MODIFIED LAGRANGIAN DUALITY FOR THE SUPREMUM OF CONVEX FUNCTIONS*

M.A. Goberna, M.A. López ${ }^{\dagger}$ and M. Volle

Abstract

In this paper we associate with the problem (P) consisting of minimizing the supremum h of a family of extended real-valued convex functions on a given closed convex set C a modified Lagrange dual problem (D). Exploiting recent developments of the authors on convex duality, we provide min-sup and infmax duality theorems for the pair $(P)-(D)$, we characterize the subdifferentials of the objective function g of the reformulation of (P) as an unconstrained problem (nothing else but the sum of h with the indicator of C) and its conjugate g^{*}, and finally we give an explicit expression for the optimal set of (P).

Key words: Convex infinite programming, duality
Mathematics Subject Classification: 90C25; 90C48, 46N10

1 Introduction

It is well-known that minimax optimization problems arise in a huge number of applied fields as engineering design [12], computer-aided-design [13], circuit design [18], optimal control [16], etc. In the convex setting, and besides the duality for the sum of convex functions (recently considered in [17]), the duality for the supremum of a family of convex functions is in the heart of convex optimization and has many applications, specially in zero sum game theory (see [9] for instance) and min-max convex optimization (see [1] and references therein). In this note we present updated versions of more or less classical results by using recent improvements established in [4] and [5].

Having X a locally convex separated topological vector space, T a possibly infinite index set, $\left(h_{t}\right)_{t \in T}$ a family of extended real-valued $\left(h_{t}: X \rightarrow \mathbb{R} \cup\{+\infty\}, t \in T\right)$ lower semicontinuous (lsc in short) proper convex functions on X, and C a non-empty closed convex subset of X, we are concerned with the problem

$$
(P) \inf _{x} h(x) \text {, s.t. } x \in C,
$$

where h is the supremum function given by

$$
h:=\sup _{t \in T} h_{t} .
$$

[^0]A classical way to associate a Lagrangian dual problem to (P) is to transform it in a cone-constrained convex optimization problem (see e.g. [2, page 80]). To this end, let us consider the locally convex product space \mathbb{R}^{T} partially ordered by the closed convex cone \mathbb{R}_{+}^{T} and to which we add a greatest element denoted by ∞. A representation of the topological dual of \mathbb{R}^{T} is furnished by the space $\mathbb{R}^{(T)}$ of mappings $\xi: T \rightarrow \mathbb{R}$ whose support $\operatorname{supp} \xi:=\left\{t \in T: \xi_{t}:=\xi(t) \neq 0\right\}$ is finite. The standard bilinear coupling is then as follows:

$$
\left\langle\xi,\left(\eta_{t}\right)_{t \in T}\right\rangle=\sum_{t \in T} \xi_{t} \eta_{t}, \quad\left(\xi,\left(\eta_{t}\right)_{t \in T}\right) \in \mathbb{R}^{(T)} \times \mathbb{R}^{T}
$$

We denote by $\mathbb{R}_{+}^{(T)}$ the positive cone of $\mathbb{R}^{(T)}$ and by

$$
S_{T}:=\left\{\xi \in \mathbb{R}_{+}^{(T)}: \sum_{t \in T} \xi_{t}=1\right\}
$$

the unit simplex in the same space. Let us introduce the set

$$
M:=\bigcap_{t \in T} \operatorname{dom} h_{t},
$$

where $\operatorname{dom} h_{t}:=\left\{x \in X: h_{t}(x)<+\infty\right\}$ is the effective domain of h_{t}. We now associate with (P) the problem

$$
\left(P_{0}\right) \inf _{x, r} f(x, r) \text {, s.t. }(x, r) \in C \times \mathbb{R}, g(x, r) \in-\mathbb{R}_{+}^{T}
$$

where, for each $(x, r) \in X \times \mathbb{R}$,

$$
f(x, r):=r, g(x, r):= \begin{cases}\left(h_{t}(x)-r\right)_{t \in T}, & \text { if }(x, r) \in M \times \mathbb{R} \\ \infty, & \text { else }\end{cases}
$$

It holds that (P) and $\left(P_{0}\right)$ have the same optimal value, which may be $\pm \infty$.
The usual Lagrange dual problem associated with the cone-constrained convex problem $\left(P_{0}\right)$ is

$$
\left(D_{0}\right) \sup _{\xi} \inf _{(x, r) \in(C \cap M) \times \mathbb{R}}(f(x, r)+\langle\xi, g(x, r)\rangle) \text {, s.t. } \xi \in \mathbb{R}_{+}^{(T)}
$$

The optimal value of $\left(D_{0}\right)$ satisfies

$$
\begin{aligned}
\sup \left(D_{0}\right) & =\sup _{\xi \in \mathbb{R}_{+}^{(T)}} \inf _{(x, r) \in(C \cap M) \times \mathbb{R}}\left(r+\sum_{t \in T} \xi_{t}\left(h_{t}(x)-r\right)\right) \\
& =\sup _{\xi \in \mathbb{R}_{+}^{(T)}} \inf _{x \in C \cap M}\left(\sum_{t \in T} \xi_{t} h_{t}(x)+\inf _{r \in \mathbb{R}} r\left(1-\sum_{t \in T} \xi_{t}\right)\right) \\
& =\sup _{\xi \in S_{T}} \inf _{x \in C \cap M} \sum_{t \in T} \xi_{t} h_{t}(x)
\end{aligned}
$$

with the rule $\inf \emptyset=+\infty$.
Setting

$$
L_{0}(x, \xi):=\sum_{t \in T} \xi_{t} h_{t}(x), \text { for }(x, \xi) \in(C \cap M) \times S_{T}
$$

we have

$$
-\infty \leq \sup \left(D_{0}\right)=\sup _{\xi \in S_{T}} \inf _{x \in C \cap M} L_{0}(x, \xi) \leq \inf _{x \in C \cap M} \sup _{\xi \in S_{T}} L_{0}(x, \xi)=\inf (P) \leq+\infty
$$

We intend to get a simpler version of the above Lagrangian L_{0} by introducing

$$
L(x, \xi):=\sum_{t \in T} \xi_{t} h_{t}(x), \text { for }(x, \xi) \in X \times S_{T}
$$

where

$$
\begin{equation*}
\sum_{t \in T} \xi_{t} h_{t}(x):=\sum_{t \in \operatorname{supp} \xi} \xi_{t} h_{t}(x), \text { for }(x, \xi) \in X \times S_{T} \tag{1.1}
\end{equation*}
$$

It is worth noting that (1.1) enables to define $\sum_{t \in T} \xi_{t} h_{t}(x)$ for the elements x of X that do not belong to M, and it is equivalent to adopt the convention $0 \times(+\infty)=0$ (see [15, p. 24]; another possibility is to set $0 \times(+\infty)=+\infty$, which is the choice made for instance in [19]).

For each $x \in X$ we have

$$
h(x)=\sup _{\xi \in S_{T}} \sum_{t \in T} \xi_{t} h_{t}(x)
$$

and, consequently,

$$
\inf (P)=\inf _{x \in C} \sup _{\xi \in S_{T}} L(x, \xi)
$$

We thus introduce another Lagrange dual of (P) by setting

$$
(D) \sup _{\xi} \inf _{x \in C} L(x, \xi) \text {, s.t. } \xi \in S_{T} \text {. }
$$

It holds that

$$
\begin{equation*}
-\infty \leq \sup (D) \leq \sup \left(D_{0}\right) \leq \inf (P) \leq+\infty \tag{1.2}
\end{equation*}
$$

Let us give a simple example for which the two Lagrangian dual problems $\left(D_{0}\right)$ and (D) are different.

Example 1.1. Take $X=C=\mathbb{R}^{2}, T=\{1,2\}, S_{2}:=S_{T}, h_{1}\left(x_{1}, x_{2}\right)=e^{x_{2}}, h_{2}\left(x_{1}, x_{2}\right)=x_{1}$ if $\left(x_{1}, x_{2}\right) \in \mathbb{R} \times \mathbb{R}_{+}$, and $h_{2}\left(x_{1}, x_{2}\right)=+\infty$, otherwise. We have $M=\mathbb{R} \times \mathbb{R}_{+}$, and for $\left(\xi_{1}, \xi_{2}\right) \in S_{2}, \xi_{2} \neq 0$, one gets

$$
\inf _{\mathbb{R}^{2}}\left(\xi_{1} h_{1}+\xi_{2} h_{2}\right)=\inf _{M}\left(\xi_{1} h_{1}+\xi_{2} h_{2}\right)=-\infty
$$

while, for $\left(\xi_{1}, \xi_{2}\right)=(1,0)$, one has

$$
\inf _{\mathbb{R}^{2}}\left(\xi_{1} h_{1}+\xi_{2} h_{2}\right)=0 \neq 1=\inf _{M}\left(\xi_{1} h_{1}+\xi_{2} h_{2}\right)
$$

Consequently,

$$
0=\sup (D)<\sup \left(D_{0}\right)=1=\inf (P)
$$

The paper is organized as follows. Section 2 is devoted to the converse strong duality $\min (P)=\sup (D)$, which is established in Theorem 2.4 by using a recent result about consistency of infinite convex systems [5, Corollary 3]. This property entails the equality of both optimal values and the existence of optimal solutions for the primal problem (P). In Section 3 we get a formula for the Legendre-Fenchel conjugate $\left(\mathrm{i}_{C}+h\right)^{*}$ of $\mathrm{i}_{C}+h$, where i_{C} denotes the indicator function of C, in connection with the property $\inf (P)=\max (D)$ (Theorem 3.3 and subsequent corollaries). Finally, Section 4 is concerned with the subdifferential $\partial\left(\mathrm{i}_{C}+h\right)$ of the objective function $\mathrm{i}_{C}+h$ (Theorem 4.4, Corollary 4.5) and also with the subdifferential $\partial\left(\mathrm{i}_{C}+h\right)^{*}$ of $\left(\mathrm{i}_{C}+h\right)^{*}$ (Theorem 4.6, Proposition 4.7), which gives a formula for the optimal set $S(P)$ of the problem (P) (Corollaries 4.8 and 4.9).

2 The Min-Sup Property

In order to establish the relation $\min (P)=\sup (D)$ we need to recall some lemmas. Having a non-empty closed convex subset A of X and $f \in \Gamma(X)$ (the class of lsc proper convex functions on X), we denote by A_{∞} (resp. f_{∞}) the recession cone of A (resp., the recession
function of f). It holds that $\left(\mathrm{i}_{A}\right)_{\infty}=\mathrm{i}_{A_{\infty}}$, epi $f_{\infty}=(\text { epi } f)_{\infty}, f_{\infty}=\mathrm{i}_{\text {dom } f^{*}}^{*}$, where epi f is the epigraph of f and dom f^{*} the effective domain of f^{*}, and $[f \leq r]_{\infty}=\left[f_{\infty} \leq 0\right]$ for all $r \in \mathbb{R}$ such that $[f \leq r] \neq \emptyset$ (here $[f \leq r]:=\{x \in X: f(x) \leq r\}$). For any family of closed convex sets $\left(A_{t}\right)_{t \in T}$ with non-empty intersection, one has (see e.g. [8, p. 375])

$$
\begin{equation*}
\left(\bigcap_{t \in T} A_{t}\right)_{\infty}=\bigcap_{t \in T}\left(A_{t}\right)_{\infty} \tag{2.1}
\end{equation*}
$$

We also have (see, e.g., [8, p. 377]) that, for any $(x, \bar{x}) \in X \times \operatorname{dom} f$,

$$
f_{\infty}(x)=\lim _{s \rightarrow+\infty} \frac{f(\bar{x}+s x)-f(\bar{x})}{s}
$$

and this formula straightforwardly leads us to the following equality for any pair $f, g \in \Gamma(X)$ such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$:

$$
\begin{equation*}
(f+g)_{\infty}=f_{\infty}+g_{\infty} \tag{2.2}
\end{equation*}
$$

Moreover, the definition epi $f_{\infty}=(\text { epi } f)_{\infty}$, together with (2.1), yield the following property for any family $\left(f_{t}\right)_{t \in T} \subset \Gamma(X)$ such that $f:=\sup _{t \in T} f_{t}$ is proper:

$$
\begin{equation*}
f_{\infty}=\sup _{t \in T}\left(f_{t}\right)_{\infty} \tag{2.3}
\end{equation*}
$$

Having $B \subset X^{*}, B \neq \emptyset$, we denote by B^{-}the negative polar cone of B, that is, $B^{-}=$ $\left[\mathrm{i}_{B}^{*} \leq 0\right] \equiv\left\{x \in X: \mathrm{i}_{B}^{*}(x) \leq 0\right\}$. Recall that, by the Hanh-Banach Theorem, the negative bipolar of B coincides with the w^{*}-closure of the convex cone generated by B, i.e., $B^{--}=$ $\mathrm{cl}^{w^{*}}$ cone B. In the sequel we denote by τ^{*} the Mackey topology on X^{*}. Recall that a convex function $\varphi: X^{*} \rightarrow \overline{\mathbb{R}}:=[-\infty,+\infty]$ is said to be τ^{*}-quasicontinuous ([6], [7]) when the affine hull of $\operatorname{dom} \varphi$ is w^{*}-closed (or, equivalently, τ^{*}-closed) and has finite codimension, the relative interior of $\operatorname{dom} \varphi$ with respect to the topology induced by τ^{*} is nonempty (i.e. $\operatorname{rint}(\operatorname{dom} \varphi) \neq \emptyset$), and the restriction of φ to $\operatorname{rint}(\operatorname{dom} \varphi)$ is continuous. If φ is τ^{*} quasicontinuous, then φ^{*} is weakly-inf-locally compact (meaning that, for each $r \in \mathbb{R}$, the sublevel set $\left[\varphi^{*} \leq r\right]$ is w-locally compact) [11, Corollary II.3]. The converse is true whenever $\varphi \in \Gamma\left(X^{*}\right)[6$, Proposition 5.4]. We will use the fact that any extended real-valued convex function on X^{*} which is majorized by a convex τ^{*}-quasicontinuous one is τ^{*}-quasicontinuous too [11, Theorem II.3].

Lemma 2.1 ([11, Theorem III.3]). Let $\varphi: X^{*} \rightarrow \overline{\mathbb{R}}$ be a convex function which is τ^{*} quasicontinuous and such that $\varphi\left(0_{X^{*}}\right) \neq-\infty$ and $\mathrm{cl}^{w^{*}}$ cone $\operatorname{dom} \varphi$ is a linear subspace. Then $\partial \varphi\left(0_{X^{*}}\right)$ is the sum of a non-empty w-compact convex set and a finite dimensional linear subspace.

Lemma 2.2. Let $g \in \Gamma(X)$ be weakly-inf-locally compact and such that $\left[g_{\infty} \leq 0\right]$ is a linear subspace. Then $\inf _{X} g \in \mathbb{R}$ and $\operatorname{argmin} g$ is the sum of a non-empty w-compact convex set and a finite dimensional linear subspace.

Proof. Let us apply Lemma 2.1 for $\varphi=g^{*}$. Since g is w-inf-locally compact, g^{*} is τ^{*} quasicontinuous. Since $g \in \Gamma(X), g^{*}$ is proper, and so, $g^{*}\left(0_{X^{*}}\right) \neq-\infty$. Finally,

$$
\mathrm{cl}^{w^{*}} \text { cone } \operatorname{dom} g^{*}=\left(\operatorname{dom} g^{*}\right)^{--}=\left[\mathrm{i}_{\operatorname{dom} g^{*}}^{*} \leq 0\right]^{-}=\left[g_{\infty} \leq 0\right]^{-}
$$

is a linear subspace. We conclude the proof by noting that $\operatorname{argmin} g=\partial g^{*}\left(0_{X^{*}}\right)$ (see, for instance, [19, Theorem 2.4.2(iii)]).

Lemma 2.3 ([5, Corollary 3]). Let $\left(f_{t}\right)_{t \in T}$ be a family of functions from $\Gamma(X)$, and C be a non-empty closed convex subset of X. Assume that

$$
\begin{equation*}
\exists \bar{\lambda} \in \mathbb{R}_{+}^{(T)}: \quad \mathrm{i}_{C}+\sum_{t \in T} \bar{\lambda}_{t} f_{t} \text { is } \text { w-inf-locally compact } \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigcap_{t \in T}\left[\left(f_{t}\right)_{\infty} \leq 0\right] \cap C_{\infty} \text { is a linear subspace. } \tag{2.5}
\end{equation*}
$$

Then the following statements are equivalent:
(i) The system $\left\{x \in C ; f_{t}(x) \leq 0, t \in T\right\}$ is consistent.
(ii) $\inf _{C} \sum_{t \in T} \lambda_{t} f_{t} \leq 0, \forall \lambda \in P_{T}:=\mathbb{R}_{+}^{(T)} \backslash\left\{0_{T}\right\}$.
(iii) $\inf _{C} \sum_{t \in T} \lambda_{t} f_{t} \leq 0, \forall \lambda \in S_{T}$.

We are now in position to state and prove our first result.
Theorem 2.4. Assume that

$$
\begin{equation*}
\exists \bar{\lambda} \in \mathbb{R}_{+}^{(T)}: \quad \mathrm{i}_{C}+\sum_{t \in T} \bar{\lambda}_{t} h_{t} \text { is } w \text {-inf-locally compact } \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigcap_{t \in T}\left[\left(h_{t}\right)_{\infty} \leq 0\right] \cap C_{\infty} \text { is a linear subspace. } \tag{2.7}
\end{equation*}
$$

Then, either $\inf (P)=\sup (D)=+\infty$, or $\min (P)=\sup (D) \in \mathbb{R}$.
Moreover, if $\sup (D)<+\infty$ then the optimal set $S(P)$ is the sum of a non-empty w-compact convex set and a finite dimensional linear subspace.

Proof. Assume first that $\sup (D)=+\infty$. By (1.2) we have $\inf (P)=+\infty$.
Assume now that $\sup (D)<+\infty$ and let r be an arbitrary real number such that $r \geq$ $\sup (D)$. By definition of (D) we have

$$
\inf _{C} \sum_{t \in T} \xi_{t} h_{t} \leq r, \forall \xi \in S_{T},
$$

or, equivalently,

$$
\inf _{C} \sum_{t \in T} \xi_{t}\left(h_{t}-r\right) \leq 0, \forall \xi \in S_{T}
$$

Setting $f_{t}:=h_{t}-r, t \in T$, in Lemma 2.3 we quote from (2.6) and (2.7) that the conditions (2.4) and (2.5) are satisfied whatever r may be. We infer that the system $\left\{x \in C ;\left(h_{t}-r\right)(x) \leq 0, t \in T\right\}$ is consistent and so there exists $\bar{x} \in C$ such that $\inf (P) \leq$ $h(\bar{x}) \leq r$. Since $r \geq \sup (D)$ is arbitrary, we get that $\sup (D) \geq \inf (P)$ and, by (1.2), $\sup (D)=\inf (P) \in[-\infty,+\infty[$. It remains to prove that $\inf (P) \neq-\infty$ and (P) does admit optimal solutions. To this end let us introduce the function $g:=\mathrm{i}_{C}+h$.

Since $\inf (P) \neq+\infty$ we have that g is proper and, so, $g \in \Gamma(X)$. From (2.2) and (2.3), we have

$$
g_{\infty}=\left(\mathrm{i}_{C}\right)_{\infty}+\sup _{t \in T}\left(h_{t}\right)_{\infty}=\mathrm{i}_{\left(C_{\infty}\right)}+\sup _{t \in T}\left(h_{t}\right)_{\infty}
$$

and consequently, $\left[g_{\infty} \leq 0\right]=C_{\infty} \cap \bigcap_{t \in T}\left[\left(h_{t}\right)_{\infty} \leq 0\right]$. In order to apply Lemma 2.2 to the function g it remains to be checked that g is w-inf-locally compact. If $\bar{\lambda}$ in (2.6) is equal to 0_{T}, then C is w-locally compact and, since h is w-lsc, $g=\mathrm{i}_{C}+h$ is w-inf-locally compact. If
$\bar{\lambda} \neq 0_{T}$, let us set $\bar{\xi}=\left(\sum_{t \in T} \bar{\lambda}_{t}\right)^{-1} \bar{\lambda}$. Then $\bar{\xi} \in S_{T}$ and $\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}$ is a w-inf-locally compact minorant of g. Since g is w-lsc, it follows that g is w-inf-locally compact too. From Lemma 2.2 we infer that $\inf (P)=\inf _{X} g \in \mathbb{R}$ with $\operatorname{argmin} g \neq \emptyset$, that means that (P) admits optimal solutions.

The last assertion in Theorem 2.4 is also a consequence of Lemma 2.2.
Remark 2.5. If X is finite dimensional, condition (2.6) in Theorem 2.4 is automatically satisfied.

Let us revisite Example 1.1. One has $\left[\left(h_{1}\right)_{\infty} \leq 0\right]=\mathbb{R} \times \mathbb{R}_{-},\left[\left(h_{2}\right)_{\infty} \leq 0\right]=\mathbb{R}_{-} \times \mathbb{R}_{+}$, and $C_{\infty}=\mathbb{R} \times \mathbb{R}$. Thus, condition (2.7) in Theorem 2.4 fails since

$$
\left[\left(h_{1}\right)_{\infty} \leq 0\right] \cap\left[\left(h_{2}\right)_{\infty} \leq 0\right] \cap C_{\infty}=\mathbb{R}_{-} \times\{0\}
$$

is not a linear space.
Notice that the sufficient condition (2.7) for converse strong duality is not necessary as the following modification of Example 1.1 shows:

Example 2.6. Take $X=\mathbb{R}^{2}, C=\mathbb{R} \times \mathbb{R}_{+}, T=\{1,2\}, S_{2}:=S_{T}, h_{1}\left(x_{1}, x_{2}\right)=e^{x_{2}}$ and $h_{2}\left(x_{1}, x_{2}\right)=x_{1}$. We have $M=\mathbb{R}^{2}$, and

$$
\max (D)=1=\min (P)
$$

while

$$
\begin{aligned}
C_{\infty} \cap\left[\left(h_{1}\right)_{\infty}\right. & \leq 0] \cap\left[\left(h_{2}\right)_{\infty} \leq 0\right]=\left(\mathbb{R} \times \mathbb{R}_{+}\right) \cap\left(\mathbb{R} \times \mathbb{R}_{-}\right) \cap\left(\mathbb{R}_{-} \times \mathbb{R}\right) \\
& =\mathbb{R}_{-} \times\{0\}
\end{aligned}
$$

is not a linear subspace.
In the case when $C \cap M$ is non-empty and closed we can apply Theorem 2.4 replacing C by $C \cap M$. We obtain a result involving the classical dual $\left(D_{0}\right)$ instead of our dual (D).

Corollary 2.7. Assume that $C \cap M$ is non-empty and closed, and the two conditions below hold:

$$
\begin{equation*}
\exists \bar{\lambda} \in \mathbb{R}_{+}^{(T)}: \quad \mathrm{i}_{C \cap M}+\sum_{t \in T} \bar{\lambda}_{t} h_{t} \text { is w-inf-locally compact } \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigcap_{t \in T}\left[\left(h_{t}\right)_{\infty} \leq 0\right] \cap(C \cap M)_{\infty} \text { is a linear subspace. } \tag{2.9}
\end{equation*}
$$

Then, either $\inf (P)=\sup \left(D_{0}\right)=+\infty$, or $\min (P)=\sup \left(D_{0}\right) \in \mathbb{R}$. Moreover, if $\sup \left(D_{0}\right)<$ $+\infty$ then the optimal set $S(P)$ is the sum of a non-empty w-compact convex set and a finite dimensional linear subspace.

3 The Inf-Max Property

Let us consider the function $\varphi: X^{*} \rightarrow \overline{\mathbb{R}}$ given by

$$
\varphi=\inf _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}
$$

and the set

$$
\begin{equation*}
\mathfrak{A}:=\bigcup_{\xi \in S_{T}} \operatorname{epi}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*} . \tag{3.1}
\end{equation*}
$$

It is not difficult to check that \mathfrak{A} is convex and lies between the strict epigraph and the epigraph of φ, i.e.

$$
\operatorname{epi}_{s} \varphi \subset \mathfrak{A} \subset \operatorname{epi} \varphi
$$

It follows that $\mathrm{cl}^{w^{*}} \mathfrak{A}=\mathrm{cl}^{w^{*}} \operatorname{epi}_{s} \varphi=\mathrm{cl}^{w^{*}} \operatorname{epi} \varphi$ and, for each $x^{*} \in X^{*}$,

$$
\begin{equation*}
\varphi\left(x^{*}\right)=\inf \left\{t \in \mathbb{R}:\left(x^{*}, t\right) \in \mathfrak{A}\right\} . \tag{3.2}
\end{equation*}
$$

Lemma 3.1. (See also [2, Proposition 12.1]) The function φ is convex and $\varphi^{*}=\mathrm{i}_{C}+h$. Moreover, if $C \cap \operatorname{dom} h \neq \emptyset$, then $\mathrm{cl}^{w^{*}} \mathfrak{A}=\operatorname{epi}\left(\mathrm{i}_{C}+h\right)^{*}$.

Proof. Since \mathfrak{A} is convex, it follows from (3.2) that φ is convex. One has

$$
\begin{aligned}
\varphi^{*} & =\left(\inf _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}\right)^{*} \\
& =\sup _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{* *} \\
& =\sup _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right) \\
& =\mathrm{i}_{C}+\sup _{\xi \in S_{T}} \sum_{t \in T} \xi_{t} h_{t}=\mathrm{i}_{C}+h .
\end{aligned}
$$

Finally, if $C \cap \operatorname{dom} h \neq \emptyset$, then $\operatorname{dom} \varphi^{*} \neq \emptyset$ and, consequently, $\varphi^{* *}=\mathrm{cl}^{w^{*}} \varphi$. In other words,

$$
\operatorname{cl}^{w^{*}} \mathfrak{A}=\operatorname{epicl}^{w^{*}} \varphi=\operatorname{epi} \varphi^{* *}=\operatorname{epi}\left(\mathrm{i}_{C}+h\right)^{*}
$$

In order to state the next theorem we have to recall the concept of closedness regarding a set which has been introduced and used in [2] (see also [3] and [14] for related approaches).

Definition 3.2. Having two subsets A and B of a topological space, one says that A is closed regarding to B if $B \cap \operatorname{cl} A=B \cap A$.

Clearly, a closed subset is closed regarding any subset. Also, A is closed regarding B if and only if A is closed regarding each subset of B.

Now we can state:
Theorem 3.3. Assume that $C \cap \operatorname{dom} h \neq \emptyset$. Then, for any $x^{*} \in X^{*}$, the following statements are equivalent:
(i) $\left(\mathrm{i}_{C}+h\right)^{*}\left(x^{*}\right)=\min _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}\left(x^{*}\right)$, including the value $+\infty$.
(ii) \mathfrak{A} is w^{*}-closed regarding $\left\{x^{*}\right\} \times \mathbb{R}$.

Proof. Assume first that $\left(\mathrm{i}_{C}+h\right)^{*}\left(x^{*}\right)=+\infty$.
By Lemma 3.1 we have $\varphi\left(x^{*}\right)=\varphi^{* *}\left(x^{*}\right)=+\infty$ and the statement (i) holds true. Since $\operatorname{dom} \varphi^{*}=C \cap \operatorname{dom} h \neq \emptyset$, we have that $\varphi^{* *}=\operatorname{cl}^{w^{*}} \varphi$. So, $\operatorname{cl}^{w^{*}} \varphi\left(x^{*}\right)=+\infty$ and $\left\{x^{*}\right\} \times \mathbb{R}$ does not meet the set $\left\{x^{*}\right\} \times \mathrm{cl}^{w^{*}}$ epi φ. Recall that cl ${ }^{w^{*}} \operatorname{epi} \varphi=\mathrm{cl}^{w^{*}} \mathfrak{A}$. Therefore, $\left\{x^{*}\right\} \times \mathbb{R}$ does not meet $\mathrm{cl}^{w^{*}} \mathfrak{A}$ and this proves that \mathfrak{A} is w^{*}-closed regarding $\left\{x^{*}\right\} \times \mathbb{R}$. So, the statements (i) and (ii) are both true in this case.

Assume now that $\alpha:=\left(\mathrm{i}_{C}+h\right)^{*}\left(x^{*}\right) \neq+\infty$.

Since $\mathrm{i}_{C}+h \in \Gamma(X)$, we have that $\left(\mathrm{i}_{C}+h\right)^{*} \in \Gamma\left(X^{*}\right)$ and therefore, $\alpha \in \mathbb{R}$. By Lemma 3.1 it holds that

$$
\begin{equation*}
\left(x^{*}, \alpha\right) \in \operatorname{epi} \varphi^{* *}=\operatorname{cl}^{w^{*}} \operatorname{epi} \varphi=\mathrm{cl}^{w^{*}} \mathfrak{A} \tag{3.3}
\end{equation*}
$$

If (ii) holds we get from (3.3) that $\left(x^{*}, \alpha\right) \in \mathfrak{A}$ and there exists $\bar{\xi} \in S_{T}$ such that

$$
\begin{equation*}
\inf _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}\left(x^{*}\right) \leq\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right) \leq \alpha \tag{3.4}
\end{equation*}
$$

Since $\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t} \leq \mathrm{i}_{C}+h$ for all $\xi \in S_{T}$, we have

$$
\inf _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*} \geq\left(\mathrm{i}_{C}+h\right)^{*}
$$

and, by (3.4), $\alpha=\min _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}\left(x^{*}\right)$ (the minimum α is attained at $\bar{\xi}$).
Conversely, if $\alpha=\min _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}\left(x^{*}\right)$, let us prove that (ii) holds. So, let $r \in \mathbb{R}$ be such that $\left(x^{*}, r\right) \in \mathrm{cl}^{w^{*}} \mathfrak{A}=\operatorname{epi} \varphi^{* *}$. By Lemma 3.1 we have $\alpha=\left(\mathrm{i}_{C}+h\right)^{*}\left(x^{*}\right)=$ $\varphi^{* *}\left(x^{*}\right) \leq r$ and there exists $\bar{\xi} \in S_{T}$ such that $\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right) \leq r$, and this entails $\left(x^{*}, r\right) \in \mathfrak{A}$.
Corollary 3.4. Assume that $C \cap \operatorname{dom} h \neq \emptyset$. The following statements are equivalent:
(i) $\inf (P)=\max (D)$, including the value $-\infty$.
(ii) \mathfrak{A} is w^{*}-closed regarding $\left\{0_{X^{*}}\right\} \times \mathbb{R}$.

Proof. Apply Theorem 3.3 with $x^{*}=0_{X^{*}}$, noting that $-\inf (P)=\left(\mathrm{i}_{C}+h\right)^{*}\left(0_{X^{*}}\right)$.
According to Corollary 3.4, applied again to Example 1.1, the set

$$
\mathfrak{A}=\bigcup_{\xi \in S_{2}} \operatorname{epi}\left(\xi_{1} h_{1}+\xi_{2} h_{2}\right)^{*}
$$

is not closed regarding $\{0\} \times \mathbb{R}$. Moreover, the set

$$
\bigcup_{\xi \in S_{2}} \operatorname{epi}\left(\mathrm{i}_{M}+\xi_{1} h_{1}+\xi_{2} h_{2}\right)^{*}
$$

is closed regarding $\{0\} \times \mathbb{R}$ since this fact corresponds to the strong duality for the usual Lagrangian L_{0} :

$$
\inf (P)=\max _{\xi \in S_{2}} \inf _{x \in M}\left(\xi_{1} h_{1}(x)+\xi_{2} h_{2}(x)\right)=1
$$

the maximum being attained for $\xi=(1,0)$.
In fact, as long as the standard Lagrangian dual $\left(D_{0}\right)$ is concerned, we can replace again C by $C \cap M$ provided that $C \cap M$ is non-empty and closed. In this way we get from Corollary 3.4:

Corollary 3.5. Assume that $C \cap \operatorname{dom} h \neq \emptyset$ and $C \cap M$ is closed. The following statements are equivalent:
(i) $\inf (P)=\max \left(D_{0}\right)$, including the value $-\infty$.
(ii) $\bigcup_{\xi \in S_{T}}$ epi $\left(\mathrm{i}_{C \cap M}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}$ is w^{*}-closed regarding $\left\{0_{X^{*}}\right\} \times \mathbb{R}$.

Finally we present a straightforward consequence of Theorem 3.3:
Corollary 3.6. Assume that $C \cap \operatorname{dom} h \neq \emptyset$. The following statements are equivalent:
(i) $\left(\mathrm{i}_{C}+h\right)^{*}=\min _{\xi \in S_{T}}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}$.
(ii) \mathfrak{A} is w^{*}-closed.

4 Subdifferential and Argmin Calculus

Let us consider again the function $g=\mathrm{i}_{C}+h$. The set

$$
\operatorname{argmin} g=\left\{x \in C \cap \operatorname{dom} h: g(x)=\inf _{X} g\right\}
$$

coincides with the optimal solution set $S(P)$ of (P), and we have

$$
x \in S(P) \Leftrightarrow 0_{X^{*}} \in \partial g(x) \Leftrightarrow x \in \partial g^{*}\left(0_{X^{*}}\right)
$$

Therefore, computing the subdifferential of the functions g and g^{*} is of crucial importance in our context. In this section we will apply Theorem 3.3 and its corollaries to obtain formulas for $\partial g, \partial g^{*}$, and $\operatorname{argmin} g$.

Given $x \in C \cap \operatorname{dom} h=\operatorname{dom} g$, let us consider the set

$$
\begin{equation*}
M(x):=\left\{\xi \in S_{T}: \sum_{t \in T} \xi_{t} h_{t}(x)=h(x)\right\} \tag{4.1}
\end{equation*}
$$

Next lemma furnishes another expression for $M(x)$.
Lemma 4.1. We have $M(x)=\left\{\xi \in S_{T}: h_{t}(x)=h(x) \forall t \in \operatorname{supp} \xi\right\}$.
Proof. One has $\xi \in M(x)$ if and only if $\sum_{t \in \operatorname{supp} \xi} \xi_{t}\left(h_{t}(x)-h(x)\right)=0$. Since $h_{t}(x) \leq h(x)$ for any $t \in T$, each term of the above sum is non-positive. Since this sum is equal to zero, each term of the sum must be equal to zero.

Conversely, if $h_{t}(x)=h(x)$ for each $t \in \operatorname{supp} \xi$, then $\sum_{t \in T} \xi_{t} h_{t}(x)=\sum_{t \in T} \xi_{t} h(x)=$ $h(x)$, and $\xi \in M(x)$.

Let $x \in C \cap \operatorname{dom} h=\operatorname{dom} g$. Concerning ∂g let us quote two general facts in Proposition 4.2 and Theorem 4.4 below.

Proposition 4.2. $\partial g(x) \supset \bigcup_{\xi \in M(x)} \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)(x)$.
Proof. Let $x^{*} \in \bigcup_{\xi \in M(x)} \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)(x)$. Let $\bar{\xi} \in M(x)$ be such that $x^{*} \in \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)(x)$. Noting that $\sum_{t \in T} \bar{\xi}_{t} h_{t} \leq h, \mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t} \leq g$, and $\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*} \geq g^{*}$, we have

$$
\begin{aligned}
\left\langle x^{*}, x\right\rangle-g(x) & \leq g^{*}\left(x^{*}\right) \\
& \leq\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right) \\
& =\left\langle x^{*}, x\right\rangle-\sum_{t \in T} \bar{\xi}_{t} h_{t}(x) \\
& =\left\langle x^{*}, x\right\rangle-h(x)=\left\langle x^{*}, x\right\rangle-g(x) .
\end{aligned}
$$

So, $\left\langle x^{*}, x\right\rangle-g(x)=g^{*}\left(x^{*}\right)$ and $x^{*} \in \partial g(x)$.
Proposition 4.3. For any $x \in \operatorname{dom} g$, the convex set \mathfrak{A} in (3.1) is w^{*}-closed regarding the set

$$
B(x):=\left(\bigcup_{\xi \in M(x)} \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)(x)\right) \times \mathbb{R}
$$

Proof. Let $x \in \operatorname{dom} g$ and $\left(x^{*}, r\right) \in\left(\operatorname{cl}^{w^{*}} \mathfrak{A}\right) \cap B(x)$. By Lemma 3.1 one has $g^{*}\left(x^{*}\right) \leq r$ and, by definition of $B(x)$, there exists $\bar{\xi} \in M(x)$ such that

$$
\begin{equation*}
x^{*} \in \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)(x) \tag{4.2}
\end{equation*}
$$

and so,

$$
\begin{aligned}
r & \geq g^{*}\left(x^{*}\right) \geq\left\langle x^{*}, x\right\rangle-g(x) \\
& =\left\langle x^{*}, x\right\rangle-h(x) \\
& =\left\langle x^{*}, x\right\rangle-\sum_{t \in T} \bar{\xi}_{t} h_{t}(x) \\
& =\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right) .
\end{aligned}
$$

The last equality comes from (4.2). Thus, $\left(x^{*}, r\right) \in \operatorname{epi}\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*} \subset \mathfrak{A}$.
Theorem 4.4. For any $x \in \operatorname{dom} g$, the following statements are equivalent:
(i) $\partial g(x)=\bigcup_{\xi \in M(x)} \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)(x)$.
(ii) \mathfrak{A} is w^{*}-closed regarding $\partial g(x) \times \mathbb{R}$.

Proof. $(i) \Rightarrow(i i)$ comes from Proposition 4.3.
Let us prove that $(i i) \Rightarrow(i)$. By Proposition 4.2 it suffices to prove that the inclusion $" \subset "$ in (i) is satisfied. So, let $x^{*} \in \partial g(x)$. By Lemma 3.1 we have $\left(x^{*}, g^{*}\left(x^{*}\right)\right) \in\left(\mathrm{cl}^{w^{*}} \mathfrak{A}\right) \cap$ $(\partial g(x) \times \mathbb{R})$ and, by $(i i),\left(x^{*}, g^{*}\left(x^{*}\right)\right) \in \mathfrak{A}$. Thus, there exists $\bar{\xi} \in S_{T}$ such that

$$
\left(x^{*}, g^{*}\left(x^{*}\right)\right) \in \operatorname{epi}\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}
$$

and

$$
\begin{aligned}
\left\langle x^{*}, x\right\rangle-h(x) & \leq\left\langle x^{*}, x\right\rangle-\sum_{t \in T} \bar{\xi}_{t} h_{t}(x) \\
& \leq\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right) \\
& \leq g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle-g(x)=\left\langle x^{*}, x\right\rangle-h(x)
\end{aligned}
$$

It follows that $\sum_{t \in T} \bar{\xi}_{t} h_{t}(x)=h(x)$ and

$$
\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle-\sum_{t \in T} \bar{\xi}_{t} h_{t}(x)
$$

or, in other words, $\bar{\xi} \in M(x)$ and $x^{*} \in \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)(x)$.
Corollary 4.5. [10, Theorem 2] If \mathfrak{A} is w^{*}-closed then for any $x \in \operatorname{dom} g$, it holds

$$
\partial g(x)=\bigcup_{\xi \in M(x)} \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)(x)
$$

We end this note by establishing a new formula for the subdifferential of the conjugate of the function $g=\mathrm{i}_{C}+h$. We shall also derive from this formula an expression for the optimal solution set $S(P)$, which furnishes necessary and sufficient optimality conditions.

We associate with $\xi \in S_{T}$ the set

$$
N(\xi):=\left\{x \in C \cap \operatorname{dom} h: \sum_{t \in T} \xi_{t} h_{t}(x)=h(x)\right\}
$$

By (4.1) we have

$$
x \in N(\xi) \Leftrightarrow \xi \in M(x)
$$

and, by Lemma 4.1,

$$
N(\xi):=\left\{x \in C \cap \operatorname{dom} h: h_{t}(x)=h(x) \forall t \in \operatorname{supp} \xi\right\} .
$$

Theorem 4.6. For any $x^{*} \in \operatorname{dom} g^{*}$ one has

$$
\partial g^{*}\left(x^{*}\right) \supset \bigcup_{\xi \in S_{T}}\left(N(\xi) \cap \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}\left(x^{*}\right)\right)
$$

If, additionally, \mathfrak{A} is w^{*}-closed regarding $\left\{x^{*}\right\} \times \mathbb{R}$, then

$$
\begin{equation*}
\partial g^{*}\left(x^{*}\right)=\bigcup_{\xi \in S_{T}}\left(N(\xi) \cap \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}\left(x^{*}\right)\right) \tag{4.3}
\end{equation*}
$$

Proof. Let $\bar{\xi} \in S_{T}$ and $x \in N(\bar{\xi}) \cap \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right)$. One has

$$
\begin{aligned}
g^{*}\left(x^{*}\right) & \leq\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right) \\
& =\left\langle x^{*}, x\right\rangle-\sum_{t \in T} \bar{\xi}_{t} h_{t}(x) \\
& =\left\langle x^{*}, x\right\rangle-h(x)=\left\langle x^{*}, x\right\rangle-g(x)
\end{aligned}
$$

and, consequently, $g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle-g(x)$, that is, $x \in \partial g^{*}\left(x^{*}\right)$.
To prove (4.3), let $x \in \partial g^{*}\left(x^{*}\right)$. By Lemma 3.1 we have

$$
\left(x^{*},\left\langle x^{*}, x\right\rangle-g(x)\right) \in\left(\mathrm{cl}^{w^{*}} \mathfrak{A}\right) \cap\left\{x^{*}\right\} \times \mathbb{R}
$$

and, since \mathfrak{A} is w^{*}-closed regarding $\left\{x^{*}\right\} \times \mathbb{R}$, we have $\left(x^{*},\left\langle x^{*}, x\right\rangle-g(x)\right) \in \mathfrak{A}$. So, there exists $\bar{\xi} \in S_{T}$ such that

$$
\left(x^{*},\left\langle x^{*}, x\right\rangle-g(x)\right) \in \operatorname{epi}\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}
$$

and

$$
\begin{aligned}
\left\langle x^{*}, x\right\rangle-\sum_{t \in T} \bar{\xi}_{t} h_{t}(x) & \leq\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right) \\
& \leq\left\langle x^{*}, x\right\rangle-g(x) \\
& \leq\left\langle x^{*}, x\right\rangle-\sum_{t \in T} \bar{\xi}_{t} h_{t}(x)
\end{aligned}
$$

We thus have $\sum_{t \in T} \bar{\xi}_{t} h_{t}(x)=g(x)=h(x), x \in N(\bar{\xi})$, and

$$
\left\langle x^{*}, x\right\rangle-\sum_{t \in T} \bar{\xi}_{t} h_{t}(x)=\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right)
$$

that means $x^{*} \in \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)(x)$ or, equivalently,

$$
x \in\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right)
$$

We can state a partial converse of Theorem 4.6.

Proposition 4.7. Let $x^{*} \in X^{*}$ be such that $\partial g^{*}\left(x^{*}\right) \neq \emptyset$ and assume that (4.3) holds. Then \mathfrak{A} is w^{*}-closed regarding $\left\{x^{*}\right\} \times \mathbb{R}$.
Proof. Assume that $\left(x^{*}, r\right) \in \mathrm{cl}^{w^{*}} \mathfrak{A}$. We have to check that $\left(x^{*}, r\right) \in \mathfrak{A}$.
By Lemma 3.1 we have $g^{*}\left(x^{*}\right) \leq r$. Picking $x \in \partial g^{*}\left(x^{*}\right)$, which is non-empty, there exists, by (4.3), $\bar{\xi} \in S_{T}$ such that $x \in N(\bar{\xi}) \cap \partial\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right)$. Then we have

$$
\begin{aligned}
g^{*}\left(x^{*}\right) & \leq\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right) \\
& =\left\langle x^{*}, x\right\rangle-\sum_{t \in T} \bar{\xi}_{t} h_{t}(x) \\
& =\left\langle x^{*}, x\right\rangle-h(x)=\left\langle x^{*}, x\right\rangle-g(x) \leq g^{*}\left(x^{*}\right)
\end{aligned}
$$

Therefore, $g^{*}\left(x^{*}\right)=\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*}\left(x^{*}\right)$ and

$$
\left(x^{*}, r\right) \in \operatorname{epi}\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)^{*} \subset \mathfrak{A}
$$

Corollary 4.8. Assume that $\inf (P) \in \mathbb{R}$. We have

$$
S(P) \supset \bigcup_{\xi \in S_{T}}\left(N(\xi) \cap \operatorname{argmin}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)\right)
$$

If, additionally, \mathfrak{A} is w^{*}-closed regarding $\left\{0_{X^{*}}\right\} \times \mathbb{R}$, then

$$
S(P)=\bigcup_{\xi \in S_{T}}\left(N(\xi) \cap \operatorname{argmin}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)\right) .
$$

In other words, for any $x \in C \cap \operatorname{dom} h$ one has

$$
x \in S(P) \Leftrightarrow\left\{\begin{array}{l}
\exists \bar{\xi} \in S_{T}: h_{t}(x)=h(x) \forall t \in \operatorname{supp} \bar{\xi} \\
\text { and } \\
x \in \operatorname{argmin}\left(\mathrm{i}_{C}+\sum_{t \in T} \bar{\xi}_{t} h_{t}\right)
\end{array}\right.
$$

Proof. Apply Theorem 4.6 with $x^{*}=0_{X^{*}}$, noting that $\partial g^{*}\left(0_{X^{*}}\right)=\operatorname{argmin} g$ and

$$
\partial\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)^{*}\left(0_{X^{*}}\right)=\operatorname{argmin}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)
$$

for each $\xi \in S_{T}$.
Corollary 4.9. Assume that

$$
\emptyset \neq S(P)=\bigcup_{\xi \in S_{T}}\left(N(\xi) \cap \operatorname{argmin}\left(\mathrm{i}_{C}+\sum_{t \in T} \xi_{t} h_{t}\right)\right)
$$

Then \mathfrak{A} is w^{*}-closed regarding $\left\{0_{X^{*}}\right\} \times \mathbb{R}$.
Proof. Apply Proposition 4.7 with $x^{*}=0_{X^{*}}$.

Acknowledgement

The authors thank the two anonymous referees for their valuable comments which helped to improve the original version of the paper.

References

[1] A. Auslender, M.A. Goberna and M.A. López, Penalty and smoothing methods for convex semi-infinite programming, Math. Oper. Res. 34 (2009) 303-319.
[2] R.I. Boţ, Conjugate Duality in Convex Optimization, Springer-Verlag, Berlin Heidelberg, 2010.
[3] R.S. Burachik and V. Jeyakumar, A dual condition for the convex subdifferential sum formula with applications, J. Convex Anal. 12 (2005) 279-290.
[4] M.A. Goberna, M.A. López and M. Volle, Primal attainment in convex infinite optimization duality, J. Convex Anal. 21 (2014) 1043-1064.
[5] M.A. Goberna, M.A. López and M. Volle, New glimpses on convex infinite optimization duality, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. RACSAM 109 (2015) 431-450.
[6] J.L. Joly, Une famille de topologies et de convergences sur l'ensemble des fonctionnelles convexes (French). PhD Thesis, IMAG - Institut d'Informatique et de Mathématiques Appliquées de Grenoble, 1970.
[7] J.L. Joly and P.-J. Laurent, Stability and duality in convex minimization problems, Rev. Française Informat. Recherche Opérationnelle 5 (1971) 3-42.
[8] P.-J. Laurent, Approximation et Optimization (French), Hermann, Paris, 1972.
[9] M.A. López and E. Vercher, Convex semi-infinite games, J. Optim. Theory Appl. 50 (1986) 289-312.
[10] M.A. López and M. Volle, On the subdifferential of the supremum of an arbitrary family of extended real-valued functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. RACSAM 105 (2011) 3-21.
[11] M. Moussaoui and M. Volle, Quasicontinuity and united functions in convex duality theory, Comm. Appl. Nonlinear Anal. 4 (1987) 73-89.
[12] E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering design, SIAM Rev. 29 21-89 (1987).
[13] E. Polak and L. He, Min Rate-preserving discretization strategies for semi-infinite programming and optimal control, SIAM J. Control Optim. 30 (1992) 548-572.
[14] J.Ch. Pomerol, Contribution à la programmation mathématique: existence de multiplicateurs de Lagrange et stabilité (French), PhD Thesis, Paris 6, 1980.
[15] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.
[16] R.T. Rockafellar and R.J.-B. Wets, Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time, SIAM J. Control Optim. 28 (1990) 810-822.
[17] X.K. Sun and S.J. Li, Duality and Farkas-type results for extended Ky Fan inequalities with DC functions, Optim. Lett. 7 (2013) 499-510.
[18] S.E. Sussman-Fort, Approximate direct-search minimax circuit optimization, Int. J. Numer. Methods Eng. 28 (1989) 359-368.
[19] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co. Pte. Ltd, Singapore, 2002.

Manuscript received 27 January 2015
 revised 30 April 2015
 accepted for publication 5 May 2015

M.A. Goberna

Department of Statistics and Operations Research
University of Alicante, Alicante, Spain
E-mail address: mgoberna@ua.es

M.A. López
Department of Statistics and Operations Research
University of Alicante, Alicante, Spain; and
School of Science, Information Technology \& Engineering
Federation University, Ballarat, Australia
E-mail address: marco.antonio@ua.es
M. Volle
Département de Mathématiques, Université d'Avignon
LMA EA 2151
E-mail address: michel.volle@univ-avignon.fr

[^0]: *This research was partially supported by the MINECO of Spain, and by the European Regional Development Fund (ERDF) of the European Commission, Project MTM2014-59179-C2-1-P.
 ${ }^{\dagger}$ Corresponding author.

