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IIPMs so that the centering steps not be needed, whereas the above-mentioned IIPMs re-
quire a few centering steps in each main iteration. An interesting question here is whether a
new algebraic transformation of the central path to finding a search direction can be found
that the improved version of IIPM based on this search direction is well-defined?.

The key idea of the method presented in this paper is to apply a new algebraic reformula-
tion of the central path along with finding the search directions. The purpose of the paper is
mainly theoretical, which we present an improved version of IIPM for LO based on the new
search directions. The algorithm reduces the number of iterations and tendering a simple
analysis, while the best complexity known for these types of methods is still maintained.

The remainder of our work is organized as follows. In the next section, we recall the
perturbed problems and their central paths. In section 3, we derive new search directions and
describe an iteration of our algorithm. We then present the algorithm. Section 4 is devoted to
the analysis of the algorithm. In subsection 4.1, we derive an upper bound for the proximity
measure after a full-Newton step. Subsection 4.2 serves to derive an upper bound for ω(v).
In subsection 4.3, we fix values for the parameters τ and θ in the algorithm. Here, τ is a
uniform upper bound for the values of the proximity measure δ(x, s;µ) occurring during the
course of the algorithm, and θ determines the progress to feasibility and optimality of the
iterates. As a result, we realize the algorithm to be well-defined for the chosen values of θ and
τ . We obtain the complexity of the algorithm coinciding with the best complexity known
for IIPMs, whereas the iteration bound improves one in [13]. Finally, some conclusions and
remarks follow in section 5.

2 Preliminaries

Consider the LO problem in the standard form

(P ) min {cTx : Ax = b, x ≥ 0},

with its dual problem

(D) max {bT y : AT y + s = c, s ≥ 0}.

Here x, s, c ∈ Rn, b, y ∈ Rm and A ∈ Rm×n with rank(A) = m. In accordance with the
available results on IIPMs (e.g., see [13]), it is assumed that there exists an optimal solution
(x∗, y∗, s∗) such that ∥(x∗; s∗)∥∞ ≤ ξ, where ξ is a (positive) number. In our algorithm, the
initial iterates will be (x0, y0, s0) = ξ(e, 0, e), where e is the all-one vector. Note that, since
x∗ and s∗ are feasible, ∥(x∗; s∗)∥∞ ≤ ξ holds if and only if

0 ≤ x∗ ≤ ξe, 0 ≤ s∗ ≤ ξe. (2.1)

In the case of an infeasible method, a triple (x, y, s) is called an ϵ-solution of (P) and (D) if

max
{
xT s, ∥b−Ax∥, ∥c−AT y − s∥

}
≤ ϵ,

where ϵ is a accuracy parameter. We start by choosing arbitrary x0 > 0 and s0 > 0 such
that x0s0 = µ0e, for some (positive) number µ0. For any ν, with 0 < ν ≤ 1, we consider the
perturbed problem (Pν), defined by

(Pν) min {(c− νr0c )
Tx : Ax = b− νr0b , x ≥ 0},

and its dual problem (Dν), which is given by

(Dν) max {(b− νr0b )
T y : AT y + s = c− νr0c , s ≥ 0},
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where r0b := b−Ax0 and r0c := c−AT y0 − s0. In general, r0b ̸= 0 and r0c ̸= 0, i.e., the initial
iterates are not feasible for (P) and (D). However, it is clear that x = x0 is a strictly feasible
solution of (Pν), and (y, s) = (y0, s0) is a strictly feasible solution of (Dν), when ν = 1.
This means that the perturbed problems (Pν) and (Dν) satisfy the interior point condition
(IPC), for ν = 1, which then straightforwardly leads to the following result.

Lemma 2.1 (Theorem 5.13 in [20]). The original problems, (P) and (D), are feasible if and
only if for each ν satisfying 0 < ν ≤ 1 the perturbed problems (Pν) and (Dν) satisfy the IPC.

Let (P) and (D) be feasible and 0 < ν ≤ 1. Then, Lemma 2.1 implies that the perturbed
problems (Pν) and (Dν) satisfy the IPC, and therefore the following system

b−Ax = νr0b , x ≥ 0,
c−AT y − s = νr0c , s ≥ 0,

xs = µe,
(2.2)

has a unique solution, for every µ > 0, as the µ-centers of the perturbed problems (Pν) and
(Dν). Let ψ(t) be a real valued function on (0,∞) such that ψ(0) = 0 and differentiable on
(0,∞) such that ψ

′
(t) > 0, for each t > 0. The system of equations (2.2) can be written in

the following equivalent form:

b−Ax = νr0b , x ≥ 0,
c−AT y − s = νr0c , s ≥ 0,

ψ(xisi
µ ) = ψ(1), i = 1, . . . , n.

(2.3)

In what follows, the parameters µ and ν always satisfy the relation µ = µ0ν.

3 New Search Direction and the Algorithm

Let (x, y, s) be a strictly feasible solution of (Pν) and (Dν) for some µ > 0. Our aim is
to define search direction (∆x,∆y,∆s) such that the new iterate (x+∆x, y +∆y, s+∆s)
is feasible for (Pν+) and (Dν+), where ν+ := (1 − θ)ν with θ ∈ (0, 1). Applying New-
ton’s approach to the system (2.3) and linearizing the third equation, by some elementary
calculations, we get

A∆x = θνr0b ,
AT∆y +∆s = θνr0c ,

s∆x+ x∆s = µ
(
ψ

′
(xsµ )

)−1(
ψ(e)− ψ(xsµ )

)
.

(3.1)

Defining

v :=

√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
, (3.2)

the system (3.1) turns to

Ādx = θνr0b ,

ĀT ∆y
µ + ds = θνvs−1r0c ,

dx + ds = pv,

(3.3)

where Ā := AV −1X,V := diag(v), X := diag(x) and pv := ψ(e)−ψ(v2)
vψ′ (v2)

. By choosing ψ(t)

appropriately, the system (3.3) can be used to define a class of search directions. For example:
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(i) ψ(t) = t yields pv = v−1 − v which gives the search directions of the feasibility step
in [13].

(ii) ψ(t) =
√
t yields pv = 2(e− v) which gives the search directions of the feasibility step

in [2].

Here, we choose ψ(t) =
√
t

2(1+
√
t)
. In this case, ψ

′
(t) = 1

4
√
t(1+

√
t)2

and

ψ(1)− ψ(t2)

tψ′(t2)
=

1
4 − t

2(1+t)

t
(

1
4t(1+t)2

) =

1−t
4(1+t)

1
4(1+t)2

= (1 + t)(1− t) = 1− t2.

Therefore, we get pv = e− v2. A solution of (3.3) with pv = e− v2 returns dx and ds, and
then ∆x and ∆s compute via (3.2). After a full-Newton step, the iterates given by

x+ := x+∆x, y+ := y +∆y, s+ := s+∆s. (3.4)

We measure proximity to the µ-centers of the perturbed problems (Pν) and (Dν) by the
quantity, which has been considered for SDO for the first time in [21],

δ(v) := δ(x, s;µ) := ∥pv∥ = ∥e− v2∥. (3.5)

As a consequence, we have the following lemma.

Lemma 3.1 (Lemma 2.1 in [6]). If δ := δ(v), then

√
1− δ ≤ vi ≤

√
1 + δ, i = 1, 2, . . . , n.

We just established that if ν = 1 and µ = µ0, then x = x0 is the µ-center of the perturbed
problem (Pν) and (y, s) = (y0, s0) the µ-center of (Dν). Initially, we have δ(x, s;µ) =
δ(x0, s0;µ0) = 0. In what follows, we assume that at start of each iteration, just before the
µ-update, δ(x, s;µ) ≤ τ , where τ > 0 is a threshold value. So, this is certainly true at the
start of the first iteration.

Now, we briefly describe one (main) iteration of our algorithm. Suppose that for some
µ ∈ (0, µ0], we have x, y and s satisfying the feasibility conditions, the first two equations
of (2.3), for ν = µ

µ0 and such that δ(x, s;µ) ≤ τ . We reduce µ to µ+ = (1 − θ)µ, with

θ ∈ (0, 1), and find new iterates x+, y+ and s+ that satisfy the first two equations of (2.3),
with µ replaced by µ+ and ν by ν+ = µ+

µ0 , and such that δ(x+, s+;µ+) ≤ τ . Due to (3.1)

and (3.4), it is clear that x+, y+ and s+ satisfy the first two affine equations in (2.3), with
ν = ν+. The main part of the analysis is to guarantee that x+ and s+ are positive and
satisfy δ(x+, s+;µ+) ≤ τ.
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A formal description of the algorithm is given in Figure 1.

Primal−Dual Infeasible IPM
Input :

Accuracy parameter ϵ > 0;
barrier update parameter θ, 0 < θ < 1.

begin
x := ξe; y := 0; s := ξe; µ := νξ2; ν = 1;

while max(nµ, ∥rb∥, ∥rc∥) > ϵ do
begin
solve the system (3.3) and use (3.2) to obtain (∆x,∆y,∆s);

(x, s) := (x, s) + (∆x,∆s);
update of µ and ν :

µ := (1− θ)µ;
ν := (1− θ)ν;

end
end

Figure 1 : The algorithm.

4 Analysis of the Algorithm

Let x, y and s denote the iterates at the start of an iteration, and assume δ(x, s;µ) ≤ τ.
Moreover, let qv = dx − ds. Then

dx =
pv + qv

2
, ds =

pv − qv
2

, dxds =
p2v − q2v

4
. (4.1)

It follows that

∥qv∥2

4
=

∥pv∥2

4
− dTx ds. (4.2)

4.1 Upper bound for δ(v+)

Using (3.2) and (3.4), we may write

x+ =
x

v
(v + dx), s+ =

s

v
(v + ds). (4.3)

From (4.3), the third equation of (3.3) and (4.1), it follows that

x+s+ =
xs

v2
(v + dx)(v + ds) = µ(v2 + vpv + dxds) = µ

((
v +

pv
2

)2

− q2v
4

)
. (4.4)

In the sequel, we use the notation

ω(v) :=
1

2

(
∥dx∥2 + ∥ds∥2

)
.

It follows that

−dTx ds ≤
∣∣dTx ds∣∣ ≤ ∥dx∥∥ds∥ ≤ 1

2

(
∥dx∥2 + ∥ds∥2

)
= ω(v). (4.5)
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Lemma 4.1. Let x > 0 and s > 0 be feasible solutions for (Pν) and (Dν), respectively, and
let δ(v) := δ(x, s;µ) which satisfies δ(v) + ω(v) < 1. Then x+ and s+ are strictly feasible
solutions of (Pν+) and (Dν+).

Proof. Introduce a step length α, with 0 ≤ α ≤ 1, and define

x(α) := x+ α∆x, s(α) := s+ α∆s.

Using (3.2), the third equation of system (3.3) and (4.1), we have

x(α)s(α)

µ
= (v + αdx)(v + αds) = v2 + αv(dx + ds) + α2dxds

= (1− α)v2 + α
((
v +

pv
2

)2 − (1− α)
p2v
4

− α
q2v
4

)
. (4.6)

The inequality x(α)s(α) > 0 holds if∥∥∥(1− α)
p2v
4

+ α
q2v
4

∥∥∥
∞
< min

i

(
v +

pv
2

)2

i
= min

i

(
vi +

1− v2i
2

)2

. (4.7)

One can easily verify that f(t) = −t2 + 2t+ 1, for
√
1− δ(v) ≤ t ≤

√
1 + δ(v), is concave.

Thus, for each i = 1, 2, . . . , n, we get

f(vi) ≥ min
{
f(
√
1− δ(v)), f(

√
1 + δ(v))

}
= f(

√
1− δ(v)) ≥ 2− δ(v).

Therefore, (2− δ(v)

2

)2

≤ min
i

(f(vi)
2

)2

. (4.8)

On the other hand, using (4.2) and (4.5), we obtain∥∥∥(1− α)
p2v
4

+ α
q2v
4

∥∥∥
∞

≤ (1− α)
∥∥∥p2v
4

∥∥∥
∞

+ α
∥∥∥q2v
4

∥∥∥
∞

≤ (1− α)
∥pv∥2

4
+ α

∥qv∥2

4

=
δ(v)2

4
− αdTx ds ≤

δ(v)2

4
+ αω(v) ≤ δ(v)2

4
+ ω(v). (4.9)

Therefore, (4.7) holds if

δ(v)2

4
+ ω(v) <

(2− δ(v)

2

)2

.

This implies δ(v) + ω(v) < 1. Thus, we obtain that x(α)s(α) > 0, for all 0 ≤ α ≤ 1.
Hence, none the entries of x(α) and s(α) vanishes, for 0 ≤ α ≤ 1. Since x(0) = x > 0 and
s(0) = s > 0, and x(α) and s(α) depend linearly on α, these imply that x(α) and s(α) are
positive, for 0 ≤ α ≤ 1. Hence, x(1) = x+ > 0 and s(1) = s+ > 0. This completes the
proof.

We proceed by deriving an upper bound for δ(x+, s+;µ+). Recall from definition (3.5)
that

δ(v+) = δ(x+, s+;µ+) =
∥∥e− v2+

∥∥, where v+ =

√
x+s+
µ+

.
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Lemma 4.2. Let x > 0 and s > 0 be feasible solutions for (Pν) and (Dν) respectively, and
let δ(v) + ω(v) < 1. Then, we have

δ(v+) ≤
1

1− θ

(
θ
√
n+

δ(v)2

1 +
√
1− δ(v)

+ ω(v)
)
.

Proof. Using (4.6) with α = 1 and pv = e− v2, after, by µ+ = (1− θ)µ, we get

x+s+
µ+

=

(
v + pv

2

)2 − q2v
4

1− θ
=
v2 + vpv +

p2v
4 − q2v

4

1− θ
=
e− (e− v)pv +

p2v
4 − q2v

4

1− θ

=
e− p2v

e+v +
p2v
4 − q2v

4

1− θ
=
e−

(
3e−v
e+v

)p2v
4 − q2v

4

1− θ
.

Hence, using Lemma 2.1, (3.5), (4.2) and (4.5), we may write

δ(v+) =
∥∥e− v2+

∥∥ =
∥∥∥e− e−

(
3e−v
e+v

)p2v
4 − q2v

4

1− θ

∥∥∥
=

1

1− θ

∥∥∥− θe+
(3e− v

e+ v

)p2v
4

+
q2v
4

∥∥∥
≤ 1

1− θ

(
θ
√
n+

∥∥3e− v

e+ v

∥∥
∞

∥∥p2v
4

∥∥+
∥∥q2v
4

∥∥)
≤ 1

1− θ

(
θ
√
n+

3−
√
1− δ(v)

1 +
√
1− δ(v)

× δ(v)2

4
+
δ(v)2

4
− dTx ds

)
≤ 1

1− θ

(
θ
√
n+

δ(v)2

1 +
√
1− δ(v)

+ ω(v)
)
.

This completes the proof.

4.2 Upper bound for ω(v)

Let us denote the null space of the matrix Ā as N . So,

N := {ζ : Āζ = 0}.

Then it is clear from the first equation of (3.3) that the affine space {ζ : Āζ = θνr0b} equals
N + dx. Note that due to a well-known result from linear algebra the row space of Ā equals
the orthogonal complement N⊥ of N . Then, due to the second equation of (3.3), the affine
space {ĀT z+θνvs−1r0c} equalsN⊥+ds. Also note thatN⊥∩N = {0}, and as a consequence
the affine spaces N + dx and N⊥ + ds meet in a unique point q.

Lemma 4.3. Let q be the (unique) point in the intersection of the affine spaces N +dx and
N⊥ + ds. Then

2ω(v) ≤ ∥q∥2 +
(
∥q∥+ δ(v)

)2
.

Proof. To simplify the notation, we denote r = e− v2. By the same way as in the proof of
Lemma 3.5 in [14], we may derive

2ω(v) ≤ ∥q∥2 +
(
∥q∥+ ∥r∥

)2
= ∥q∥2 +

(
∥q∥+ δ(v)

)2
,

proving the lemma.
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Lemma 4.4. (Lemma 3.6 in [14]) One has

∥q∥ ≤ θ

ξvmin
(∥x∥1 + ∥s∥1).

Following section 3.4 in [14], we can prove that ∥x∥1 + ∥s∥1 ≤ ξ(n+ ∥v∥2). Substitution
into Lemma 4.4 yields that

∥q∥ ≤ θ(n+ ∥v∥2)
vmin

. (4.10)

Using Lemma 3.1, we get

∥v∥2 =
n∑
i=1

v2i ≤ n(1 + δ(v)) and vmin ≥
√
1− δ(v).

Substitution of these two bounds into (4.10) yields

∥q∥ ≤ nθ(2 + δ(v))√
1− δ(v)

. (4.11)

It follows from (4.11) and Lemma 4.3 that

ω(v) ≤ n2θ2(2 + δ(v))2

1− δ(v)
+
δ(v)2

2
+
nθ(2 + δ(v))δ(v)√

1− δ(v)
. (4.12)

4.3 Fixing the parameters

By Lemma 4.1, the iterates x+ and s+ are strictly feasible if δ(v) + ω(v) < 1. It follows
from (4.12) that if

n2θ2(2 + δ(v))2

1− δ(v)
+
δ(v)2

2
+
nθ(2 + δ(v))δ(v)√

1− δ(v)
< 1− δ(v), (4.13)

then inequality δ(v) + ω(v) < 1 certainly holds. It is easy to verify that the left-hand
side of (4.13) is monotonically increasing with respect to δ(v), while the right-hand side
is monotonically decreasing with respect to δ(v). Given a threshold parameter τ , with
δ(v) ≤ τ , we obtain

n2θ2(2 + τ)2

1− τ
+
τ2

2
+
nθ(2 + τ)τ√

1− τ
< 1− τ. (4.14)

In this stage, setting

τ =
1

4
, θ =

1

10
√
2n
, (4.15)

an upper bound for the left-hand side of inequality (4.14) is 0.1109, while a lower bound for
the right-hand side of inequality (4.14) is 0.7500. In this case, by Lemma 4.1, we conclude
that the iterate (x+, s+) is strictly feasible. We proceed to derive an upper bound for δ(v+).
From Lemma 4.2, we have

δ(v+) ≤
1

1− θ

(
θ
√
n+

δ(v)2

1 +
√

1− δ(v)
+ ω(v)

)
.
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Using (4.15), it follows from the above inequality, with the right-hand side of the above
inequality being monotonically increasing with respect to δ(v), that

δ(v+) ≤
1

1− θ

(
θ
√
n+

τ2

1 +
√
1− τ

+ ω(v)
)
≤ 0.2315 < 0.2500 =

1

4
.

Therefore, the algorithm is well-defined in the sense that the property δ(x, s;µ) ≤ τ is
maintained in all iterations.

4.4 Complexity analysis

We have found that if at the start of an iteration the iterate satisfying δ(x, s;µ) ≤ τ and
τ and θ are defined as in (4.15), then after the full-Newton step, the new iterate is strictly
feasible and satisfies δ(x+, s+;µ+) ≤ τ . This establishes the algorithm to be well-defined.

In each main iteration, both the barrier parameter µ and ∥rb∥ and ∥rc∥ are reduced by
the factor 1− θ. Hence, the total number of main iterations is bounded above by

1

θ
log

max{nξ2, ∥r0b∥, ∥r0c∥}
ϵ

.

Since θ = 1
10

√
2n

, this yields the following result.

Theorem 4.5. Let (P) and (D) be feasible and ξ > 0 such that ∥(x∗; s∗)∥∞ ≤ ξ for some
optimal solutions x∗ of (P) and (y∗, s∗) of (D). In this case, after at most

10
√
2n log

max{nξ2, ∥r0b∥, ∥r0c∥}
ϵ

iterations the algorithm finds an ϵ-solution of (P) and (D).

5 Conclusions

Based on a new reformulation of the central path for finding the search directions, we
presented an improved full-Newton step IIPM for LO and derived the complexity results.
As a result, the number of iterations of [2, 4, 11, 13] is improved by a factor 3. It is worth
noting that Theorem 4.5 improves the iteration bound in [2,4,11,13] with a constant factor.
We refer to [13] for a discussion on how to choose the number ξ in the algorithm, and on
how infeasibility or unboundedness of the problems (P) and (D) can be established with the
algorithm presented. An interesting topic for further research may be the development of
the analysis to SO.
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