 0 < τ2 ≤ b, it is easy to see that Q1 = Q3 = 0. For τ1 > 0 and δ > 0 small
enough, we have

Q1 ≤
∥∥∥∥∫ τ1−δ

0

[ψ(τ2 − η, η)− ψ(τ1 − η, η)]h(η)dη

∥∥∥∥
+

∥∥∥∥∫ τ1

τ1−δ
[ψ(τ2 − η, η)− ψ(τ1 − η, η)]h(η)dη

∥∥∥∥
≤ sups∈[0,τ1−δ]∥ψ(τ2 − η, η)− ψ(τ1 − η, η)∥b1−

1
pM

+Cψ

∫ τ1

τ1−δ
[(τ2 − η)α−1 + (τ1 − η)α−1]∥h(η)∥dη

≤ sups∈[0,τ1−δ]∥ψ(τ2 − η, η)− ψ(τ1 − η, η)∥b1−
1
pM

+Cψ
( p− 1

pα− 1

)1− 1
pM

[
(τ2 + δ − τ1)

α− 1
p − (τ2 − τ1)

α− 1
p + δα−

1
p

]
.

Similarly, we have

Q3 ≤
∥∥∥∥ ∫ τ1−δ

0

∫ η

0

[ψ(τ2 − η, η)− ψ(τ1 − η, η)]ϕ(η, s)h(s)dsdη

∥∥∥∥
+

∥∥∥∥ ∫ τ1

τ1−δ

∫ η

0

[ψ(τ2 − η, η)− ψ(τ1 − η, η)]ϕ(η, s)h(s)dsdη

∥∥∥∥
≤ sups∈[0,τ1−δ]∥ψ(τ2 − η, η)− ψ(τ1 − η, η)∥

× Cψ

∫ τ1−δ

0

∫ η

0

(η − s)β−1∥h(s)∥dsdη

+CψCϕ

∫ τ1

τ1−δ

∫ η

0

[(τ2 − η)α−1 + (τ1 − η)α−1](η − s)β−1∥h(s)∥dsdη

≤ sups∈[0,τ1−δ]∥ψ(τ2 − η, η)− ψ(τ1 − η, η)∥

× Cψ
( p− 1

pβ − 1

)1− 1
p b1+β−

1
pM(τ1 − δ)
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+
1

α
Cψ

( p− 1

pβ − 1

)1− 1
p bβ−

1
pM

[
(τ2 + δ − τ1)

α − (τ2 − τ1)
α + δα

]
.

From Lemma 2.8, we know that ψ(t − η, η) is uniformly continuous in the uniform
topology in the varaibles t, η, where 0 ≤ η ≤ t − δ ≤ b, for any δ > 0. So it can be easily
seen that Q1 and Q3 tend to zero independently of h ∈ Ξ as τ2 → τ1, δ → 0. It is also
clear that Qi(i = 2, 4) tend to zero as τ2 → τ1 does not depend on particular choice of h.
Thus, we get that ∥(Fh)(τ2)− (Fh)(τ1)∥ tends to zero independently of h ∈ Ξ as τ2 → τ1.
Therefore, we can get {(Fh)(t) : h ∈ Ξ} is an equicontinuous subset in C(J,X).

(c). Let t ∈ J be fixed. We show that the set Π(t) = {(Fh)(t) : h ∈ Ξ} is relatively
compact in X. Clearly, Π(0) = {0} is compact. So it is only necessary to consider t > 0.
For each ϵ ∈ (0, t), t ∈ (0, b], h ∈ Ξ and any δ > 0, we define

Πϵ,δ(t) = {Fϵ,δ(h)(t) : h ∈ Ξ},

where

Fϵ,δ(h)(t)

= α

∫ t−ϵ

0

∫ ∞

δ

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)h(η)dθdη

+α

∫ t−ϵ

0

∫ η

0

∫ ∞

δ

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)ϕ(η, s)h(s)dsdθds

= αe−ϵ
αδA(η)

[ ∫ t−ϵ

0

∫ ∞

δ

(t− η)α−1θξα(θ)e
−[(t−η)αθ−ϵαδ]A(η)h(η)dθdη

+

∫ t−ϵ

0

∫ η

0

∫ ∞

δ

(t− η)α−1θξα(θ)e
−[(t−η)αθ−ϵαδ]A(η)ϕ(η, s)h(s)dsdθds

]
.

It is not difficult to get that the last formula of above are bounded. Thus, from the
compactness of e−ϵ

αδA(η) (ϵαδ > 0) (Remark 2.6), we obtain that Πϵ,δ(t) = {Fϵ,δ(h)(t) : h ∈
Ξ} is a relatively compact subset in X for each ϵ ∈ (0, t) and δ > 0. Moreover, we have

∥F (h)(t)− Fϵ,δ(h)(t)∥

= α

∥∥∥∥ ∫ t

0

∫ ∞

0

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)h(η)dθdη

−
∫ t−ϵ

0

∫ ∞

δ

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)h(η)dθdη

∥∥∥∥
+α

∥∥∥∥ ∫ t

0

∫ η

0

∫ ∞

0

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)ϕ(η, s)h(s)dθdsdη

−
∫ t−ϵ

0

∫ η

0

∫ ∞

δ

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)ϕ(η, s)h(s)dθdsdη

∥∥∥∥
≤ α

∥∥∥∥ ∫ t

0

∫ δ

0

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)h(η)dθdη

∥∥∥∥
+α

∥∥∥∥ ∫ t

t−ϵ

∫ ∞

0

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)h(η)dθdη

∥∥∥∥
+α

∥∥∥∥ ∫ t

0

∫ η

0

∫ δ

0

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)ϕ(η, s)h(s)dθdsdη

∥∥∥∥
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+α

∥∥∥∥∫ t

t−ϵ

∫ η

0

∫ ∞

0

(t− η)α−1θξα(θ)e
−(t−η)αθA(η)ϕ(η, s)h(s)dθdsdη

≤ αC

(
p− 1

pα− 1

)1− 1
p

M

[
bα−

1
p

∫ δ

0

θξα(θ)dθ +
1

Γ(1 + α)
ϵα−

1
p

]
+αCCϕM

[
Γ(α)Γ(β)

Γ(α+ β)
(

p− 1

p(α+ β)− 1
)1−

1
p bα+β−

1
p

∫ δ

0

θξα(θ)dθ

+
bβ−

1
p

Γ(1 + α)
(
p− 1

pβ − 1
)1−

1
p ϵα

]
.

Since
∫∞
0
θξα(θ)dθ = 1

Γ(1+α) , the last inequality tends to zero when ϵ → 0 and δ → 0.

Therefore, there are relatively compact sets arbitrarily close to the set Π(t) (t > 0). Hence
the set Π(t) (t > 0) is also relatively compact in X.

Therefore, we can get the operator F is continuous from w-Lp(J,X) to C(J,X). Finally,
we show that the map S is continuous from w-Yφ to C(J,X).

Since Yφ is a convex compact metrizable subset of w-Lp(J,X), it suffices to prove the
sequential continuity of the map S (Theorem 4.1 of [25]). Now let {hn}n≥1 ⊆ Yφ, h ∈ Yφ
such that

hn → h in w-Lp(J,X). (3.5)

From the boundedness of {hn}n≥1 and since {F (hn)}n≥1 is relatively compact in C(J,X),
there exists a subsequence {hnk}k≥1 of the sequence {hn}n≥1 such that F (hnk) → z in
C(J,X) for some z ∈ C(J,X). Now, since F (hnk) → z in C(J,X) and hnk → h in w-
Lp(J,X) (by (3.5)), it is not difficult to obtain

F (hn) → F (h) in C(J,X).

Thus, by the definitions of the operators S and F , we know S(h)(t) = x0 − (FA)(t)x0 +
(Fh)(t). From the above analysis, we have S(hn) → S(h) in C(J,X). The proof is completed.

Consider the space Ỹ = Y ×R. Elements of the space Ỹ will be denoted by ũ = (u, r), u ∈
Y, r ∈ R. Endow the space Ỹ with the norm ∥ũ∥Ỹ = max(∥u∥Y , |r|). Then Ỹ is a separable

reflexive Banach space. In accordance with (2.1), the norm on the space Lpw(J, Ỹ ) becomes

∥ũ∥w = sup0≤t1≤t2≤b

{
max

(∥∥∥∥∫ t2

t1

u(s)ds

∥∥∥∥
Y

,

∣∣∣∣ ∫ t2

t1

r(s)ds

∣∣∣∣)}, (3.6)

where ũ = (u, r), u ∈ Lp(J, Y ), r ∈ Lp(J,R). Let the multivalued map Ũ : J ×X → Ỹ be
defined by

Ũ(t, x) = {(u, r) ∈ Ỹ : u ∈ U(t, x), r = g(t, x, u)}. (3.7)

Then we have the following properties of the multivalued map Ũ(t, x):

Lemma 3.3. The multivalued map Ũ has bounded closed values and is such that:

(1) the map t→ Ũ(t, x) is measurable;

(2) Hd(Ũ(t, x), Ũ(t, y)) ≤ k(t)∥x− y∥X a.e., with k(t) = max{k1(t), k2(t) + ρk1(t)};
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(3) for any ũ = (u, r) ∈ Ũ(t, x), we have

|r| ≤ a1(t) + b1(t)∥x∥X + c1(m(t) + γ∥x∥X), ∥u∥Y ≤ m(t) + γ∥x∥X ;

where the functions k1(·), k2(·), a1(·), b1(·),m(·) and the constants ρ, γ, c1 are the same
as in assumptions H(U) and H(g).

Proof. Using the similar arguments as Lemma 3.1 of [26] (also see Lemma 3.3 of [15]), one
obtains the Lemma 3.3. Here we omit it.

Let dom g∗∗(t, x) be the effective set and epi g∗∗(t, x) the epigraph of the function
u→ g∗∗(t, x, u), i.e.,

dom g∗∗(t, x) = {u ∈ Y : g∗∗(t, x, u) < +∞},

epi g∗∗(t, x) = {(u, r) ∈ Ỹ : g∗∗(t, x, u) ≤ r}.

The following lemma gives us the properties of the function g∗∗(t, x, u).

Lemma 3.4. The following assertions hold for a.e. t ∈ J :

(1) dom g∗∗(t, x) = coU(t, x);

(2) for any u ∈ dom g∗∗(t, x),

g∗∗(t, x, u) = min{r ∈ R : (u, r) ∈ coŨ(t, x)},

and hence (u, g∗∗(t, x, u)) ∈ coŨ(t, x), where u ∈ coU(t, x) and x ∈ X;

(3) for any ε > 0, there exists a closed set Jε ⊆ J, µ(J\Jε) ≤ ε, such that the map
(t, x, u) → g∗∗(t, x, u) is l.s.c. on Jε ×X × Y .

Proof. Using Lemma 3.3 and the similar arguments as Lemma 5.1 in [26] (also see Lemma
3.4 of [15]), one obtains the Lemma 3.4. Here we omit it.

4 Analogue of Bogolyubov’s Theorem

In the present section, we shall be interested in the existence results of the control systems
(1.1), (1.2) and (1.1), (1.3) and we also show an analogue of Bogolyubov’s theorem with
constraints given by the solution sets of the control systems (1.1), (1.2) and (1.1), (1.3).

Theorem 4.1 (Theorem 4.1 in [15]). The set RU (x0) is nonempty and the set RcoU (x0) is
a compact subset of the space C(J,X)× w-Lp(J, Y ).

Now, we are in the position to prove the analogue of Bogolyubov’s theorem.

Theorem 4.2. For any (x∗(·), u∗(·)) ∈ RcoU (x0), we can have that there exists a sequence
(xn(·), un(·)) ∈ RU (x0)(n ≥ 1) such that

xn → x∗ in C(J,X), (4.1)

un → u∗ in Lp(J, Y ) and w-Lp(J, Y ), (4.2)

lim
n→∞

sup
0≤t1≤t2≤b

∣∣∣∣ ∫ t2

t1

(g∗∗(s, x∗(s), u∗(s))− g(s, xn(s), un(s)))ds

∣∣∣∣ = 0, (4.3)
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Proof. Let (x∗(·), u∗(·)) ∈ RcoU (x0). From Lemma 3.4, the function t → g∗∗(t, x∗(t), u∗(t))
is measurable and

(u∗(t), g
∗∗(t, x∗(t), u∗(t))) ∈ coŨ(t, x∗(t)) a.e. (4.4)

From the hypotheses H(U)(3), H(g)(3), Lemma 3.4 and (3.7), we obtain the map t →
coŨ(t, x∗(t)) is measurable and there exists a function ψ ∈ Lp(J,R+) such that.

∥coŨ(t, x∗(t))∥Ỹ ≤ ψ(t) a.e. (4.5)

Let n ≥ 1 be fixed. By (4.4), (4.5), (3.6), (3.7) and the Theorem 2.2 in [28], we know
that there exists a measurable selection vn(t) of the map t→ U(t, x∗(t)) such that

sup
0≤t1≤t2≤b

∥∥∥∥∫ t2

t1

(u∗(s)− vn(s))ds

∥∥∥∥
Y

≤ 1

n
, (4.6)

sup
0≤t1≤t2≤b

∣∣∣∣ ∫ t2

t1

(g∗∗(s, x∗(s), u∗(s))− g(s, x∗(s), vn(s)))ds

∣∣∣∣ ≤ 1

n
. (4.7)

Hence, the sequence vn → u∗ in w-Lp(J, Y ). For each n ≥ 1, by H(U)(2), we have that for
any x ∈ X, a.e. on t ∈ J , there is a v(t) ∈ U(t, x(t)) such that

∥vn(t)− v(t)∥Y ≤ k1(t)∥x∗(t)− x(t)∥X +
1

n
. (4.8)

Let the map Hn : J ×X → 2Y \{∅} be defined by

Hn(t, x) = {v ∈ Y ; v satisfies the inequality (4.8)}. (4.9)

It follows from (4.8) that Hn(t, x) is well defined for a.e. on t ∈ J and for all x ∈ X, and
its values are open sets. Using Corollary 2.1 in [28] (since we can assume without loss of
generality that U(t, x) is Σ⊗ BX measurable, see Proposition 2.7.9 in [11]), we obtain that
for any ϵ > 0 there is a compact set Jϵ ⊆ J with µ(J\Jϵ) ≤ ϵ, such that the restriction of
U(t, x) to Jϵ × X is l.s.c and the restrictions of vn(t) and k1(t) to Jϵ are continuous. So
(4.8) and (4.9) imply that the graph of the restriction of Hn(t, x) to Jϵ ×X is an open set
in Jϵ ×X × Y . Let the map H : J ×X → 2Y be defined by

H(t, x) = Hn(t, x) ∩ U(t, x). (4.10)

It is obvious that for a.e. t ∈ J , all x ∈ X, H(t, x) ̸= ∅. From the above analysis and
Proposition 1.2.47 in [11], we know that the restriction of H(t, x) to Jϵ ×X is l.s.c. and so
does H(t, x) = H(t, x), here the bar stands for the closure of a set in Y .

Now we consider the system (1.1) with the following constraints on the control,

u(t) ∈ H(t, x(t)) a.e. on J. (4.11)

SinceH(t, x) ⊆ U(t, x), the priori estimate Lemma 3.1 also holds in this situation. Repeating
the proof of Theorem 4.1, we obtain that there is a solution (xn(·), un(·)) of the control
system (1.1), (4.11). The definition of H implies that (xn(·), un(·)) ∈ RU (x0) and

∥vn(t)− un(t)∥Y ≤ k1(t)∥x∗(t)− xn(t)∥X +
1

n
. (4.12)
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Since (xn(·), un(·)) ∈ RU (x0) and (x∗(·), u∗(·)) ∈ RcoU (x0), we have

x∗(t) (4.13)

=x0 −
∫ t

0

ψ(t− η, η)A(η)x0dη −
∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)A(s)x0dsdη

+

∫ t

0

ψ(t− η, η)B(η)u∗(η)dη +

∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)u∗(s)dsdη.

xn(t) (4.14)

=x0 −
∫ t

0

ψ(t− η, η)A(η)x0dη −
∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)A(s)x0dsdη

+

∫ t

0

ψ(t− η, η)B(η)un(η)dη +

∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)un(s)dsdη.

Theorem 4.1 and {(xn(·), un(·))}n≥1 ⊆ RU (x0) ⊆ RcoU (x0) imply that we can assume the
sequence (xn(·), un(·)) → (x(·), u(·)) ∈ RcoU (x0) in C(J,X) × w-Lp(J, Y ). Subtracting
(4.14) from (4.13), we have

∥x∗(t)− xn(t)∥X (4.15)

≤
∥∥∥∥∫ t

0

ψ(t− η, η)B(η)[u∗(η)− vn(η)]dη

∥∥∥∥
+

∥∥∥∥ ∫ t

0

ψ(t− η, η)B(η)[vn(η)− un(η)]dη

∥∥∥∥
+

∥∥∥∥ ∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)[u∗(s)− vn(s)]dsdη

∥∥∥∥
+

∥∥∥∥ ∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)[vn(s)− un(s)]dsdη

∥∥∥∥
≤
∥∥∥∥∫ t

0

ψ(t− η, η)B(η)[u∗(η)− vn(η)]dη

∥∥∥∥
+ Cψ∥B∥

∫ t

0

(t− η)α−1

(
1

n
+ k1(η)∥x∗(η)− xn(η)∥X

)
dη

+

∥∥∥∥ ∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)[u∗(s)− vn(s)]dsdη

∥∥∥∥+ CψCϕ∥B∥

×
∫ t

0

∫ η

0

(t− η)α−1(η − s)β−1

(
1

n
+ k1(s)∥x∗(s)− xn(s)∥X

)
dsdη

≤
∥∥∥∥∫ t

0

ψ(t− η, η)B(η)[u∗(η)− vn(η)]dη

∥∥∥∥
+
Cψ∥B∥bα

nα
+ Cψ∥B∥∥k1∥L∞

∫ t

0

(t− η)α−1∥x∗(η)− xn(η)∥Xdη

+

∥∥∥∥ ∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)[u∗(s)− vn(s)]dsdη

∥∥∥∥
+
CψCϕ∥B∥Γ(α)Γ(β)bβ

Γ(α+ β)

[
bα

n
+ ∥k1∥L∞

∫ t

0

(t− s)α−1∥x∗(s)− xn(s)∥Xds
]
.
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By the property of the operator F defined in Lemma 3.2 and since vn → u∗ in w-L
p(J, Y ),

we have that for any t ∈ J ,∥∥∥∥∫ t

0

ψ(t− η, η)B(η)[u∗(η)− vn(η)]dη

∥∥∥∥ → 0, as n→ ∞,

∥∥∥∥ ∫ t

0

∫ η

0

ψ(t− η, η)ϕ(η, s)B(s)[u∗(s)− vn(s)]dsdη

∥∥∥∥ → 0, as n→ ∞,

Since ∥x∗(t)∥X ≤ ω, ∥xn(t)∥X ≤ ω for any n, t ∈ J and xn → x in C(J,X), let n → ∞ in
(4.15), we obtain

∥x∗(t)− x(t)∥

≤ Cψ∥B∥∥k1∥L∞

(
1 +

CϕΓ(α)Γ(β)b
β

Γ(α+ β)

)∫ t

0

(t− s)α−1∥x∗(s)− x(s)∥Xds.

Then by Corollary 2 of [30], we get x∗ = x, i.e., xn → x∗ in C(J,X). Hence from (4.10),
we have (vn − un) → 0 in Lp(J, Y ). Therefore un = un − vn + vn → u∗ in w-Lp(J, Y ) and
Lpw(J, Y ), i.e. (4.1) and (4.2) hold. Then we have

sup
0≤t1≤t2≤b

∣∣∣∣ ∫ t2

t1

(g∗∗(s, x∗(s), u∗(s))− g(s, xn(s), un(s)))ds

∣∣∣∣ (4.16)

≤ sup
0≤t1≤t2≤b

∣∣∣∣ ∫ t2

t1

(g∗∗(s, x∗(s), u∗(s))− g(s, x∗(s), vn(s)))ds

∣∣∣∣
+ sup

0≤t1≤t2≤b

∣∣∣∣ ∫ t2

t1

(g∗∗(s, x∗(s), vn(s))− g(s, xn(s), un(s)))ds

∣∣∣∣.
It follows from H(g)(2) and (4.10) that

|g(t, x∗(t), vn(t))− g(t, xn(t), un(t))| ≤ (k2(t) + ρk1(t))∥x∗(t)− xn(t)∥X +
ρ

n
.

Then the last inequality, (4.7) and (4.16) imply that (4.3) holds. The Theorem is proved.

5 Main Result

In this section, we present the following main result of this article.

Theorem 5.1. The problem (RP) has a solution and

min
(x,u)∈RcoU (x0)

J ∗∗(x, u) = inf
(x,u)∈RU (x0)

J (x, u), (5.1)

For any solution (x∗, u∗) of problem (RP) there exists a minimizing sequence (xn, un) ∈
RU (x0)(n ≥ 1) for the problem (P) which converges to (x∗, u∗) in the spaces C(J,X) × w-
Lp(J, Y ) and C(J,X)× Lpw(J, Y ) and the following formula holds

lim
n→∞

sup
0≤t1≤t2≤b

∣∣∣∣ ∫ t2

t1

(g∗∗(s, x∗(s), u∗(s))− g(s, xn(s), un(s)))ds

∣∣∣∣ = 0. (5.2)
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Conversely, if (xn, un)(n ≥ 1) is a minimizing sequence for problem (P), then there is a
subsequence (xnk

, unk
)(k ≥ 1) of the sequence (xn, un)(n ≥ 1), and a solution (x∗, u∗) of

problem (RP) such that the subsequence (xnk
, unk

)(k ≥ 1), converges to (x∗, u∗) in C(J,X)×
w-Lp(J, Y ) and relation (5.2) holds for this subsequence (xnk

, unk
)(k ≥ 1).

Proof. By the definition of the function gU (t, x, u), H(U)(3), H(g)(3) and the boundedness
of the trajectories T rcoU (x0) of the control system (1.1), (1.3) (Lemma 3.1). We can get a
function ζ ∈ Lp(J,R+) such that

−ζ(t) = −(a1(t) + b1(t)ω + c1(m(t) + γω)) ≤ g(t, x, u), a.e. t ∈ J, (5.3)

with all x ∈ Q = {h ∈ X : ∥h∥X ≤ ω}, u ∈ U(t, x).

The inequality (5.3) and the properties of the bipolar (see [6]) directly imply

−ζ(t) ≤ g∗∗U (t, x, u) ≤ gU (t, x, u), a.e. t ∈ J, x ∈ Q, u ∈ Y. (5.4)

Hence, it follows from Lemma 3.3 item (3), (5.4) and Theorem 2.1 of [2] that the functional
J ∗∗ is lower semicontinuous on RcoU (x0) ⊆ C(J,X) × w-Lp(J, Y ). Theorem 4.1 implies
that RcoU (x0) is compact in C(J,X)×w-Lp(J, Y ). Therefore, problem (RP) has a solution
(x∗, u∗). By the assertion of item (1) in Lemma 3.4, we have

J ∗∗(x∗, u∗) ≤ inf
(x,u)∈RU (x0)

J (x, u), (5.5)

Now for this very solution (x∗, u∗) of problem (RP), using Theorem 4.2, we obtain that there
exists a sequence (xn, un) ∈ RU (x0)(n ≥ 1), such that (4.1), (4.2) and (4.3) hold. Since∣∣∣∣ ∫

J

(g∗∗U (s, x∗(s), u∗(s))− g(s, xn(s), un(s)))ds

∣∣∣∣
≤ sup

0≤t1≤t2≤b

∣∣∣∣ ∫ t2

t1

(g∗∗U (s, x∗(s), u∗(s))− g(s, xn(s), un(s)))ds

∣∣∣∣. (5.6)

By formulas (4.3), (5.5), (5.6), we get that (5.1), (5.2) hold and (xn(·), un(·)) ∈ RU (x0)(n ≥
1) is a minimizing sequence for problem (P). Let (xn(·), un(·)) ∈ RU (x0)(n ≥ 1) be a
minimizing sequence for problem (P). According to Theorem 4.1, without loss of generality
we can assume that (xn, un) → (x∗, u∗) ∈ RcoU (x0) in the spaces C(J,X)×w-Lp(J, Y ) and

min(RP) = lim
n→∞

∫
J

g(s, xn(s), un(s))ds. (5.7)

It follows from (5.4) and the properties of the function g∗∗U (t, x∗(t), u∗(t) that∫
J

(g∗∗U (s, x∗(s), u∗(s))ds ≤ limn→∞

∫
J

g∗∗U (s, xn(s), un(s))ds (5.8)

≤ lim
n→∞

∫
J

g(s, xn(s), un(s))ds.

From (5.7) and (5.8), we obtain

min(RP) =

∫
J

(g∗∗U (s, x∗(s), u∗(s))ds = lim
n→∞

∫
J

g(s, xn(s), un(s))ds. (5.9)
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Hence (x∗(·), u∗(·)) ∈ RcoU (x0) is a solution of problem (RP). H(g)(3), H(U)(3) and
Lemma 3.1 imply that {g(s, xn(s), un(s))}n≥1 is uniformly integrable. Therefore, by the
Dunford-Pettis theorem, we have that there exists a subsequence g(s, xnk

(s), unk
(s))(k ≥ 1)

of the sequence g(s, xn(s), un(s))(n ≥ 1) converging to a certain function λ(t) in the topology

of the space w-L1(J, Y ). Since (unk
(s), g(s, xnk

(s), unk
(s))) ∈ Ũ(s, xnk

(s)) a.e. s ∈ J ,
Lemma 3.3 implies

(u∗(s), λ(s)) ∈ coŨ(s, x∗(s)) a.e. s ∈ J.

Using this formula and Lemma 3.4, we obtain

g∗∗U (s, x∗(s), u∗(s)) ≤ λ(s), a.e. . (5.10)

Hence we have for any t ∈ J∫ t

0

g∗∗U (s, x∗(s), u∗(s))ds ≤
∫ t

0

λ(s)ds ≤ lim
k→∞

∫ t

0

g(s, xnk
(s), unk

(s)))ds. (5.11)

Now we can obtain from (5.9), (5.10) and (5.11) that

g∗∗U (t, x∗(t), u∗(t)) = λ(t), a.e. t ∈ J.

Hence the subsequence g(s, xnk
(s), unk

(s))) → g∗∗U (s, x∗(s), u∗(s)), as k → ∞ in w-Lp(J, Y ).
This implies that

lim
k→∞

sup
0≤t1≤t2≤b

∣∣∣∣ ∫ t2

t1

(g∗∗U (s, x∗(s), u∗(s))− g(s, xnk
(s), unk

(s)))ds

∣∣∣∣ = 0.

The Theorem is proved.

6 An Example

Let J = [0, b] and Ω = [0, 1]. We consider the following heat equation:
CDα

t x(t, y) =
∂2

∂y2x(t, y) + a(t)x(t, y) + b(t)u(t, y), t ∈ J, y ∈ Ω,

x(t, 0) = x(t, 1) = 0, t ∈ J,
x(0, y) = x0(y), y ∈ Ω,

u(t, y) ∈ Û(t, y, x(t, y)), a.e. J × Ω,

(6.1)

where 0 < α < 1 and x(t, y) represents the temperature at the point y ∈ Ω and time t ∈ J .
It is supposed that a(·) : J → R+ is a continuous function.

Next, take X = L2[0, 1] and the operator A(t) be defined by A(t)x = x′′ + a(t)x with
the common domain

D(A) = {x ∈ X : x, x′ are absolutely continuous, x′′ ∈ X, x(0) = x(1) = 0}.

It follows that the operator {A(t) : t ∈ J} satisfies conditions H(A)(1)-(4) and generates a
compact evolution system V (t, s) (cf. [10]) given by

V (t, s) = T (t− s)e−
∫ t
s
a(τ)dτ ,

where T (t)(t > 0) is the compact semigroup generated by the operator A with Ax = x′′ for
x ∈ D(A).
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Next, suppose that Û : J ×Ω×R→ 2R\{∅} is a multivalued function with closed values
satisfying the following conditions:

(1) the map (t, y) → Û(t, y, x) is measurable;

(2) Hd(Û(t, y, x1); Û(t, y, x2)) ≤ k1(t)|x1−x2| a.e. in (t, y) ∈ J×Ω with k1 in L
∞(J,R+);

(3) |Û(t, y, x)| ≤ m(t, y) + γ|x| a.e. in J × Ω with m ∈ Lp(J,R+)(p > 1
α ) and γ > 0.

Put x(t) = x(t, y) that is x(t)(y) = x(t, y), t ∈ J, y ∈ Ω. Define a multivalued map
U : J ×X → 2X by

U(t, x) = {u is measurable : u(y) ∈ Û(t, y, x(y)) a.e. in Ω}, x ∈ X. (6.2)

From Lemma 7.3 of [27], when U is defined by (6.2), then the hypothesis H(U) is satisfied.
With A(t) and U defined above, the fractional control system (6.1) can be rewritten in our
abstract form (1.1), (1.2). Hence the abstract results obtained in the previous sections can
be applied to the control system (6.1).
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