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where f : Rn → R, g : Rn → Rm are twice differentiable functions.
And they formulated second order dual problem (ND1) for (NP1) as follows:

(ND1) Maxmize f(u)− 1

2
pT∇2f(u)p

subject to r(∇f(u) +∇2f(u)p+∇yT g(u) +∇2yT g(u)p = 0,

yT g(u)− 1

2
pT∇2(yT g(u))p = 0,

(r, y) = 0,

(r, y) ̸= 0.

where r ∈ R, y ∈ Rm and p, u ∈ Rn.
Husain et al. [3] gave a weak duality, a strong duality, a strict converse duality and a

Huard type converse duality for problems (NP1) and (ND1) . In particular, they prove the
following Huard type converse duality theorem.

Theorem 1.1 (Converse Duality (see Theorem 2.4 in [3]). Let (r∗, x∗, y∗, p∗) be a optimal
solution of (ND1)). Assume that

(A1) the n× n Hessian matrix ∇[r∗∇2f(x∗) +∇2(y∗T g(x∗))]p∗ is positive or negative defi-
nite,

(A2) ∇y∗g(x∗) +∇2(y∗T g(x∗))p∗ ̸= 0,

(A3) the vectors {[∇2f(x∗)]j , [∇2y∗g(x∗)]j , j = 1, . . . , n} are linearly independent, where
[∇2f(x∗)]j and [∇2y∗g(x∗)]j are jth rows of ∇2f(x∗) and ∇2y∗g(x∗), respectively. If
the generalized convexity hypotheses of Theorem 2.1 in [3] are satisfied, then x∗ is an
optimal solution of (NP1).

Yang et al. [10] note that the matrix ∇[r∗∇2f(x∗) + ∇2(y∗T g(x∗))]p∗ is positive or
negative definite in the assumption (A1) of Theorem 1.1, and the result of Theorem 1.1
implies p∗ = 0. See the proof of Theorem 2.4 in [3]. It is obvious that the assumption and
the result are inconsistent. Hence, they gave an appropriate modification for this deficiency
contained in Theorem 1.1. And they established the following converse duality theorem.

Theorem 1.2 (Converse Duality (see Theorem 2 in [10]). Let (r∗, x∗, y∗, p∗) be a optimal
solution of (ND1)). Assume that

(B1) ∇2y∗T g(x∗) is positive define and y∗T g(x∗) 5 0 or ∇2y∗T g(x∗) is negative define and
y∗T g(x∗) = 0.

(A2) ∇y∗g(x∗) +∇2(y∗T g(x∗))p∗ ̸= 0,

(A3) the vectors {[∇2f(x∗)]j , [∇2y∗g(x∗)]j , j = 1, . . . , n} are linearly independent, where
[∇2f(x∗)]j and [∇2y∗g(x∗)]j are jth rows of ∇2f(x∗) and ∇2y∗g(x∗), respectively. If
the generalized convexity hypotheses of Theorem 2.1 in [3] are satisfied, then x∗ is an
optimal solution of (NP1).

Gulati et al. [2] obtained an alternative proof of the converse duality theorem replacing
assumption (A2) in Theorem 1.2 by a weaker assumption ∇f(x∗) +∇2f(x∗)p∗ ̸= 0.

Observing that in the converse duality Theorems in [2,3,10], that is, Theorem 2.4 in [3],
Theorem 2 in [10], Theorem 1 and Theorem 2 in [2], the assumptions that the vectors
{[∇2f(x∗)]j , [∇2y∗g(x∗)]j , j = 1, . . . , n} are linearly independent, where [∇2f(x∗)]j and
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[∇2y∗g(x∗)]j are jth rows of ∇2f(x∗) and ∇2y∗g(x∗), respectively, are erroneous. Since
{[∇2f(x∗)]j , [∇2y∗g(x∗)]j ,j = 1, . . . , n} are 2n− vectors in Rn, and they are linearly depen-
dent.

In this work, Section 2 contains modified proofs for Theorem 2.4 in [3], Theorem 2 in [10],
Theorem 1 and Theorem 2 in [2]. The deficiency in the second order converse duality theo-
rems also appeared in the converse duality theorems for multiobjective programming prob-
lems in [3] and for nondifferentiable fractional programming problems in [1], and modified
proofs are presented in Section 3 and Section 4, respectively.

2 Converse Duality for Nonlinear Scalar Programming Problem

In this section, we give the following modified converse duality theorem for problems (NP1)
and (ND1).

Theorem 2.1 (Converse Duality for (ND1)). Let (r∗, x∗, y∗, p∗) be a optimal solution of
(ND1)). Assume that

(i) r∗∇f(x∗) +∇y∗T g(x∗) = 0.

(ii) ∇2f(x∗) is negative define or positive define.

(iii) r∗(∇2f(x∗) +∇(∇2f(x∗)p∗)) +∇2(y∗T g(x∗)) +∇(∇2(y∗g(x∗T )p∗)) is nonsingular.

(iv) ∇f(x∗) ̸= 0.

(v) ∇2y∗T g(x∗) is positive define and y∗T g(x∗) 5 0 or ∇2y∗T g(x∗) is negative define and
y∗T g(x∗) = 0.

Then p∗ = 0, x∗ is a feasible solution of (NP1) and the two objective functions values
are equal. Furthermore, if the generalized convexity hypotheses of Theorem 2.1 in [3] are
satisfied, then x∗ is an optimal solution of (NP1).

Proof. Since (r∗, x∗, y∗, p∗) is an optimal solution of (ND1), by Fritz John type necessary
condition, there exist α ∈ R, β ∈ Rn, θ ∈ R, ξ ∈ R and η ∈ Rm such that

−α[∇f(x∗)− 1

2
∇(p∗T∇2f(x∗)p∗)]− θ[∇(y∗T g(x∗))− 1

2
∇(p∗T∇2(y∗g(x∗))p∗)]

+[r∗(∇2f(x∗) +∇(∇2f(x∗)p∗)) +∇2(y∗T g(x∗)) +∇(∇2(y∗g(x∗T )p∗))]β = 0, (2.1)

βT [∇gj(x
∗) +∇2gj(x

∗)p∗]− θ[gj(x
∗)− 1

2
p∗T∇2gj(x

∗)p∗]− ηj = 0, (2.2)

j = 1, . . . ,m,

βT [∇f(x∗) +∇2f(x∗)p∗]− ξ = 0, (2.3)

(αp∗ + βr∗)T [∇2f(x∗)] + (θp∗ + β)T [∇2y∗T g(x∗)] = 0, (2.4)

θ[y∗T g(x∗)− 1

2
p∗∇2y∗T g(x∗)p∗] = 0, (2.5)

ξr∗ = 0, (2.6)

ηT y∗ = 0, (2.7)

(α, θ, ξ, η) = 0, (2.8)

(α, β, θ, ξ, η) ̸= 0. (2.9)
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First, we claim that θ > 0. Otherwise, θ = 0, then (2.4) reduces to

(αp∗ + βr∗)T [∇2f(x∗)] + βT [∇2y∗T g(x∗)] = 0. (2.10)

Multiplying the above equation by p∗, we have

αp∗T∇2f(x∗)p∗ + r∗βT∇2f(x∗)p∗ + βT∇2y∗g(x∗)p∗ = 0. (2.11)

Multiplying (2.2) by y∗j , j = 1, . . . ,m, summering over j and using (2.5) and (2.7), we get

βT [∇y∗T g(x∗) +∇2y∗T g(x∗)p∗] = 0. (2.12)

Multiplying (2.3) by r∗ and from (2.6), we have

r∗βT∇f(x∗) + r∗βT∇2f(x∗)p∗ = 0. (2.13)

Using(2.12) and (2.13) in (2.11), we have

αp∗T∇2f(x∗)p∗ = βT [r∗∇f(x∗) +∇y∗g(x∗)].

If assumption (i) holds, the above equation gives

αp∗T∇2f(x∗)p∗ = 0,

and using assumption (ii), we obtain αp∗ = 0. We claim that α > 0. Suppose to the contrary
that α = 0, then (2.1) reduces to

[r∗(∇2f(x∗) +∇(∇2f(x∗)p∗)) +∇2(y∗T g(x∗)) +∇(∇2(y∗g(x∗T )p∗))]β = 0.

If assumption (iii) holds, the above equation gives β = 0. From (2.2) and (2.3), we have
ξ = 0 and η = 0. So (α, β, θ, ξ, η) = 0, and which contradicts with (2.9). Therefore α > 0.
Since αp∗ = 0, p∗ = 0. Hence (2.1) and (2.4) reduce to

[r∗∇2f(x∗) +∇2y∗T g(x∗)]β = α∇f(x∗),

[r∗∇2f(x∗) +∇2y∗T g(x∗)]β = 0.

By using assumption (iv) and α > 0, we have α∇f(x∗) ̸= 0. And we get a contradiction.
Therefore, θ ̸= 0. That is θ > 0.

Since θ > 0, it follows from (2.5), we have

y∗T g(x∗) =
1

2
p∗T∇2y∗T g(x∗)p∗.

If assumption (v) holds, the above equation gives p∗ = 0. Therefore, (2.4) reduces to

βT [r∗∇2f(x∗) +∇2y∗g(x∗)] = 0.

Which combining with assumption (iii), we get β = 0. Therefore, (2.2) reduces to

θgj(x
∗) = −ηj , j = 1, . . . ,m.

Since θ > 0 and η = 0, we have g(x∗) 5 0. This implies that x∗ is a feasible solution of
problem (ND1).

On the other hand, since p∗ = 0, the two objectives are equal. Also, by weak duality
theorem in [3], x∗ is an optimal solution of problem (NP1).
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Remark 2.2. If p∗ = 0, condition (i) is the first constraint condition of problem (NP1),
and for first order converse duality theorem, this condition can be removed. If p∗ = 0,
condition (ii) is the condition ∇f(x∗) + ∇2f(x∗)p∗ ̸= 0 in [2], condition (iii) reduces to
r∗∇2f(x∗) + ∇2(y∗T g(x∗) is nonsingular. If ∇2(y∗T g(x∗) is negative define or positive
define, condition (ii) implies r∗∇2f(x∗) +∇2(y∗T g(x∗) is nonsingular.

Hence, we give the proof of the converse duality theorem by replacing condition (A3) in
Theorem 1.2 by two reasonable conditions (ii) and (iii).

3 Converse Duality for Multiobjective Programming Problems

In [2], Gulati et al studied the following multiobjecitve nonlinear programming problem.

(VP) Minimize f(x)

subject to g(x) 5 0.

where f : Rn → Rk, g : Rn → Rm are twice differentiable functions.
And they formulated second order dual problem (VD) for (VP) as follows:

(VD) Maxmize (f1(u)−
1

2
pT∇2f1(u)p, . . . , fk(u)−

1

2
pT∇2fk(u)p)

subject to ∇(λT f(u) +∇yT g(u)) +∇2(λT f(u) +∇2yT g(u))p = 0,

yT g(u)− 1

2
pT∇(yT g(u))p = 0,

λ ≥ 0,

y = 0,
k∑

i=1

λi = 1,

where r ∈ R, y ∈ Rm and p, u ∈ Rn.
Observing that in Huard type converse duality Theorem 5 in [2], the assumption that

the vectors {[∇2fi(x
∗)]j , [∇2y∗T g(x∗)]j , i = 1, . . . , k, j = 1, . . . , n} are linearly independent,

where [∇2fi(x
∗)]j and [∇2y∗T g(x∗)]j are jth rows of ∇2fi(x

∗) and ∇2y∗T g(x∗), respectively,
is erroneous. Since {[∇2f(x∗)]j , [∇2y∗g(x∗)]j , j = 1, . . . , n} are (k+1)n vectors in Rn. They
are linearly dependent.
Remark 3.1. In problem (VD), since λ ≥ 0, that is λi = 0, ı = 1, . . . , k, and λ ̸= 0, the

constraint condition
∑k

i=1 λi = 1 can be eliminated. In fact, if
∑k

i=1 λi ̸= 1, we can take
λ = λ∑k

i=1 λi
and y = y∑k

i=1 λi
in the constrains of problem (VD). Therefore, in the proof of

following converse duality theorem, we do not consider this condition.

Now we give a modified proof of converse duality theorems for (VP) and (VD).

Theorem 3.2 (Converse Duality for (VD)). Let (x∗, λ∗, y∗, p∗) be a weak efficient solution
of (VD)). Assume that

(i)
∑k

i=1 λ
∗
i∇fi(x

∗) +∇y∗T g(x∗) = 0.

(ii) ∇2fi(x
∗), i = 1, . . . , k are negative define or positive define.

(iii) ∇2λ∗T f(x∗)+∇(∇2λ∗T f(x∗)p∗)+∇2(y∗T g(x∗))+∇(∇2(y∗T g(x∗)p∗)) is nonsingular.
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(iv) {∇f1(x
∗), . . . ,∇fk(x

∗)}, k ≤ n, are linearly independent.

(v) ∇2y∗T g(x∗) is positive define and y∗T g(x∗) 5 0 or ∇2y∗T g(x∗) is negative define and
y∗T g(x∗) = 0.

Then p̄ = 0, x∗ is a feasible solution of (VP) and the two objective functions values are
equal. Furthermore, if the generalized convexity hypotheses of Theorem 5 in [2] are satisfied,
then x∗ is a weak efficient solution of (VP).

Proof. Since (x∗, λ∗, y∗, p∗) is a weak efficient solution of (VD), by Fritz John type necessary
condition, there exist α ∈ R, β ∈ Rn, θ ∈ R, ξ ∈ R and η ∈ Rm such that

−
k∑

i=1

αi[∇fi(x
∗)− 1

2
∇(p∗T∇2fi(x

∗)p∗)]− θ[∇(y∗T g(x∗))− 1

2
∇(p∗T∇2(y∗T g(x∗))p∗)]

+[∇2λ∗T f(x∗) +∇(∇2λ∗T f(x∗)p∗) +∇2(y∗T g(x∗)) +∇(∇2(y∗T g(x∗)p∗))]β = 0, (3.1)

βT [∇gj(x
∗) +∇2gj(x

∗)p∗]− θ[gj(x
∗)− 1

2
p∗T∇2gj(x

∗)p∗]− ηj = 0, (3.2)

j = 1, . . . ,m,

βT [∇fi(x
∗) +∇2fi(x

∗)p∗]− ξi = 0, (3.3)

i = 1, . . . , k,

k∑
i=1

(αip
∗ + βλ∗

i )
T [∇2fi(x

∗)] + (θp∗ + β)T [∇2y∗T g(x∗)] = 0, (3.4)

θ(y∗T g(x∗)− 1

2
p∗T∇(y∗T g(x∗))p∗] = 0, (3.5)

ξTλ∗ = 0, (3.6)

ηT y∗ = 0, (3.7)

(α, θ, ξ, η) = 0, (3.8)

(α, β, θ, ξ, η) ̸= 0. (3.9)

First, we claim that θ > 0. Indeed, if θ = 0, then (3.4) reduces to

k∑
i=1

(αip
∗ + βλ∗

i )
T [∇2fi(x

∗)] + βT∇2y∗T g(x∗) = 0. (3.10)

Multiplying the above equation by p∗, we have

k∑
i=1

[αip
∗T∇2fi(x

∗)p∗ + λ∗
i β

T∇2fi(x
∗)p∗] + βT∇2y∗T g(x∗)p∗ = 0. (3.11)

Multiplying (3.2) by y∗j , j = 1, . . . ,m, summering over j and using (3.5) and (3.7), we get

βT [∇y∗T g(x∗) +∇2y∗T g(x∗)p∗] = 0. (3.12)

Multiplying (3.3) by λ∗
i , i = 1, . . . , k, summering over i and using (3.6), we get

k∑
i=1

βT [λ∗
i∇fi(x

∗) + λ∗
i∇2fi(x

∗)p∗] = 0. (3.13)
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Using (3.12) and (3.13) in (3.11), we have

k∑
i=1

αip
∗T∇2f(x∗)p∗ = βT [

k∑
i=1

λ∗
i∇fi(x

∗) +∇y∗T g(x∗)].

If assumption (i) holds, the above equation gives

k∑
i=1

αip
∗T∇2f(x∗)p∗ = 0.

And using assumption (ii), we get αip
∗ = 0, i = 1, . . . , k. That is, α = 0 or p∗ = 0.

We claim that α ̸= 0. Suppose to the contrary that α = 0, then (3.1) reduces to

[∇2λ∗T f(x∗) +∇(∇2λ∗T f(x∗)p∗) +∇2(y∗T g(x∗)) +∇(∇2(y∗T g(x∗)p∗))]β = 0.

If assumption (iii) holds, the above equation gives β = 0. From (3.2) and (3.3), we have
ξ = 0 and η = 0. So (α, β, θ, ξ, η) = 0, and which contradicts with (3.9). Therefore α ̸= 0.
Since αip

∗ = 0, i = 1, . . . , k and p∗ = 0. Hence (3.1) and (3.4) reduce to

[∇2λ∗T f(x∗) +∇2y∗T g(x∗)]β =
k∑

i=1

αi∇fi(x
∗),

[∇2λ∗T f(x∗) +∇2y∗T g(x∗)]β = 0.

By using assumption (iv) and α ̸= 0, we have
∑k

i=1 αi∇fi(x
∗) ̸= 0. And we get a contra-

diction. Therefore, θ ̸= 0. That is θ > 0.
Since θ > 0, it follows from (3.5), we have

y∗T g(x∗) =
1

2
p∗T∇2y∗T g(x∗)p∗

If assumption (v) holds, the above equation gives p∗ = 0. Hence, (3.4) reduces to

βT [

k∑
i=1

λ∗
i∇2fi(x

∗) +∇2y∗T g(x∗)] = 0.

Which combining with assumption (iii), we get β = 0. Hence, (3.2) reduces to

θgj(x
∗) = −ηj , j = 1, . . . ,m.

Since θ > 0 and η = 0, we have g(x∗) 5 0. This implies x∗ is a feasible solution of problem
(VP).

On the other hand, since p∗ = 0, the two objectives are equal, and x∗ is weak efficient
solution of problem (VP).

Remark 3.3. (1) If k = 1, conditions (i)-(v) reduce to conditions (i)-(v) in Theorem
2.1. And we give the proof of the converse duality theorem by replacing condition (C3) of
Theorem 5 in [2] by two reasonable conditions (ii) and (iii).

(2) If p∗ = 0, the dual problem (VD) reduces to first order dual model considered
in [11]. Condition (i) is the first constraint condition of problem (VD), this condition can be
removed. Condition (iii) reduces to ∇2[λ∗T f(x∗)+y∗T g(x∗)] is nonsingular. And conditions
(ii) and (v) can imply this condition. Hence, this condition can be removed.

Therefore, we can have the first order converse duality theorem under the following
conditions.
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(C1) ∇2fi(x
∗), i = 1, . . . , k, ∇2y∗T g(x∗) are negative define and y∗T g(x∗) = 0 or ∇2fi(x

∗),
i = 1, . . . , k, ∇2y∗T g(x∗) are positive define and y∗T g(x∗) 5 0,

(C2) {∇f1(x
∗), . . . ,∇fk(x

∗)}, k ≤ n, are linearly independent, Yang et al . [11] consider the
first order converse duality for multiobjective optimization problems (VP) and (VD)
under the following assumptions.

(A1) ∇2[λ∗T f(x∗) + y∗T g(x∗)] is negative define,

(A2) ∇y∗T g(x∗) ̸= 0,

(A3) ∇y∗T g(x∗) /∈ span{∇f1(x
∗), . . . ,∇fk(x

∗)}.

We can see that our assumptions can not reduce to the above conditions (A1) − (A3).
In fact, conditions (A1) − (A3) are more weaker than the conditions (C1) − (C2). This
imply that there are some differences in the methods of proof for first order converse duality
theorem and second order converse duality theorem.

4 Converse Duality for Nondifferentiable Nonlinear Programming

In [1], Ahmad et al studied the following nondifferentiable fractional programming problem.

(NP2) Minimize
f(x) + (xTBx)

1
2

g(x)− (xTCx)
1
2

subject to h(x) 5 0.

where f, g : Rn → R, h : Rn → Rm are twice differentiable functions. B and C are n × n
positive semi-definite symmetric matrices.

And they formulated second order dual problem (ND2) for (NP2) as follows.

(ND2) Maxmize K(y, u, v, w, z, p) = v

subject to

[∇f(y) +∇2f(y)p+Bw]− v[∇g(y) +∇2g(y)p− Cz]

−∇uTh(y)−∇2uTh(y)p = 0, (4.1)

[f(y)− 1

2
pT∇2f(y)p+ yTBw]− v[g(y)− 1

2
pT∇2g(y)p− yTCZ] ≤ 0,

uTh(y)− 1

2
pT∇2uTh(y)p = 0,

wTBw 5 1,

zTCz 5 1,

u = 0, v = 0,

where u,w, p ∈ Rn, y ∈ Rm, Iα ⊂ M = {1, . . . ,m}, α = 0, 1, . . . , r with
∪r

α=0 Iα = M.
In converse duality Theorem 3.4 in [1], the assumption that the vectors {[∇2f(ȳ) −

v̄∇2∇2g(ȳ)]j , [∇2ūTh(ȳ]j , j = 1, . . . , n} are linearly independent, is erroneous. In the fol-
lowing theorem, we give appropriate rectifications for Theorem 3.4 in [1].

Theorem 4.1 (Converse Duality for (ND2)). Let (ȳ, ū, v̄, w̄, z̄, p̄) be a optimal solution of
(ND3)). Assume that
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(i) ∇f(ȳ) +Bw̄ − v̄∇g(ȳ) + v̄Cz̄ −∇ūTh(ȳ) = 0.

(ii) ∇2f(ȳ)− v̄∇2g(ȳ) is negative define or positive define.

(iii) ∇2f(ȳ)− v̄∇2g(ȳ)+∇(∇2f(ȳ)p̄− v̄∇2g(ȳ)p̄)−∇2ūTh(ȳ)−∇(∇2ūTh(ȳ)p̄) is nonsin-
gular.

(iv) ∇f(ȳ) +Bw̄ − v̄∇g(ȳ) + v̄Cz̄ ̸= 0.

(v) ∇2ūTh(ȳ) is positive define and ūTh(ȳ) 5 0 or ∇2ūTh(ȳ) is negative define and
ūTh(ȳ) = 0.

Then p̄ = 0, ȳ is a feasible solution of (NP2) and the two objective functions values are equal.
Furthermore, if the generalized convexity hypotheses of Theorem 3.4 in [1] are satisfied, then
ȳ is an optimal solution of (NP2).

Proof. Since (ȳ, ū, v̄, w̄, z̄, p̄) be a optimal solution of (ND2)), by Fritz John type necessary
condition, there exist α ∈ R, β ∈ Rn, γ ∈ R, ξ ∈ R , µ ∈ R, δ ∈ R and v ∈ Rm such that

βT [∇2f(ȳ)− v̄∇2g(ȳ) +∇(∇2f(ȳ)p̄− v̄∇2g(ȳ)p̄)−∇2ūTh(ȳ)−∇(∇2ūTh(ȳ)p̄)]

+γ[(∇f(ȳ) +Bw̄ − 1

2
p̄T∇(∇2f(ȳ)p̄))− v̄(∇g(ȳ)− Cz̄ − 1

2
p̄T∇(∇2g(ȳ)p̄))]

+ξ[∇ūTh(ȳ)− 1

2
p̄T∇(∇2ūTh(ȳ)p̄)] = 0, (4.2)

α+ [∇g(ȳ +∇2g(ȳ)p̄− Cz̄]β + γ[g(ȳ)− 1

2
p̄T∇2g(ȳ)p̄− ȳTCz̄] = 0, (4.3)

[∇h(ȳ) +∇2h(ȳ)p̄]β − ξ[h(ȳ)− 1

2
p̄T∇2h(ȳ)p̄]− v = 0, (4.4)

βTB + γBȳ − 2µBw̄ = 0, (4.5)

v̄βTC + v̄γCȳ − 2δCz̄ = 0, (4.6)

βT [∇2f(ȳ)− v̄∇2g(ȳ)−∇2ūTh(ȳ)]− γ[∇2f(ȳ)p̄− v̄∇2g(ȳ)p̄]− ξ∇2ūTh(ȳ)p̄ = 0, (4.7)

γ[(f(ȳ) + ȳTBw̄ − 1

2
p̄T∇2f(ȳ)p̄)− v̄(g(ȳ)− ȳTCz̄ − 1

2
p̄T∇2g(ȳ)p̄)] = 0, (4.8)

ξ[ūTh(ȳ)− 1

2
p̄T∇2ūTh(ȳ)p̄] = 0, (4.9)

µ(w̄TBw̄ − 1) = 0, (4.10)

δ(z̄TCz̄ − 1) = 0, (4.11)

vT ū = 0, (4.12)

(α, γ, ξ, µ, δ, v) = 0, (4.13)

(α, β, γ, ξ, µ, δ, v) ̸= 0. (4.14)

First, we claim that ξ > 0. Otherwise, ξ = 0, then (4.7) reduces to

(β − γp̄)T [∇2f(ȳ)− v̄∇2g(ȳ)]− βT∇2ūTh(ȳ) = 0.

Multiplying the above equation by p̄, we have

βT [∇2f(ȳ)− v̄∇2g(ȳ)−∇2ūTh(ȳ)]p̄ = γp̄T [∇2f(ȳ)− v̄∇2g(ȳ)]p̄. (4.15)

Multiplying (4.1) by β , we have

βT [∇2f(ȳ)− v∇2g(y)−∇2ūTh(ȳ)]p̄ = −βT [∇f(ȳ) +Bw̄ − v̄∇g(ȳ) + v̄Cz̄ −∇ūTh(ȳ)].
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If assumption (i) holds, the above equation reduces to

βT [∇2f(ȳ)− v∇2g(y)−∇2ūTh(ȳ)]p̄ = 0.

And (4.15) reduces to

γp̄T [∇2f(ȳ)− v̄∇2g(ȳ)]p̄ = 0.

If assumption (ii) holds, the above equation gives γp̄ = 0.
Now we claim that γ ̸= 0. Indeed, if γ = 0, then (4.2) reduces to

βT [∇2f(ȳ)− v̄∇2g(ȳ) +∇(∇2f(ȳ)p̄− v̄∇2g(ȳ)p̄)−∇2ūTh(ȳ)−∇(∇2ūTh(ȳ)p̄)] = 0.

By using assumption (iii), we have β = 0. From (4.3)-(4.6), we have (α, β, γ, ξ, µ, δ, v) = 0,
and which contradicts with (4.14). Therefore γ ̸= 0. Since γp∗ = 0, p∗ = 0. Hence (4.2) and
(4.5) reduce to

βT [∇2f(ȳ)− v̄∇2g(ȳ)−∇2ūTh(ȳ)] = −γ[∇f(ȳ) +Bw̄ − v̄∇g(ȳ) + v̄Cz̄],

βT [∇2f(ȳ)− v̄∇2g(ȳ)− βT∇2ūTh(ȳ)] = 0.

By using assumption (iv) and γ ̸= 0, we get a contradiction.
Therefore, ξ ̸= 0. That is ξ > 0.
Since ξ > 0, it follows from (4.9), we have

ūTh(ȳ)− 1

2
p̄T∇2ūTh(ȳ)p̄ = 0.

If assumption (v) holds, the above equation gives p̄ = 0. Therefore, (4.7) reduces to

βT [∇2f(ȳ)− v∇2g(y)−∇2ūTh(ȳ)] = 0.

Which combining with assumption (iii), we get β = 0. Therefore, (4.4) reduces to ξh(ȳ) =
−v. Since ξ > 0 and v = 0, h(ȳ) 5 0. This implies that ȳ is a feasible solution of problem
(NP2).

Similar to the proof of Theorem 3.4 in [1], we have ȳ is an optimal solution of problem
(NP2).

Remark 4.2. (1) If B = C = 0 and g(x) ≡ 1, problem (NP2) reduces to problem (NP1),
and conditions (i)-(v) reduce to conditions (i)-(v) in Theorem 2.1 of Section 2. And we give
the proof of the converse duality theorem by replacing condition (ii) in Theorem 3.4 in [1]
by reasonable conditions (ii) and (iii).

(2) If p̄ = 0 and B = C = 0, problems (NP2) and (ND2) reduce to first order dual
problems considered in [4]. Lee et al. [4] gave first order converse duality theorem(see
Theorem 2.1). But our assumptions can not reduce to the assumptions of Theorem 2.1
in [4].
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