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Abstract: In this paper, converse duality theorems for scalar and multiobjective second order dual problems
in nonlinear programming are established. Our results fill some gaps in works of Husain et al. [I. Husain, N.G.
Rueda and Z. Jabeen, Fritz John second-order duality for nonlinear programming , Applied Mathematics
Letters 14 (2001) 513-518], Yang et al. [X.M. Yang, X.Q. Yang and K.L. Teo, Huard type second-order
converse duality for nonlinear programming, Applied Mathematics Letters 18 (2005) 205-208], Gulati et al.
[T.R. Gulati and Divya Agarwal, On Huard type second order converse duality in nonlinear programming
problems, Applied Mathematics Letters 20(2007) 1057-1063] and Ahmad et al. [I. Ahmad, Z. Husain and
S.A. Homidan, Second-order duality in nondifferentiable fractional programming, Nonlinear Analysis, 12
(2011) 1103-1110].
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Introduction

The study of second order duality is useful due to the computational advantage over first
order duality as it gives bounds for the value of the objective function when approximations
are used. Mangasarian [5] first introduced second-order dual for nonlinear mathematical pro-
gramming problems and established duality results under the inclusion conditions. Based on
the first order convexity, Mond [6] introduced the definition of second order convexity and
gave duality results under the more simpler conditions than these of Mangasarian by using
the generalized form of convexity. Later, Mond and Weir [7], Mond and Zhang [8] intro-
duced another kinds of second-order duals and obtained duality results under more simpler
conditions. In recent years, there has been an increasing interest in generating Monds orig-
inal notion of second-order and higher-order convexity and utilized for establishing various
duality results for several classes of nonlinear programming problems ( [1-3,9,10]).

Husain et al. [3], Yang et al. [10] and Gulati et al. [2] consider the following nonlinear
scalar programming problem.

(NP1) Minimize f(z)
subject to g(x) £ 0,
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where f: R® — R,g: R™ — R™ are twice differentiable functions.
And they formulated second order dual problem (ND1) for (NP1) as follows:

(ND1) Maxmize f(u)— %pTVZf(u)p
subject to T(Vf (w) + V2 f(w)p + Vy" g(u) + V?y" g(u)p = 0,

y g(u TVz(y g(u))p 20,

) —
(r,y) 20,
(r,y) #0.

where r € R,y € R™ and p,u € R™.

Husain et al. [3] gave a weak duality, a strong duality, a strict converse duality and a
Huard type converse duality for problems (NP1) and (ND1) . In particular, they prove the
following Huard type converse duality theorem.

Theorem 1.1 (Converse Duality (see Theorem 2.4 in [3]). Let (r*,z*,y*,p*) be a optimal
solution of (ND1)). Assume that

(A1) the n x n Hessian matriz V[r*V?2f(z*) + V2(y*T g(x*))]p* is positive or negative defi-
naite,

(A2) Vy*g(z*) + V*(y*Tg(z*))p* # 0,

(A3) the vectors {[V2f(x*)];, [V?y*g(z*)];,4 = 1,...,n} are linearly independent, where
[V2f(x*)]; and [V2y*g(x*)]; are jth rows of V2 f(z*) and V?y*g(x*), respectively. If
the generalized convezity hypotheses of Theorem 2.1 in [3] are satisfied, then x* is an
optimal solution of (NP1).

Yang et al. [10] note that the matrix V[r*V2f(z*) + V2(y*Tg(z*))]p* is positive or
negative definite in the assumption (A1) of Theorem 1.1, and the result of Theorem 1.1
implies p* = 0. See the proof of Theorem 2.4 in [3]. It is obvious that the assumption and
the result are inconsistent. Hence, they gave an appropriate modification for this deficiency
contained in Theorem 1.1. And they established the following converse duality theorem.

Theorem 1.2 (Converse Duality (see Theorem 2 in [10]). Let (r*,z*,y*,p*) be a optimal
solution of (ND1)). Assume that

(B1) V2y*Tg(x*) is positive define and y*T g(x*) <0 or V2y*T g(x*) is negative define and
y*Tg(z*) 2 0.

(A2) Vy*g(z*) + V2 (y*Tg(a*))p* # 0,

(A3) the vectors {[V2f(x*)];, [V*y*g(z*)];,7 = 1,...,n} are linearly independent, where
[V2f(x*)]; and [V2y*g(x*)]; are jth rows of V2f(z*) and V2y*g(x*), respectively. If
the generalized convezity hypotheses of Theorem 2.1 in [3] are satisfied, then x* is an
optimal solution of (NP1).

Gulati et al. [2] obtained an alternative proof of the converse duality theorem replacing
assumption (A2) in Theorem 1.2 by a weaker assumption Vf(z*) + V2 f(z*)p* # 0.

Observing that in the converse duality Theorems in [2,3,10], that is, Theorem 2.4 in [3],
Theorem 2 in [10], Theorem 1 and Theorem 2 in [2], the assumptions that the vectors
{IV2f(x")];, [V?y*g(x*)]j,j = 1,...,n} are linearly independent, where [V f(x*)]; and
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[V2y*g(x*)]; are jth rows of V2 f(z*) and V2y*g(z*), respectively, are erroneous. Since
{[V2f(x*));,[V2y*g(z*)]j,j = 1,...,n} are 2n— vectors in R", and they are linearly depen-
dent.

In this work, Section 2 contains modified proofs for Theorem 2.4 in [3], Theorem 2 in [10],
Theorem 1 and Theorem 2 in [2]. The deficiency in the second order converse duality theo-
rems also appeared in the converse duality theorems for multiobjective programming prob-
lems in [3] and for nondifferentiable fractional programming problems in [1], and modified
proofs are presented in Section 3 and Section 4, respectively.

Converse Duality for Nonlinear Scalar Programming Problem

In this section, we give the following modified converse duality theorem for problems (NP1)
and (ND1).

Theorem 2.1 (Converse Duality for (ND1)). Let (r*,z*,y*,p*) be a optimal solution of
(ND1)). Assume that

(i) PV f(@*) + VyTg(a) = 0.

)

(i) V

(iii) (V2 f(2*) + V(V?f(z*)p*)) + V2 (y T g(a*)) + V(V(y*g(z*T)p*)) is nonsingular.
) V
)

2f(x*) is negative define or positive define.

fz*) #0.

(v sz*Tg( *) is positive define and y*T g(z*) £ 0 or V2y*Tg(x*) is negative define and
y*g(z*) 2 0.

Then p* = 0, z* is a feasible solution of (NP1) and the two objective functions values
are equal. Furthermore, if the generalized convexity hypotheses of Theorem 2.1 in [3] are
satisfied, then x* is an optimal solution of (NP1).

(iv

Proof. Since (r*,z*,y*,p*) is an optimal solution of (ND1), by Fritz John type necessary
condition, there exist « € R, € R",0 € R,£ € R and n € R such that

~alV (@) = VBTV )] - OV ge) - 5 VTV ()]
Hr (V2 f (@) + V(V2 f(")p")) + VE(y T g(2") + V(V2(y g™ )p*))]B =0, (2.1)

BT[Vg;(™) + V2g; (e )p] — Olg;(x™) — 2o TV2g;(a")p ] —m; =0, (2.2)

2

j=1,....m,
FTI S + V2] - €=0,  (23)
(p* + )TV ()] + (09 + B)T [V Tga®)] =0, (24)
Oy g(a") - gp*v%”g(x*)p*] =0, (25)
& =0, (2.6)
nTy* =0, (2.7
(00,6120, (28)
(0,8,0,6m) £0. (29)
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First, we claim that 6 > 0. Otherwise, 8 = 0, then (2.4) reduces to
(ap™ + Br)T[V2 f(a)] + BT [V2y T g(a")] = 0. (2.10)
Multiplying the above equation by p*, we have
ap V2 (2 )p* + BTV f(2")p" + BTV 2y g (2" )p" = 0. (2.11)
Multiplying (2.2) by y;,j = 1,...,m, summering over j and using (2.5) and (2.7), we get
BTIVy Tg(a™) + V2T g(a*)p*] = 0. (2.12)
Multiplying (2.3) by r* and from (2.6), we have
r* BV f(2*) + r*BTVAf(2*)p* = 0. (2.13)
Using(2.12) and (2.13) in (2.11), we have
ap V2 f(a*)p* = BTV f(2*) + Vy“g(2™)].
If assumption (i) holds, the above equation gives
ap TV f (2" )p* = 0,

and using assumption (ii), we obtain ap* = 0. We claim that oz > 0. Suppose to the contrary
that « = 0, then (2.1) reduces to

[ (V2 f (@) + V(V2f(27)p")) + V2 (y* T g(a®)) + V(V(y"g(2*T)p"))]8 = 0.

If assumption (iii) holds, the above equation gives 8 = 0. From (2.2) and (2.3), we have
E¢=0and n=0.So (o, ,0,¢,n) = 0, and which contradicts with (2.9). Therefore a > 0.
Since ap* = 0, p* = 0. Hence (2.1) and (2.4) reduce to

[F*V2f(z*) + V2 Tg(z")]f = aV f(z*),

[P V2 f(a*) + V2T g(a*)] = 0.
By using assumption (iv) and a > 0, we have aV f(z*) # 0. And we get a contradiction.

Therefore, # # 0. That is 8 > 0.
Since 6 > 0, it follows from (2.5), we have

* * 1 * * AR
yTg(a*) = 3P "2y T g(a*)p*.

If assumption (v) holds, the above equation gives p* = 0. Therefore, (2.4) reduces to
BT V2 f(2*) + Viy*g(a®)] = 0.
Which combining with assumption (iii), we get 8 = 0. Therefore, (2.2) reduces to
Ogj(z*)=—-mn;, j=1,...,m.

Since # > 0 and n = 0, we have g(z*) < 0. This implies that z* is a feasible solution of
problem (ND1).

On the other hand, since p* = 0, the two objectives are equal. Also, by weak duality
theorem in [3], z* is an optimal solution of problem (NP1).
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Remark 2.2. If p* = 0, condition (i) is the first constraint condition of problem (NP1),
and for first order converse duality theorem, this condition can be removed. If p* = 0,
condition (ii) is the condition Vf(z*) + V2f(z*)p* # 0 in [2], condition (iii) reduces to
r*V2f(z*) + V2(y*Tg(x*) is nonsingular. If V?(y*Tg(x*) is negative define or positive
define, condition (ii) implies r*V?2 f(z*) + VZ(y*T g(z*) is nonsingular.

Hence, we give the proof of the converse duality theorem by replacing condition (A3) in
Theorem 1.2 by two reasonable conditions (ii) and (iii).

Converse Duality for Multiobjective Programming Problems
In [2], Gulati et al studied the following multiobjecitve nonlinear programming problem.

(VP) Minimize f(z)
subject to g(z) < 0.

where f: R* = RF ¢g: R® — R™ are twice differentiable functions.
And they formulated second order dual problem (VD) for (VP) as follows:

(VD) Masmize (fi(u) ~ 50" V2fi(ulp,.., fiu) — 50"V Fy(w)p)
subject to V(AT f(u) + VyT g(u)) + VZ\T f(u) + VZy  g(u))p = 0,

v g(u) — 55"V  g(w)p 20,

where r € R,y € R™ and p,u € R"™.

Observing that in Huard type converse duality Theorem 5 in [2], the assumption that
the vectors {[V2fi(z*)];, [V2y*Tg(z*)];,i=1,...,k,j=1,...,n} are linearly independent,
where [V2 f;(z*)]; and [V2y*T g(z*)]; are jth rows of V2 f;(z*) and V2y*T g(z*), respectively,
is erroneous. Since {[V2f(x*)];, [V?y*g(z*)];,7 = 1,...,n} are (k+1)n vectors in R". They
are linearly dependent.

Remark 3.1. In problem (VD), since A > 0, that is \; 2 0,1 =1,...,k, and X # 0, the
constraint condition Ele A; = 1 can be eliminated. In fact, if Zle A # 1, we can take

A= % and y = % in the constrains of problem (VD). Therefore, in the proof of

i=1 "7 i=1 "7

following converse duality theorem, we do not consider this condition.
Now we give a modified proof of converse duality theorems for (VP) and (VD).

Theorem 3.2 (Converse Duality for (VD)). Let (z*, \*,y*, p*) be a weak efficient solution
of (VD) ). Assume that

() S0y A Vi) + VyTg(et) = 0.
(i) V2fi(a*),i=1,...,k are negative define or positive define.
(iii) VENT f(2*)+V(VENT f(2*)p*)+ V2 (y* T g(z*)) +V(V2(y* T g(x*)p*)) is nonsingular.
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(iv) {Vfi(z*),...,Vfi(@*)}, k < n, are linearly independent.

(v) V2y*Tg(z*) is positive define and y*T g(z*) < 0 or V2y*T g(x*) is negative define and
y*Tg(z*) 2 0.

Then p = 0, x* is a feasible solution of (VP) and the two objective functions values are
equal. Furthermore, if the generalized convexity hypotheses of Theorem 5 in [2] are satisfied,
then x* is a weak efficient solution of (VP).

Proof. Since (z*, \*, y*, p*) is a weak efficient solution of (VD), by Fritz John type necessary
condition, there exist « € R, € R",0 € R,£ € R and n € R™ such that

k
=S A = SVETVA )]~ 0V T gw) - 3V TR )
HVXT @) 4 VPN F@ ') + V(T g() + V(T2 gl =0, (31)

BT[Vg;(2*) + V2g;(2*)p*] — 0lg; (27) — 2 TV2g;(a")p"] —m; =0,  (3.2)

2

i7=1...,m,
BIIVfi(a*) + V2 fi(a*)p*] = & =0, (3.3)

i=1,... .k

k
D (aip™ + BTV fia™)] + (0p* + B) T [VZy T g(@)] =0, (3.4)
i=1

* * 1 * * * *
0y g(2") = 5p" V(y™ g(x"))p"] =0, (3.5)
'\ =0, (3.6)
nTyt =0, (3.7)
(a,0,§,m) 20, (3.8)
(a,8,0,6,m) #0. (3.9)

First, we claim that 6 > 0. Indeed, if 8§ = 0, then (3.4) reduces to
k
D (aip”™ + BA) TV fila")] + BT VY g(a*) = 0. (3.10)
i=1
Multiplying the above equation by p*, we have
k
Z[aip*TVin(x*)p* + A BTV (2%)p*] + BTV Yy T g(a*)p* = 0. (3.11)
i=1

Multiplying (3.2) by y;,j = 1,...,m, summering over j and using (3.5) and (3.7), we get
BrIVy T g(™) + V2 g(a®)p*] = 0. (3.12)

Multiplying (3.3) by Af,i =1,...,k, summering over ¢ and using (3.6), we get

k
> BTNV fila®) + A VA fi(a®)pt] = 0. (3.13)

=1
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Using (3.12) and (3.13) in (3.11), we have

Z aip*TV2f( Z APV fi(a®) + VT g ().

If assumption (i) holds, the above equation gives
k
Zaip*TV2f(x*)p* —
i=1
And using assumption (ii), we get a;p* = 0,2 =1,...,k. That is, « = 0 or p* = 0.
We claim that a # 0. Suppose to the contrary that o = 0, then (3.1) reduces to

[V2NT f(2*) + V(VENT f(a*)p") + V(T g(2*) + V(V(y T g(z*)p*))]8 = 0.

If assumption (iii) holds, the above equation gives 8 = 0. From (3.2) and (3.3), we have
¢=0and n=0.So (o, ,0,&n) =0, and which contradicts with (3.9). Therefore o # 0.
Since a;p* =0,i=1,...,k and p* = 0. Hence (3.1) and (3.4) reduce to

[VZA*Tf(fE ) v2y*Tg Z azvfz ,

[VEXT f(a*) + V2y T g(a")]8 = 0.

By using assumption (iv) and « # 0, we have Z _,;Vfi(z*) # 0. And we get a contra-
diction. Therefore, 6 £ 0. That is § > 0.
Since 6 > 0, it follows from (3.5), we have

1 * * * *
) =3P 2y T g(a*)p

If assumption (v) holds, the above equation gives p* = 0. Hence, (3.4) reduces to

y*Tg(x*

k
DNV fi(a) + Vi Tg(a®)] = 0.

Which combining with assumption (iii), we get 5 = 0. Hence, (3.2) reduces to

Ogij(z*)=—-m;, j=1,....m

Since 6 > 0 and n = 0, we have g(«*) < 0. This implies z* is a feasible solution of problem
(VP).

On the other hand, since p* = 0, the two objectives are equal, and z* is weak efficient
solution of problem (VP).

Remark 3.3. (1) If & = 1, conditions (i)-(v) reduce to conditions (i)-(v) in Theorem
2.1. And we give the proof of the converse duality theorem by replacing condition (C3) of
Theorem 5 in [2] by two reasonable conditions (ii) and (iii).

(2) If p* = 0, the dual problem (VD) reduces to first order dual model considered
in [11]. Condition (i) is the first constraint condition of problem (VD), this condition can be
removed. Condition (iii) reduces to VZ[A\*T f(2*) +y*T g(2*)] is nonsingular. And conditions
(ii) and (v) can imply this condition. Hence, this condition can be removed.

Therefore, we can have the first order converse duality theorem under the following
conditions.
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(C1) V2fi(x*),i=1,...,k V2y*Tg(x*) are negative define and y*T g(z*) = 0 or V2f;(z*),
i=1,...,k, V2y*Tg(z*) are positive define and y*7g(x*) < 0,

(C2) {Vfi(z*),...,Vfe(z*)}, k < n, are linearly independent, Yang et al . [11] consider the
first order converse duality for multiobjective optimization problems (VP) and (VD)
under the following assumptions.

(A1) V2NT f(2*) + y*T g(x*)] is negative define,
(A42) VyTg(z*) #0,
(A3) Vy* Tg(x*) ¢ span{V fi(z*),...,Vfr(z*)}.

We can see that our assumptions can not reduce to the above conditions (A1) — (A3).
In fact, conditions (A1) — (A3) are more weaker than the conditions (C1) — (C2). This
imply that there are some differences in the methods of proof for first order converse duality
theorem and second order converse duality theorem.

Converse Duality for Nondifferentiable Nonlinear Programming

In [1], Ahmad et al studied the following nondifferentiable fractional programming problem.

N
Nl=| o=

(NP2) Minimize M
g(x) — («7Cx)

subject to h(z) < 0.

where f,g : R" — R,h : R — R™ are twice differentiable functions. B and C are n X n

positive semi-definite symmetric matrices.
And they formulated second order dual problem (ND2) for (NP2) as follows.

(ND2) Maxmize K (y,u,v,w,z,p) =v
subject to
[Vf(y) + V2 f(y)p + Bw] — v[Vg(y) + V?g(y)p — CZ]
— Vu'h(y) — V2u" h(y)p =0, (4.1)
1 1
Yy)— 5P Yy)p+y bw|—vg\y)— 5P g\y)p—Yy <
/)~ 50"V + v Bul —vlaly) — 50" Vgl " CZ] <0
1
u"h(y) = 5p"V*ulh(y)p 2 0,
wlBw <1,
TCz <1,
uz=0,v=0,

where u,w,p € R",y € R™, I, C M ={1,...,m},a=0,1,...,r with J],_, I, = M.

In converse duality Theorem 3.4 in [1 ] the assumption that the vectors {[V2f(y) —
oV2Vig()l;, [V*a' h(ylj,j = 1,...,n} are linearly independent, is erroneous. In the fol-
lowing theorem, we give appropriate rectifications for Theorem 3.4 in [1].

(ND3)). Assume that
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(i) Vf(y)+ Bw —oVg(y) + vCz — Va' h(y) =
(ii) V2f(y) —vV3g(y) is negative define or positive define.
(iit) V2f(g) —oV29(9) + V(V*f(5)p — 0V9(7)D) — V" h(y) — V(V*@" h(y)p) is nonsin-
gular.
(iv) Vf(y) + Bw — 9Vg(y) + vCz # 0.

(v) V2ul'h(y) is positive define and @Th(y) < 0 or V2ulh(y) is negative define and
u"h(g) 20

Then p =0, § is a feasible solution of (NP2) and the two objective functions values are equal.
Furthermore, if the generalized convezity hypotheses of Theorem 3.4 in [1] are satisfied, then
g is an optimal solution of (NP2).

Condltlon there eX1st «a e R,feR"yeREER, ueR, e R and v € R™ such that
BYIV f(g) = oV2g(y) + V(V2f(9)p — oV2g(9)p) — V2" h(y) — V(V*a" h(y)p)]
AV I@) + B — V(Y 5)p) — o(Va(5) — O= — 55 V(T g()p))]
+€[VaTh(g) - %-va?aTh@)m] —0, (42)

+ Vg5 + V295 — CZB +~[9(y )* P V39(y)p -y Cz =0, (4.3)

[Vh(5) + V*h()p]5 — £[h(5) — prVQ (@)p) —v =0, (44)

5TB + By — 2uBw =0, (4.5)

BT C 4+ v7yCy — 2002 =0, (4.6)

BYIVf(y) - oVPg(y) — VQ‘Th(‘)} —[V*f()p — oV2g(y)p) — VP R(G)p =0, (4.7)
WN(f (@) + 5" Bo - - TVQf( )p) —v(9(y) — 4" Cz — *’TVQ 9()p)] =0, (4.8)

¢la’n(y) — ! Tv a"h(y)p) =0, (4.9)
u(w Bw —1) =0, (4.10)

§(z7Cz—1) =0, (4.11)

vTa =0, (4.12)

(a,7,&,p,0,v) 20, (4.13)

(a,8,7,& p, 0,v) # 0. (4.14)

First, we claim that £ > 0. Otherwise, £ = 0, then (4.7) reduces to
(B =0)" [V f(5) — 0V2g(9)] = BT V" h(y) = 0.
Multiplying the above equation by p, we have
BHIV?F () — 0V2g(m) — V*a" h(G)lp = vp" [V*£(5) — 0V 9(9)]p- (4.15)
Multiplying (4.1) by 3 , we have
BTIVAf () — vV2g(y) — V2a h()lp = =BT [V £(5) + Bw — vVg(y) + 9C% — Va' h(g)].
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If assumption (i) holds, the above equation reduces to
BYIV2f(5) —vV(y) — V2@ h(y)lp = 0.
And (4.15) reduces to
¥0" [V £(5) = 0V g()]p = 0.

If assumption (ii) holds, the above equation gives vp = 0.
Now we claim that v # 0. Indeed, if v = 0, then (4.2) reduces to

BTV f(g) — oV2g(y) + V(Y2 f(§)p — V2g(3)p) — V2a" h(g) — V(V*a" h(7)p)] = 0.

By using assumption (iii), we have 8 = 0. From (4.3)-(4.6), we have («, 8,7, &, i, 9,v) = 0,
and which contradicts with (4.14). Therefore v # 0. Since yp* = 0, p* = 0. Hence (4.2) and
(4.5) reduce to

STV f(y) - oV2g(y) — V2a" h(y)] = [V f(9) + Bo — 0Vg(y) + vC7],
BTV f() — 0V2g(y) — BT VA" h(g)] = 0.
By using assumption (iv) and v # 0, we get a contradiction.

Therefore, £ # 0. That is £ > 0.
Since € > 0, it follows from (4.9), we have

o 1 N
@ h(y) = 5p" VA" h(g)p = 0.
If assumption (v) holds, the above equation gives p = 0. Therefore, (4.7) reduces to
BTV f(y) = vV2g(y) — V2@ h(g)] = 0.

Which combining with assumption (iii), we get 8 = 0. Therefore, (4.4) reduces to Eh(y) =
—v. Since £ > 0 and v 2 0, h(gy) < 0. This implies that g is a feasible solution of problem
(NP2).

Similar to the proof of Theorem 3.4 in [1], we have ¥ is an optimal solution of problem
(NP2).

Remark 4.2. (1) If B=C = 0 and g(x) = 1, problem (NP2) reduces to problem (NP1),
and conditions (i)-(v) reduce to conditions (i)-(v) in Theorem 2.1 of Section 2. And we give
the proof of the converse duality theorem by replacing condition (ii) in Theorem 3.4 in [1]
by reasonable conditions (ii) and (iii).

(2) If p =0 and B = C = 0, problems (NP2) and (ND2) reduce to first order dual
problems considered in [4]. Lee et al. [4] gave first order converse duality theorem(see
Theorem 2.1). But our assumptions can not reduce to the assumptions of Theorem 2.1
in [4].
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