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A classical way to associate a Lagrangian dual problem to (P ) is to transform it in
a cone-constrained convex optimization problem (see e.g. [2, page 80]). To this end, let
us consider the locally convex product space RT partially ordered by the closed convex
cone RT

+ and to which we add a greatest element denoted by ∞. A representation of the

topological dual of RT is furnished by the space R(T ) of mappings ξ : T → R whose support
supp ξ := {t ∈ T : ξt := ξ (t) ̸= 0} is finite. The standard bilinear coupling is then as follows:⟨

ξ, (ηt)t∈T

⟩
=
∑

t∈T ξtηt,
(
ξ, (ηt)t∈T

)
∈ R(T ) × RT .

We denote by R(T )
+ the positive cone of R(T ) and by

ST :=
{
ξ ∈ R(T )

+ :
∑

t∈T ξt = 1
}

the unit simplex in the same space. Let us introduce the set

M :=
∩
t∈T

domht,

where domht := {x ∈ X : ht (x) < +∞} is the effective domain of ht. We now associate
with (P ) the problem

(P0) inf
x,r

f(x, r), s.t. (x, r) ∈ C × R, g (x, r) ∈ −RT
+,

where, for each (x, r) ∈ X × R,

f(x, r) := r, g(x, r) :=

{
(ht (x)− r)t∈T , if (x, r) ∈ M × R,
∞, else.

It holds that (P ) and (P0) have the same optimal value, which may be ±∞.
The usual Lagrange dual problem associated with the cone-constrained convex problem

(P0) is

(D0) sup
ξ

inf
(x,r)∈(C∩M)×R

(f(x, r) + ⟨ξ, g(x, r)⟩) , s.t. ξ ∈ R(T )
+ .

The optimal value of (D0) satisfies

sup(D0) = sup
ξ∈R(T )

+

inf(x,r)∈(C∩M)×R
(
r +

∑
t∈T ξt (ht (x)− r)

)
= sup

ξ∈R(T )
+

infx∈C∩M

(∑
t∈T ξtht (x) + infr∈R r

(
1−

∑
t∈T ξt

))
= supξ∈ST

infx∈C∩M

∑
t∈T ξtht (x) ,

with the rule inf ∅ = +∞.
Setting

L0 (x, ξ) :=
∑

t∈T ξtht (x) , for (x, ξ) ∈ (C ∩M)× ST ,

we have

−∞ ≤ sup(D0) = sup
ξ∈ST

inf
x∈C∩M

L0 (x, ξ) ≤ inf
x∈C∩M

sup
ξ∈ST

L0 (x, ξ) = inf(P ) ≤ +∞.

We intend to get a simpler version of the above Lagrangian L0 by introducing

L (x, ξ) :=
∑

t∈T ξtht (x) , for (x, ξ) ∈ X × ST ,
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where ∑
t∈T ξtht (x) :=

∑
t∈supp ξξtht (x) , for (x, ξ) ∈ X × ST . (1.1)

It is worth noting that (1.1) enables to define
∑

t∈T ξtht (x) for the elements x of X that do
not belong to M, and it is equivalent to adopt the convention 0× (+∞) = 0 (see [15, p. 24];
another possibility is to set 0× (+∞) = +∞, which is the choice made for instance in [19]).

For each x ∈ X we have
h (x) = sup

ξ∈ST

∑
t∈T ξtht (x)

and, consequently,
inf(P ) = inf

x∈C
sup
ξ∈ST

L (x, ξ) .

We thus introduce another Lagrange dual of (P ) by setting

(D) sup
ξ

inf
x∈C

L (x, ξ) , s.t. ξ ∈ ST .

It holds that
−∞ ≤ sup(D) ≤ sup(D0) ≤ inf(P ) ≤ +∞. (1.2)

Let us give a simple example for which the two Lagrangian dual problems (D0) and (D)
are different.

Example 1.1. Take X = C = R2, T = {1, 2} , S2 := ST , h1 (x1, x2) = ex2 , h2 (x1, x2) = x1

if (x1, x2) ∈ R× R+, and h2 (x1, x2) = +∞, otherwise. We have M = R× R+, and for
(ξ1, ξ2) ∈ S2, ξ2 ̸= 0, one gets

inf
R2

(ξ1h1 + ξ2h2) = inf
M

(ξ1h1 + ξ2h2) = −∞,

while, for (ξ1, ξ2) = (1, 0) , one has

inf
R2

(ξ1h1 + ξ2h2) = 0 ̸= 1 = inf
M

(ξ1h1 + ξ2h2) .

Consequently,
0 = sup(D) < sup(D0) = 1 = inf(P ).

The paper is organized as follows. Section 2 is devoted to the converse strong duality
min (P ) = sup(D), which is established in Theorem 2.4 by using a recent result about con-
sistency of infinite convex systems [5, Corollary 3]. This property entails the equality of
both optimal values and the existence of optimal solutions for the primal problem (P ). In
Section 3 we get a formula for the Legendre-Fenchel conjugate (iC + h)

∗
of iC + h, where

iC denotes the indicator function of C, in connection with the property inf(P ) = max (D)
(Theorem 3.3 and subsequent corollaries). Finally, Section 4 is concerned with the subdif-
ferential ∂ (iC + h) of the objective function iC + h (Theorem 4.4, Corollary 4.5) and also
with the subdifferential ∂ (iC + h)

∗
of (iC + h)

∗
(Theorem 4.6, Proposition 4.7), which gives

a formula for the optimal set S (P ) of the problem (P ) (Corollaries 4.8 and 4.9).

2 The Min-Sup Property

In order to establish the relation min (P ) = sup(D) we need to recall some lemmas. Having
a non-empty closed convex subset A of X and f ∈ Γ (X) (the class of lsc proper convex
functions on X), we denote by A∞ (resp. f∞) the recession cone of A (resp., the recession
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function of f). It holds that (iA)∞ = iA∞ , epi f∞ = (epi f)∞ , f∞ = i∗dom f∗ , where epi f is
the epigraph of f and dom f∗ the effective domain of f∗, and [f ≤ r]∞ = [f∞ ≤ 0] for all
r ∈ R such that [f ≤ r] ̸= ∅ (here [f ≤ r] := {x ∈ X : f(x) ≤ r}). For any family of closed
convex sets (At)t∈T with non-empty intersection, one has (see e.g. [8, p. 375])(∩

t∈T

At

)
∞

=
∩
t∈T

(At)∞ . (2.1)

We also have (see, e.g., [8, p. 377]) that, for any (x, x) ∈ X × dom f ,

f∞ (x) = lim
s→+∞

f (x+ sx)− f (x)

s
,

and this formula straightforwardly leads us to the following equality for any pair f, g ∈ Γ (X)
such that dom f ∩ dom g ̸= ∅:

(f + g)∞ = f∞ + g∞. (2.2)

Moreover, the definition epi f∞ = (epi f)∞, together with (2.1), yield the following property
for any family (ft)t∈T ⊂ Γ (X) such that f := supt∈T ft is proper:

f∞ = sup
t∈T

(ft)∞ . (2.3)

Having B ⊂ X∗, B ̸= ∅, we denote by B− the negative polar cone of B, that is, B− =
[i∗B ≤ 0] ≡ {x ∈ X : i∗B (x) ≤ 0} . Recall that, by the Hanh-Banach Theorem, the negative
bipolar of B coincides with the w∗-closure of the convex cone generated by B, i.e., B−− =
clw

∗
coneB. In the sequel we denote by τ∗ the Mackey topology on X∗. Recall that a convex

function φ : X∗ → R := [−∞,+∞] is said to be τ∗-quasicontinuous ([6], [7]) when the
affine hull of domφ is w∗-closed (or, equivalently, τ∗-closed) and has finite codimension,
the relative interior of domφ with respect to the topology induced by τ∗ is nonempty
(i.e. rint(domφ) ̸= ∅), and the restriction of φ to rint(domφ) is continuous. If φ is τ∗-
quasicontinuous, then φ∗ is weakly-inf-locally compact (meaning that, for each r ∈ R, the
sublevel set [φ∗ ≤ r] is w-locally compact) [11, Corollary II.3]. The converse is true whenever
φ ∈ Γ (X∗) [6, Proposition 5.4]. We will use the fact that any extended real-valued convex
function on X∗ which is majorized by a convex τ∗-quasicontinuous one is τ∗-quasicontinuous
too [11, Theorem II.3].

Lemma 2.1 ( [11, Theorem III.3]). Let φ : X∗ → R be a convex function which is τ∗-

quasicontinuous and such that φ (0X∗) ̸= −∞ and clw
∗
cone domφ is a linear subspace.

Then ∂φ (0X∗) is the sum of a non-empty w-compact convex set and a finite dimensional
linear subspace.

Lemma 2.2. Let g ∈ Γ (X) be weakly-inf-locally compact and such that [g∞ ≤ 0] is a linear
subspace. Then infX g ∈ R and argmin g is the sum of a non-empty w-compact convex set
and a finite dimensional linear subspace.

Proof. Let us apply Lemma 2.1 for φ = g∗. Since g is w-inf-locally compact, g∗ is τ∗-
quasicontinuous. Since g ∈ Γ (X) , g∗ is proper, and so, g∗ (0X∗) ̸= −∞. Finally,

clw
∗
cone dom g∗ = (dom g∗)

−−
=
[
i∗dom g∗ ≤ 0

]−
= [g∞ ≤ 0]

−

is a linear subspace. We conclude the proof by noting that argmin g = ∂g∗ (0X∗) (see, for
instance, [19, Theorem 2.4.2(iii)]).
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Lemma 2.3 ([5, Corollary 3]). Let (ft)t∈T be a family of functions from Γ (X) , and C be
a non-empty closed convex subset of X. Assume that

∃λ ∈ R(T )
+ : iC +

∑
t∈T

λtft is w-inf-locally compact (2.4)

and ∩
t∈T

[(ft)∞ ≤ 0] ∩ C∞ is a linear subspace. (2.5)

Then the following statements are equivalent:
(i) The system {x ∈ C; ft (x) ≤ 0, t ∈ T} is consistent.

(ii) infC
∑

t∈T
λtft ≤ 0, ∀λ ∈ PT := R(T )

+ � {0T } .

(iii) infC
∑

t∈T
λtft ≤ 0, ∀λ ∈ ST .

We are now in position to state and prove our first result.

Theorem 2.4. Assume that

∃λ ∈ R(T )
+ : iC +

∑
t∈T

λtht is w-inf-locally compact (2.6)

and ∩
t∈T

[(ht)∞ ≤ 0] ∩ C∞ is a linear subspace. (2.7)

Then, either inf (P ) = sup(D) = +∞, or min (P ) = sup(D) ∈ R.
Moreover, if sup(D) < +∞ then the optimal set S (P ) is the sum of a non-empty w-compact
convex set and a finite dimensional linear subspace.

Proof. Assume first that sup(D) = +∞. By (1.2) we have inf (P ) = +∞.
Assume now that sup(D) < +∞ and let r be an arbitrary real number such that r ≥

sup(D). By definition of (D) we have

inf
C

∑
t∈T

ξtht ≤ r, ∀ξ ∈ ST ,

or, equivalently,

inf
C

∑
t∈T

ξt (ht − r) ≤ 0, ∀ξ ∈ ST .

Setting ft := ht − r, t ∈ T, in Lemma 2.3 we quote from (2.6) and (2.7) that the
conditions (2.4) and (2.5) are satisfied whatever r may be. We infer that the system
{x ∈ C; (ht − r) (x) ≤ 0, t ∈ T} is consistent and so there exists x ∈ C such that inf (P ) ≤
h (x) ≤ r. Since r ≥ sup(D) is arbitrary, we get that sup(D) ≥ inf (P ) and, by (1.2),
sup(D) = inf (P ) ∈ [−∞,+∞[ . It remains to prove that inf (P ) ̸= −∞ and (P ) does admit
optimal solutions. To this end let us introduce the function g := iC + h.

Since inf (P ) ̸= +∞ we have that g is proper and, so, g ∈ Γ (X) . From (2.2) and (2.3),
we have

g∞ = (iC)∞ + sup
t∈T

(ht)∞ = i(C∞) + sup
t∈T

(ht)∞ ,

and consequently, [g∞ ≤ 0] = C∞ ∩
∩
t∈T

[(ht)∞ ≤ 0] . In order to apply Lemma 2.2 to the

function g it remains to be checked that g is w-inf-locally compact. If λ in (2.6) is equal to
0T , then C is w-locally compact and, since h is w-lsc, g = iC +h is w-inf-locally compact. If
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λ ̸= 0T , let us set ξ =
(∑

t∈T
λt

)−1

λ. Then ξ ∈ ST and iC +
∑

t∈T
ξtht is a w-inf-locally

compact minorant of g. Since g is w-lsc, it follows that g is w-inf-locally compact too. From
Lemma 2.2 we infer that inf (P ) = infX g ∈ R with argmin g ̸= ∅, that means that (P )
admits optimal solutions.

The last assertion in Theorem 2.4 is also a consequence of Lemma 2.2.

Remark 2.5. If X is finite dimensional, condition (2.6) in Theorem 2.4 is automatically
satisfied.

Let us revisite Example 1.1. One has [(h1)∞ ≤ 0] = R× R−, [(h2)∞ ≤ 0] = R−×R+,
and C∞ = R× R. Thus, condition (2.7) in Theorem 2.4 fails since

[(h1)∞ ≤ 0] ∩ [(h2)∞ ≤ 0] ∩ C∞ = R−×{0}

is not a linear space.
Notice that the sufficient condition (2.7) for converse strong duality is not necessary as

the following modification of Example 1.1 shows:

Example 2.6. Take X = R2, C = R × R+, T = {1, 2} , S2 := ST , h1 (x1, x2) = ex2 and
h2 (x1, x2) = x1. We have M = R2, and

max(D) = 1 = min(P ),

while

C∞ ∩ [(h1)∞ ≤ 0] ∩ [(h2)∞ ≤ 0] = (R× R+) ∩ (R× R−) ∩ (R− × R)
= R− × {0}

is not a linear subspace.

In the case when C ∩M is non-empty and closed we can apply Theorem 2.4 replacing
C by C ∩M. We obtain a result involving the classical dual (D0) instead of our dual (D).

Corollary 2.7. Assume that C ∩M is non-empty and closed, and the two conditions below
hold:

∃λ ∈ R(T )
+ : iC∩M +

∑
t∈T

λtht is w-inf-locally compact (2.8)

and ∩
t∈T

[(ht)∞ ≤ 0] ∩ (C ∩M)∞ is a linear subspace. (2.9)

Then, either inf (P ) = sup(D0) = +∞, or min (P ) = sup(D0) ∈ R. Moreover, if sup(D0) <
+∞ then the optimal set S (P ) is the sum of a non-empty w-compact convex set and a finite
dimensional linear subspace.

3 The Inf-Max Property

Let us consider the function φ : X∗ → R given by

φ = inf
ξ∈ST

(
iC +

∑
t∈T

ξtht

)∗



DUALITY FOR THE SUPREMUM OF CONVEX FUNCTIONS 507

and the set

A :=
∪

ξ∈ST

epi
(
iC +

∑
t∈T

ξtht

)∗
. (3.1)

It is not difficult to check that A is convex and lies between the strict epigraph and the
epigraph of φ, i.e.

epis φ ⊂ A ⊂ epiφ.

It follows that clw
∗
A =clw

∗
epis φ = clw

∗
epiφ and, for each x∗ ∈ X∗,

φ (x∗) = inf {t ∈ R : (x∗, t) ∈ A} . (3.2)

Lemma 3.1. (See also [2, Proposition 12.1]) The function φ is convex and φ∗ = iC + h.

Moreover, if C ∩ domh ̸= ∅, then clw
∗
A = epi (iC + h)

∗
.

Proof. Since A is convex, it follows from (3.2) that φ is convex. One has

φ∗ =
(
infξ∈ST

(
iC +

∑
t∈T

ξtht

)∗)∗
= supξ∈ST

(
iC +

∑
t∈T

ξtht

)∗∗
= supξ∈ST

(
iC +

∑
t∈T

ξtht

)
= iC + supξ∈ST

∑
t∈T

ξtht = iC + h.

Finally, if C ∩ domh ̸= ∅, then domφ∗ ̸= ∅ and, consequently, φ∗∗ = clw
∗
φ. In other

words,
clw

∗
A = epi clw

∗
φ = epiφ∗∗ = epi (iC + h)

∗
.

In order to state the next theorem we have to recall the concept of closedness regarding
a set which has been introduced and used in [2] (see also [3] and [14] for related approaches).

Definition 3.2. Having two subsets A and B of a topological space, one says that A is
closed regarding to B if B ∩ clA = B ∩A.

Clearly, a closed subset is closed regarding any subset. Also, A is closed regarding B if
and only if A is closed regarding each subset of B.

Now we can state:

Theorem 3.3. Assume that C∩domh ̸= ∅. Then, for any x∗ ∈ X∗, the following statements
are equivalent:

(i) (iC + h)
∗
(x∗) = minξ∈ST

(
iC +

∑
t∈T

ξtht

)∗
(x∗) , including the value +∞.

(ii) A is w∗-closed regarding {x∗} × R.

Proof. Assume first that (iC + h)
∗
(x∗) = +∞.

By Lemma 3.1 we have φ (x∗) = φ∗∗ (x∗) = +∞ and the statement (i) holds true. Since

domφ∗ = C∩domh ̸= ∅, we have that φ∗∗ = clw
∗
φ. So, clw

∗
φ (x∗) = +∞ and {x∗}×R does

not meet the set {x∗}× clw
∗
epiφ. Recall that clw

∗
epiφ = clw

∗
A. Therefore, {x∗}×R does

not meet clw
∗
A and this proves that A is w∗-closed regarding {x∗} ×R. So, the statements

(i) and (ii) are both true in this case.
Assume now that α := (iC + h)

∗
(x∗) ̸= +∞.
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Since iC +h ∈ Γ (X) , we have that (iC + h)
∗ ∈ Γ (X∗) and therefore, α ∈ R. By Lemma

3.1 it holds that
(x∗, α) ∈ epiφ∗∗ = clw

∗
epiφ = clw

∗
A. (3.3)

If (ii) holds we get from (3.3) that (x∗, α) ∈ A and there exists ξ ∈ ST such that

inf
ξ∈ST

(
iC +

∑
t∈T

ξtht

)∗
(x∗) ≤

(
iC +

∑
t∈T

ξtht

)∗
(x∗) ≤ α. (3.4)

Since iC +
∑

t∈T
ξtht ≤ iC + h for all ξ ∈ ST , we have

inf
ξ∈ST

(
iC +

∑
t∈T

ξtht

)∗
≥ (iC + h)

∗

and, by (3.4), α = minξ∈ST

(
iC +

∑
t∈T

ξtht

)∗
(x∗) (the minimum α is attained at ξ).

Conversely, if α = minξ∈ST

(
iC +

∑
t∈T

ξtht

)∗
(x∗) , let us prove that (ii) holds. So, let

r ∈ R be such that (x∗, r) ∈ clw
∗
A =epiφ∗∗. By Lemma 3.1 we have α = (iC + h)

∗
(x∗) =

φ∗∗ (x∗) ≤ r and there exists ξ ∈ ST such that
(
iC +

∑
t∈T

ξtht

)∗
(x∗) ≤ r, and this entails

(x∗, r) ∈ A.

Corollary 3.4. Assume that C ∩ domh ̸= ∅. The following statements are equivalent:
(i) inf (P ) = max (D) , including the value −∞.
(ii) A is w∗-closed regarding {0X∗} × R.
Proof. Apply Theorem 3.3 with x∗ = 0X∗ , noting that − inf (P ) = (iC + h)

∗
(0X∗) .

According to Corollary 3.4, applied again to Example 1.1, the set

A =
∪

ξ∈S2

epi (ξ1h1 + ξ2h2)
∗

is not closed regarding {0} × R. Moreover, the set∪
ξ∈S2

epi (iM + ξ1h1 + ξ2h2)
∗

is closed regarding {0} × R since this fact corresponds to the strong duality for the usual
Lagrangian L0 :

inf(P ) = max
ξ∈S2

inf
x∈M

(ξ1h1 (x) + ξ2h2 (x)) = 1,

the maximum being attained for ξ = (1, 0) .
In fact, as long as the standard Lagrangian dual (D0) is concerned, we can replace again

C by C∩M provided that C∩M is non-empty and closed. In this way we get from Corollary
3.4:

Corollary 3.5. Assume that C ∩domh ̸= ∅ and C ∩M is closed. The following statements
are equivalent:
(i) inf (P ) = max (D0) , including the value −∞.

(ii)
∪

ξ∈ST

epi
(
iC∩M +

∑
t∈T

ξtht

)∗
is w∗-closed regarding {0X∗} × R.

Finally we present a straightforward consequence of Theorem 3.3:

Corollary 3.6. Assume that C ∩ domh ̸= ∅. The following statements are equivalent:

(i) (iC + h)
∗
= minξ∈ST

(
iC +

∑
t∈T

ξtht

)∗
.

(ii) A is w∗-closed.
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4 Subdifferential and Argmin Calculus

Let us consider again the function g = iC + h. The set

argmin g =
{
x ∈ C ∩ domh : g (x) = inf

X
g
}

coincides with the optimal solution set S (P ) of (P ) , and we have

x ∈ S (P ) ⇔ 0X∗ ∈ ∂g (x) ⇔ x ∈ ∂g∗ (0X∗) .

Therefore, computing the subdifferential of the functions g and g∗ is of crucial importance in
our context. In this section we will apply Theorem 3.3 and its corollaries to obtain formulas
for ∂g, ∂g∗, and argmin g.

Given x ∈ C ∩ domh = dom g, let us consider the set

M (x) :=
{
ξ ∈ ST :

∑
t∈T

ξtht (x) = h (x)
}
. (4.1)

Next lemma furnishes another expression for M (x) .

Lemma 4.1. We have M (x) = {ξ ∈ ST : ht (x) = h (x) ∀t ∈ supp ξ} .

Proof. One has ξ ∈ M (x) if and only if
∑

t∈supp ξ
ξt (ht (x)− h (x)) = 0. Since ht (x) ≤ h (x)

for any t ∈ T, each term of the above sum is non-positive. Since this sum is equal to zero,
each term of the sum must be equal to zero.

Conversely, if ht (x) = h (x) for each t ∈ supp ξ, then
∑

t∈T
ξtht (x) =

∑
t∈T

ξth (x) =

h (x) , and ξ ∈ M (x) .

Let x ∈ C ∩ domh = dom g. Concerning ∂g let us quote two general facts in Proposition
4.2 and Theorem 4.4 below.

Proposition 4.2. ∂g (x) ⊃
∪

ξ∈M(x)

∂
(
iC +

∑
t∈T

ξtht

)
(x) .

Proof. Let x∗ ∈
∪

ξ∈M(x)

∂
(
iC +

∑
t∈T

ξtht

)
(x) . Let ξ ∈ M (x) be such that

x∗ ∈ ∂
(
iC +

∑
t∈T

ξtht

)
(x) . Noting that

∑
t∈T

ξtht ≤ h, iC +
∑

t∈T
ξtht ≤ g, and(

iC +
∑

t∈T
ξtht

)∗
≥ g∗, we have

⟨x∗, x⟩ − g (x) ≤ g∗ (x∗)

≤
(
iC +

∑
t∈T

ξtht

)∗
(x∗)

= ⟨x∗, x⟩ −
∑

t∈T
ξtht (x)

= ⟨x∗, x⟩ − h (x) = ⟨x∗, x⟩ − g (x) .

So, ⟨x∗, x⟩ − g (x) = g∗ (x∗) and x∗ ∈ ∂g (x) .

Proposition 4.3. For any x ∈ dom g, the convex set A in (3.1) is w∗-closed regarding the
set

B (x) :=

( ∪
ξ∈M(x)

∂
(
iC +

∑
t∈T

ξtht

)
(x)

)
× R.
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Proof. Let x ∈ dom g and (x∗, r) ∈ (clw
∗
A)∩B (x) . By Lemma 3.1 one has g∗ (x∗) ≤ r and,

by definition of B (x) , there exists ξ ∈ M (x) such that

x∗ ∈ ∂
(
iC +

∑
t∈T

ξtht

)
(x) , (4.2)

and so,
r ≥ g∗ (x∗) ≥ ⟨x∗, x⟩ − g (x)

= ⟨x∗, x⟩ − h (x)

= ⟨x∗, x⟩ −
∑

t∈T
ξtht (x)

=
(
iC +

∑
t∈T

ξtht

)∗
(x∗) .

The last equality comes from (4.2). Thus, (x∗, r) ∈ epi
(
iC +

∑
t∈T

ξtht

)∗
⊂ A.

Theorem 4.4. For any x ∈ dom g, the following statements are equivalent:

(i) ∂g (x) =
∪

ξ∈M(x)

∂
(
iC +

∑
t∈T

ξtht

)
(x) .

(ii) A is w∗-closed regarding ∂g (x)× R.

Proof. (i) ⇒ (ii) comes from Proposition 4.3.
Let us prove that (ii) ⇒ (i). By Proposition 4.2 it suffices to prove that the inclusion

”⊂” in (i) is satisfied. So, let x∗ ∈ ∂g (x) . By Lemma 3.1 we have (x∗, g∗ (x∗)) ∈ (clw
∗
A)∩

(∂g (x)× R) and, by (ii), (x∗, g∗ (x∗)) ∈ A. Thus, there exists ξ ∈ ST such that

(x∗, g∗ (x∗)) ∈ epi
(
iC +

∑
t∈T

ξtht

)∗
,

and
⟨x∗, x⟩ − h (x) ≤ ⟨x∗, x⟩ −

∑
t∈T

ξtht (x)

≤
(
iC +

∑
t∈T

ξtht

)∗
(x∗)

≤ g∗ (x∗) = ⟨x∗, x⟩ − g (x) = ⟨x∗, x⟩ − h (x) .

It follows that
∑

t∈T
ξtht (x) = h (x) and

(
iC +

∑
t∈T

ξtht

)∗
(x∗) = ⟨x∗, x⟩ −

∑
t∈T

ξtht (x) ,

or, in other words, ξ ∈ M (x) and x∗ ∈ ∂
(
iC +

∑
t∈T

ξtht

)
(x) .

Corollary 4.5. [10, Theorem 2] If A is w∗-closed then for any x ∈ dom g, it holds

∂g (x) =
∪

ξ∈M(x)

∂
(
iC +

∑
t∈T

ξtht

)
(x) .

We end this note by establishing a new formula for the subdifferential of the conjugate of
the function g = iC +h. We shall also derive from this formula an expression for the optimal
solution set S (P ) , which furnishes necessary and sufficient optimality conditions.

We associate with ξ ∈ ST the set

N (ξ) :=
{
x ∈ C ∩ domh :

∑
t∈T

ξtht (x) = h (x)
}
.



DUALITY FOR THE SUPREMUM OF CONVEX FUNCTIONS 511

By (4.1) we have
x ∈ N (ξ) ⇔ ξ ∈ M (x)

and, by Lemma 4.1,

N (ξ) := {x ∈ C ∩ domh : ht (x) = h (x) ∀t ∈ supp ξ} .

Theorem 4.6. For any x∗ ∈ dom g∗ one has

∂g∗ (x∗) ⊃
∪

ξ∈ST

(
N (ξ) ∩ ∂

(
iC +

∑
t∈T

ξtht

)∗
(x∗)

)
.

If, additionally, A is w∗-closed regarding {x∗} × R, then

∂g∗ (x∗) =
∪

ξ∈ST

(
N (ξ) ∩ ∂

(
iC +

∑
t∈T

ξtht

)∗
(x∗)

)
. (4.3)

Proof. Let ξ ∈ ST and x ∈ N
(
ξ
)
∩ ∂

(
iC +

∑
t∈T

ξtht

)∗
(x∗) . One has

g∗ (x∗) ≤
(
iC +

∑
t∈T

ξtht

)∗
(x∗)

= ⟨x∗, x⟩ −
∑

t∈T
ξtht (x)

= ⟨x∗, x⟩ − h (x) = ⟨x∗, x⟩ − g (x)

and, consequently, g∗ (x∗) = ⟨x∗, x⟩ − g (x) , that is, x ∈ ∂g∗ (x∗) .
To prove (4.3), let x ∈ ∂g∗ (x∗) . By Lemma 3.1 we have

(x∗, ⟨x∗, x⟩ − g (x)) ∈ (clw
∗
A) ∩ {x∗} × R

and, since A is w∗-closed regarding {x∗} × R, we have (x∗, ⟨x∗, x⟩ − g (x)) ∈ A. So, there
exists ξ ∈ ST such that

(x∗, ⟨x∗, x⟩ − g (x)) ∈ epi
(
iC +

∑
t∈T

ξtht

)∗
,

and

⟨x∗, x⟩ −
∑

t∈T
ξtht (x) ≤

(
iC +

∑
t∈T

ξtht

)∗
(x∗)

≤ ⟨x∗, x⟩ − g (x)

≤ ⟨x∗, x⟩ −
∑

t∈T
ξtht (x) .

We thus have
∑

t∈T
ξtht (x) = g (x) = h (x) , x ∈ N

(
ξ
)
, and

⟨x∗, x⟩ −
∑

t∈T
ξtht (x) =

(
iC +

∑
t∈T

ξtht

)∗
(x∗) ,

that means x∗ ∈ ∂
(
iC +

∑
t∈T

ξtht

)
(x) or, equivalently,

x ∈
(
iC +

∑
t∈T

ξtht

)∗
(x∗) .

We can state a partial converse of Theorem 4.6.
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Proposition 4.7. Let x∗ ∈ X∗ be such that ∂g∗ (x∗) ̸= ∅ and assume that (4.3) holds.
Then A is w∗-closed regarding {x∗} × R.

Proof. Assume that (x∗, r) ∈ clw
∗
A. We have to check that (x∗, r) ∈ A.

By Lemma 3.1 we have g∗ (x∗) ≤ r. Picking x ∈ ∂g∗ (x∗) , which is non-empty, there

exists, by (4.3), ξ ∈ ST such that x ∈ N
(
ξ
)
∩ ∂

(
iC +

∑
t∈T

ξtht

)∗
(x∗) . Then we have

g∗ (x∗) ≤
(
iC +

∑
t∈T

ξtht

)∗
(x∗)

= ⟨x∗, x⟩ −
∑

t∈T
ξtht (x)

= ⟨x∗, x⟩ − h (x) = ⟨x∗, x⟩ − g (x) ≤ g∗ (x∗) .

Therefore, g∗ (x∗) =
(
iC +

∑
t∈T

ξtht

)∗
(x∗) and

(x∗, r) ∈ epi
(
iC +

∑
t∈T

ξtht

)∗
⊂ A.

Corollary 4.8. Assume that inf (P ) ∈ R. We have

S (P ) ⊃
∪

ξ∈ST

(
N (ξ) ∩ argmin

(
iC +

∑
t∈T

ξtht

))
.

If, additionally, A is w∗-closed regarding {0X∗} × R, then

S (P ) =
∪

ξ∈ST

(
N (ξ) ∩ argmin

(
iC +

∑
t∈T

ξtht

))
.

In other words, for any x ∈ C ∩ domh one has

x ∈ S (P ) ⇔


∃ξ ∈ ST : ht (x) = h (x) ∀t ∈ supp ξ,
and

x ∈ argmin
(
iC +

∑
t∈T

ξtht

)
.

Proof. Apply Theorem 4.6 with x∗ = 0X∗ , noting that ∂g∗ (0X∗) = argmin g and

∂
(
iC +

∑
t∈T

ξtht

)∗
(0X∗) = argmin

(
iC +

∑
t∈T

ξtht

)
for each ξ ∈ ST .

Corollary 4.9. Assume that

∅ ≠ S (P ) =
∪

ξ∈ST

(
N (ξ) ∩ argmin

(
iC +

∑
t∈T

ξtht

))
.

Then A is w∗-closed regarding {0X∗} × R.

Proof. Apply Proposition 4.7 with x∗ = 0X∗ .
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[18] S.E. Sussman-Fort, Approximate direct-search minimax circuit optimization, Int. J.
Numer. Methods Eng. 28 (1989) 359–368.

[19] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing
Co. Pte. Ltd, Singapore, 2002.

Manuscript received 27 January 2015
revised 30 April 2015

accepted for publication 5 May 2015

M.A. Goberna
Department of Statistics and Operations Research
University of Alicante, Alicante, Spain
E-mail address: mgoberna@ua.es

M.A. López
Department of Statistics and Operations Research
University of Alicante, Alicante, Spain; and
School of Science, Information Technology & Engineering
Federation University, Ballarat, Australia
E-mail address: marco.antonio@ua.es

M. Volle
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