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A ∈ Sm,n is called positive definite if Axm > 0 for all x ̸= 0. Clearly, when m is odd, there
is no positive definite tensors.

In 2005, the definition of eigenvalue for tensors was introduced by Qi [19] and Lim [14],
independently. Later, these definitions were unified by Chang, Person and Zhang [3] as
follows. Let A ∈ Tm,n. Assume that m is even and B ∈ Sm,n is positive definite. We say
(λ,x) ∈ R× (Rn \ {0}) is a generalized eigenpair of (A,B) if

Axm−1 = λBxm−1. (1.1)

The advantage of this definition is that the definitions of H-eigenvalue [19], Z-eigenvalue [19]
and D-eigenvalue [21] can be unified by replacing B with some special forms, respectively [3].
After that, the study of tensors and the spectra of tensors with their various applications
has attracted extensive attention and interest [4, 8, 13].

However, in many practical problems, the eigenpair (λ,x) in equations (1.1) should be
solved to satisfy actual requirement, or can always be constrained according to prior infor-
mation. For example, in the stability analysis of finite dimensional mechanical systems with
frictional contact [6], a necessary and sufficient condition for the occurrence of divergence
instability along a constant admissible direction, is to find λ ≥ 0 and a nonzero vector
x ∈ Rn such that w = (λM +K)x

wf = 0
0 ≤ xc ⊥ wc ≥ 0,

x =

[
xf

xc

]
, w =

[
wf

wc

]
,

where the matrices M ∈ Rn×n and K ∈ Rn×n are linear pencils of matrices in the coefficient
of friction at the particles in impending slip. For the matrix case, this problem was well-
studied and found application in different areas of science and engineering, for instance,
see [5, 22].

More general, we consider a homogeneous differential dynamical system constrained by
linear complementarity conditions. To be more specific, given a homogeneous mapping
F : Rn → Rn, we consider an equilibrium system of the form: u(t) ≥ 0

u′(t)− F (u(t)) ≥ 0
⟨u(t),u′(t)− F (u(t))⟩ = 0.

(1.2)

When the mapping F is linear, i.e., F (x) = Ax with a given matrix A ∈ Rn×n, the solution
of (1.2) is called the linear complementarity process in [23]. Here, we consider a mapping
defined by a nonnegative tensor A ∈ Tm,n, i.e.,

FA(x) = (Axm−1)[
1

m−1 ], ∀ x ∈ Rn
+,

where the ith component of the vector y[r] is given by yri . Clearly, the definition of FA(x) is
well-defined since A and x are nonnegative. And the mapping FA : Rn

+ → Rn
+ is positively

homogeneous, i.e., FA(tx) = tFA(x) for any t > 0. Like the linear case, if we require a
solution which has the form u(t) = eλtx with λ > 0, then the equilibrium system (1.2) can
be expressed as  x ≥ 0

λx− FA(x) ≥ 0
⟨x, λx− FA(x)⟩ = 0.

(1.3)
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This transformation makes use of the positive homogeneity of FA. Note that the second
inequality in (1.3) is equivalent to λm−1x[m−1] − Axm−1 ≥ 0 since λ > 0 with x ≥ 0. It
follows that the complementarity condition can also be equivalently written as

⟨x, λm−1x[m−1] −Axm−1⟩ = 0.

Denote the identity tensor by I = (δi1···im) ∈ Sm,n, where δi1···im is the generalized Kro-
necker symbol defined as

δi1···im =

{
1 if i1 = . . . = im,
0 otherwise.

Then, the equilibrium system (1.3) is to find λ > 0 and x ∈ Rn such that x ≥ 0
(λm−1I − A)xm−1 ≥ 0
⟨x, (λm−1I − A)xm−1⟩ = 0.

(1.4)

This is exactly an eigenvalue complementarity problem for tensors. We also mention that if
(λ,x) ∈ R×(Rn\{0}) is a solution (1.4), λ is called Pareto H-eigenvalue of A, corresponding
to the Pareto H-eigenvector x [24]. More generally, the cone eigenvalue complementarity
problem for high-order tensors was also discussed in [15,16].

In this paper, we consider the Generalized Eigenvalue Complementarity Problem for
Tensors (GEiCP-T)J which has the form

(GEiCP-T)J : Find λ > 0,x ̸= 0 such that


w = (λB −A)xm−1

wJ̄ = 0
wJ ≥ 0
xJ ≥ 0
w⊤

J xJ = 0,

(1.5)

where A ∈ Tm,n and B ∈ Sm,n is positive definite. Here, J ⊆ [n] is given and J̄ = [n] \ J .
For a vector x ∈ Rn, we denote by xJ the vector in R|J| such that xJ = (xj) ∈ R|J| for all
j ∈ J , where |J | denotes the cardinality of J . The Eigenvalue Complementarity Problem
for Tensors (EiCP-T) is a special case of (GEiCP-T)J with J = [n]. If the index set J
is clear in the content, we simply write GEiCP-T, abbreviated to (GEiCP-T)J . The rest
of this paper is organized as follows. In Section 2, the general properties of GEiCP-T are
studied. We establish its relationship with the generalized tensor eigenvalue problem. We
also give some sufficient conditions for the existence of the solution. In Section 3, we consider
the symmetric GEiCP-T, i.e., A ∈ Sm,n. By reformulating it as a nonlinear program, we
derive a sufficient and necessary condition for the solvability of the symmetric GEiCP-T. In
Section 4, we proposed a shifted projected power method to solve the symmetric GEiCP-T.
The monotonic convergence is also established. Some numerical experiments are reported
in Section 5.

Throughout this paper, we assume that m is even and B ∈ Sm,n is positive definite. We
use small letters x, y, . . . , for scalars, small bold letters x,y, . . . , for vectors, capital letters
A,B, . . . , for matrices, calligraphic letters A,B, . . . , for tensors. All the tensors discussed in
this paper are real.
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2 The Generalized Eigenvalue Complementarity Problem for Ten-
sors

In this section, we concentrate on the properties of generalized eigenvalue complementarity
problem for tensors, including the existence of solution. As stated in Introduction, EiCP-T
is a special case of GEiCP-T, which can be expressed as

(EiCP-T): Find λ > 0,x ̸= 0 such that


w = (λB −A)xm−1

w ≥ 0
x ≥ 0
w⊤x = 0,

(2.1)

where A ∈ Tm,n and B ∈ Sm,n is positive definite. Note that any solution with w = 0 is a
generalized tensor eigenpair of (A,B).

Given an index set J ⊆ [n], if (λ,x) is a solution of (1.5), the value λ > 0 is called a
complementary eigenvalue of (A,B) and the vector x is called a corresponding complemen-
tary eigenvector. Clearly, for any α > 0, αx is also a complementary eigenvector of (A,B)
associated to λ. Without loss of generality, we may restrict ∥x∥ = 1 to replace the constraint
x ̸= 0. In the case of EiCP-T, we use the linear constraint ∥x∥1 = e⊤x = 1 since x ≥ 0.
Here, e ∈ Rn denotes all-ones vector.

The relationship between GEiCP-T and the generalized eigenvalue problem is stated as
follows. Recall that given a set J ⊆ [n], the principal sub-tensor of a tensor A = (ai1···im) ∈
Tm,n, denoted by AJ , is the tensor in Tm,|J| such that

AJ = (ai1···im) for all i1, . . . , im ∈ J.

Proposition 2.1. Suppose that (λ,x) is a solution of (GEiCP-T)J with a given set J ⊆ [n].
Then, there exists a set I satisfying J̄ ⊆ I ⊆ [n], such that λ is a positive generalized
eigenvalue of (AI ,BI) and xI is a corresponding eigenvector with xJ∩I ≥ 0.

Proof. Let I = {i ∈ [n] : wi = 0}. Obviously, J̄ ⊆ I ⊆ [n] and wĪ > 0. By complementarity,
we have xĪ = 0. It follows that xI ̸= 0 and xJ∩I ≥ 0. On the other hand, by definition, for
any i ∈ [n],

wi =
∑

i2,...,im∈[n]

(λB −A)ii2···imxi2 · · ·xim =
∑

i2,...,im∈I

(λB −A)ii2···imxi2 · · ·xim .

Hence, 0 = wI = (λBI −AI)x
m−1
I , i.e., AIx

m−1
I = λBIx

m−1
I . 2

It follows that if exist, the number of λ-solutions, i.e., complementarity eigenvalues of
GEiCP-T can be bounded. Before that, two important equalities are presented.

Lemma 2.2. Given a positive integer n, the following equalities hold:

(a)
∑n

k=0

(
n
k

)
tk = (1 + t)n, ∀t ̸= 0;

(b)
∑n

k=0 k
(
n
k

)
tk = nt(1 + t)n−1, ∀t ̸= 0.

Proof. Denote ϕ(t) = (1 + t)n. The first conclusion

ϕ(t) =
n∑

k=0

(
n

k

)
tk



GENERALIZED EIGENVALUE COMPLEMENTARITY PROBLEM FOR TENSORS 531

can be obtained by the binomial theorem, which implies that ϕ′(t) = n(1 + t)n−1 =∑n
k=0 k

(
n
k

)
tk−1. By multiplying by t, we obtain the second conclusion. 2

Theorem 2.3. Given an index set J ⊆ [n], the (GEiCP-T)J has at most

(mn− |J |)m|J|−1(m− 1)n−1−|J|

distinct λ-solutions. In particular, EiCP-T has at most nmn−1 distinct λ-solutions.

Proof. Given a set J , there are 2|J| possible subsets I such that J̄ ⊆ I ⊆ [n]. For each
possible I, it has been shown that there are at most |I|(m− 1)|I|−1 generalized eigenvalues
of (AI ,BI) [3]. By Proposition 2.1, the total number of λ-solutions is at most

|J|∑
k=0

(
|J |
k

)
(|J̄ |+ k)(m− 1)|J̄|+k−1

= |J̄ |(m− 1)|J̄|−1

|J|∑
k=0

(
|J |
k

)
(m− 1)k + (m− 1)|J̄|−1

|J|∑
k=0

k

(
|J |
k

)
(m− 1)k

= |J̄ |(m− 1)|J̄|−1m|J| + (m− 1)|J̄|−1|J |(m− 1)m|J|−1

= (m|J̄ |+m|J | − |J |)m|J|−1(m− 1)|J̄|−1

= (mn− |J |)m|J|−1(m− 1)n−1−|J|.

The second equality holds by substituting t = m− 1 in Lemma 2.2.
Since EiCP is a special case of (GEiCP-T)J by taking J = [n], it follows that EiCP-T

has at most nmn−1 distinct λ-solutions. 2

In the following, we give some sufficient conditions to check the existence of solution for
(GEiCP-T)J with a given set J ⊆ [n].

Proposition 2.4. Suppose J ⊆ [n]. If A ∈ Tm,n is negative semi-definite (i.e., Axm ≤ 0
for all x ∈ Rn), then the corresponding (GEiCP-T)J is unsolvable.

Proof. Suppose that (λ,x) is a solution of (GEiCP-T)J . By Proposition 2.1, there exists a
set I satisfying J̄ ⊆ I ⊆ [n] such that AIx

m−1
I = λBxm−1

I . Taking the dot product with xI ,
it follows that

λ =
AIx

m
I

BIxm
I

.

On the other hand, let y be the vector whose entries are the same with xI in the index set
I and 0 otherwise. Since A is negative semi-definite, we have Aym = AIx

m
I ≤ 0. Similarly,

we have Bym = BIx
m
I > 0. Thus, λ ≤ 0 which contradicts the constraint λ > 0. 2

Now we consider the case B = I. For any i ∈ [n], we denote by ei the ith unit vector in
Rn. Then we have the following proposition which can be easily derived.

Proposition 2.5. Suppose that A = (ai1···im) ∈ Tm,n and B = I. If there is an index
j ∈ [n] such that ajj···j > 0 and aij···j ≤ 0 for all i ̸= j, then (λ,x) is a solution of EiCP-T
with λ = ajj···j and x = ej.

In particular, this property holds for the well-known class of nonsingular M -tensors [7]
(also called strong M -tensors in [27]).
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Recall that a tensor A = (ai1···im) ∈ Tm,n is called reducible if there exists a nonempty
proper index subset I ⊆ [n] such that

aii2···im = 0, ∀i ∈ I, i2, . . . , im ∈ Ī .

If A is not reducible, we call A irreducible. The Perron-Frobenius theorem is a well-known
result that describes the spectral radius of a nonnegative matrix. Recently, Perron-Frobenius
theorem has been extended to nonnegative tensors, see [2, 25, 26]. It can been stated as
follows.

Lemma 2.6. Suppose B = I. If A ∈ Tm,n is irreducible nonnegative, then there exists a
pair (λ∗,x∗) satisfying (1.1) such that:

(a) λ∗ > 0 is an eigenvalue.

(b) x∗ > 0, i.e., all components of x∗ are positive.

(c) If λ is an eigenvalue with nonnegative eigenvector, then λ = λ∗. Moreover, the non-
negative eigenvector is unique up to a multiplicative constant.

(d) If λ is an eigenvalue of A, then |λ| ≤ λ∗.

Based on this lemma, we can derive the existence and uniqueness of the solution of
EiCP-T for irreducible nonnegative tensors.

Theorem 2.7. Suppose B = I. If A = (ai1···im) ∈ Tm,n is irreducible nonnegative, then
EiCP-T has a solution (λ∗,x∗) with λ∗ > 0 and x∗ > 0. Moreover, the solution λ∗ is unique
and x∗ is unique up to a multiplicative constant.

Proof. Since A is irreducible nonnegative, by Lemma 2.6, there exists λ∗ > 0 amd x∗ > 0
satisfying (1.1), i.e., A(x∗)m−1 = λ∗I(x∗)m−1. It follows that (λ∗,x∗) is a solution of EiCP-
T. Now we prove the uniqueness of the solution of EiCP-T. Suppose that (λ,x) is a solution
of EiCP-T. Clearly, x ̸= 0 and x ≥ 0. Let I be the index set defined by

I = {i ∈ [n] : xi = 0}.

Then I ( [n] and xi > 0 for all i ∈ Ī. Moreover, we claim that I = ∅. Otherwise, I is a
nonempty proper index subset of [n]. By definition, we have that for any i ∈ I,

wi = λxm−1
i −

∑
i2,...,im∈[n]

aii2···imxi2 · · ·xim

= −
∑

i2,...,im∈Ī

aii2···imxi2 · · ·xim

≥ 0.

On the other hand, since x ≥ 0 andA is nonnegative, we have
∑

i2,...,im∈Ī aii2···imxi2 · · ·xim =

0 for any i ∈ I. Note that xi > 0 for all i ∈ Ī. It follows that

aii2···im = 0, ∀i ∈ I, i2, . . . , im ∈ Ī .

It means that A is reducible, which is a contradiction. Hence, I = ∅, i.e., x > 0. By
complementary condition of EiCP-T, λ is an eigenvalue with a positive eigenvector x. Again,
by Lemma 2.6, the conclusion follows immediately. 2
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In fact, for any J ⊆ [n], the (GEiCP-T)J still has a solution (λ∗,x∗) with λ∗ > 0 and
x∗
J > 0 for irreducible nonnegative tensors. Before that, we give a useful lemma, which

describes the relationship of solutions between different generalized eigenvalue complemen-
tarity problems.

Lemma 2.8. Suppose that J ⊆ [n] and (λ,x) is a solution of the (GEiCP-T)J . Let J0 and
J1 be the subsets of [n] given by

J0 = {i ∈ [n] : wi > 0} and J1 = {i ∈ [n] : xi ≥ 0},

where w is defined in (1.5). Then (λ,x) is a solution of the (GEiCP-T)Ĵ for any J0 ⊆ Ĵ ⊆
J1.

Proof. By definition, J0 ⊆ J ⊆ J1. And for any index set Ĵ satisfying J0 ⊆ Ĵ ⊆ J1, we
have wĴ ≥ 0, xĴ ≥ 0 and w⊤

Ĵ
xĴ = w⊤

J xJ = 0. It follows that (λ,x) is a solution of the

(GEiCP-T)Ĵ . 2

Theorem 2.9. Suppose B = I. If A = (ai1···im) ∈ Tm,n is irreducible nonnegative, then for
any J ⊆ [n], the (GEiCP-T)J has a solution (λ∗,x∗) with λ∗ > 0 and x∗

J > 0.

Proof. By Theorem 2.7, EiCP-T has a unique solution (λ∗,x∗) with λ∗ > 0 and x∗ > 0.
It follows that w∗ = 0. By the definition of J0 and J1 in Lemma 2.8, we have J0 = ∅ and
J1 = [n]. According to Lemma 2.8, the conclusion follows immediately. 2

Note that for irreducible nonnegative tensors, the uniqueness of the solution of GEiCP-T
does not hold in general. For example, let B ∈ S2,2 be the identity matrix and let A ∈ T2,2

be the irreducible nonnegative matrix given by

A =

(
2 1
1 2

)
.

For the index set J = {1}, it is easy to verify that λ1 = 3, x1 = (1, 1)⊤ and λ2 = 1,
x2 = (1,−1)⊤ are the solutions of the (GEiCP-T)J .

3 The symmetric Generalized Eigenvalue Complementarity Prob-
lem for Tensors

In this section, we focus on the symmetric GEiCP-T, i.e., A ∈ Sm,n. Its relationship with
an optimization problem is established. And we give a sufficient and necessary condition for
the solution existence of symmetric GEiCP-T.

Suppose that (λ,x) is a solution of the (GEiCP-T)J with a given J ⊆ [n]. Then we have
0 = w⊤

J xJ = w⊤x = λBxm −Axm. It follows that

λ(x) =
Axm

Bxm
, (3.1)

which can be seen as the generalized Rayleigh quotient for tensors.

Theorem 3.1. Suppose J ⊆ [n]. The symmetric (GEiCP-T)J is equivalent to the following
optimization problem

(P )J

 max λ(x)
s.t. x⊤x = 1

xJ ≥ 0

in the sense that any equilibrium solution x of (P )J with λ(x) > 0 is a solution of the
symmetric (GEiCP-T)J .
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Proof. The Lagrangian associated with the problem (P )J is defined as

L(x, µ,v) = λ(x) + µ(x⊤x− 1) + v⊤xJ ,

where µ ∈ R and v ∈ R|J| are the Lagrange multipliers. Without loss of generality, we may
assume that J denotes the first |J | indexes in [n], i.e., J = [|J |]. Any equilibrium solution
of (P )J satisfies the KKT conditions

∇λ(x) + 2µx+

(
v
0

)
= 0,

v ≥ 0,
v⊤xJ = 0,
xJ ≥ 0,
x⊤x = 1,

(3.2)

where ∇λ(x) is the gradient of λ(x). Since A,B ∈ Sm,n, by simple computation, we have

∇λ(x) =
m

Bxm
(Axm−1 − λ(x)Bxm−1), ∀x ̸= 0.

According to the definition of λ(x), x⊤∇λ(x) = 0. By taking the dot product with x in the

first equation, we have µ = 0. By taking w = Bxm

m

(
v
0

)
, we have w = λ(x)Bxm−1 −

Axm−1 which satisfies wJ ≥ 0 and wJ̄ = 0. Since λ(x) > 0, it follows that (λ(x),x) is a
solution of (GEiCP-T)J . The result follows immediately. 2

Here, we use ∥x∥22 = 1 to normalize the nonzero vector x. In fact, from the proof above,
the conclusion still holds if we normalize the nonzero vector x by ∥x∥kk = 1 for any k ≥ 1.
For EiCP, i.e., J = [n], it is simple to normalize x by ∥x∥1 = 1. Notice that x ≥ 0. The
constraint can be written as e⊤x = 1. Then, we have the following corollary.

Corollary 3.2. The symmetric EiCP-T is equivalent to the following optimization problem

(P )

 max λ(x)
s.t. e⊤x = 1

x ≥ 0

in the sense that any equilibrium solution x of (P) with λ(x) > 0 is a solution of the
symmetric EiCP-T.

From the reformulation of the symmetric GEiCP-T as a nonlinear program, several
important conclusions are derived. The following result gives a sufficient and necessary
condition for the solvability of the symmetric GEiCP-T.

Theorem 3.3. Suppose J ⊆ [n]. The symmetric (GEiCP-T)J is solvable if and only if
there exists a vector x ∈ Rn such that xJ ≥ 0 and Axm > 0.

Proof. Suppose that (λ,x) is a solution of the (GEiCP-T)J . Then, xJ ≥ 0 and Axm =
λBxm. Since λ > 0 and B is positive definite, we have Axm > 0.

On the other hand, suppose that there is a vector x̄ ∈ Rn such that x̄J ≥ 0 and Ax̄m > 0.
Without loss of generality, we assume that J denotes the first |J | indexes in [n]. Clearly,
x̄ ̸= 0 and λ( x̄

∥x̄∥2
) = λ(x̄) > 0. Denote

Ω = {x ∈ Rn : xJ ≥ 0, x⊤x = 1}.
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Since the set Ω is compact and λ(x) is continuous on Ω, then there exists a vector x∗ ∈ Ω
satisfying λ(x∗) ≥ λ(x) for any x ∈ Ω. In particular, λ(x∗) ≥ λ( x̄

∥x̄∥2
) = λ(x̄) > 0.

Moreover, we claim that x∗ is an equilibrium solution of (P )J , i.e., there exist µ ∈ R and
v ∈ R|J| such that the KKT conditions (3.2) hold. For any j ∈ [n], let’s consider the
one-variable function

gj(t) = λ(x∗ + tej),

where ej ∈ Rn denotes the jth unit vector. Then we have

gj(0) =

{
maxt≥−x∗

j
gj(t) if j ∈ J,

maxt∈R gj(t) if j ∈ [n] \ J.

Otherwise, there exists t ≥ −x∗
j if j ∈ J , or t ∈ R if j ∈ [n] \ J such that gj(t) > gj(0). Let

ȳ = y
∥y∥2

where y = x∗+tej . It follows that ȳ ∈ Ω and λ(ȳ) = λ(y) = gj(t) > gj(0) = λ(x∗),

which is a contradiction. As a result, for any j ∈ [n], a necessary condition is

g′j(0) = (∇λ(x∗))j

{
≤ 0 if j ∈ J and x∗

j = 0,
= 0 otherwise .

Let µ = 0 and v = −(∇λ(x∗))J . It is easy to verify that the KKT conditions (3.2)
hold. Hence, by Theorem 3.1, we can see that (λ(x∗),x∗) is a solution of the symmet-
ric (GEiCP-T)J . 2

Based on the theorem above, we have the following two corollaries.

Corollary 3.4. The symmetric EiCP-T is solvable if and only if there exists a vector x ≥ 0
such that Axm > 0.

Corollary 3.5. If the symmetric EiCP-T is solvable, then the symmetric (GEiCP-T)J is
also solvable for any given J ⊆ [n].

It has been shown [11] that most tensor problems are NP-hard. Here, we also show that
in general, deciding the solvability of EiCP-T is NP-hard.

Theorem 3.6. The solvability of EiCP-T is an NP-hard decision problem.

Proof. Let A = (aij) ∈ Rn×n be a symmetric matrix. Note that m is even. Suppose m = 2k.
Consider the tensor T = (ti1···im) ∈ Tm,n defined by

ti1···im =

{
ai1ik+1

if i1 = . . . = ik and ik+1 = . . . = im,
0 otherwise.

In general, T is not symmetric. Let A = (ai1···im) ∈ Sm,n be the symmetrization of T , i.e.,

ai1i2···im =
1

n!

∑
σ∈Sn

tiσ(1)iσ(2)···iσ(m)
,

where Sn denotes the permutation group on [n]. Clearly, for any x ∈ Rn,

Axm = T xm =

n∑
i=1

n∑
j=1

aijx
k
i x

k
j .

Since A is symmetric, by Corollary 3.4, EiCP-T corresponding to A is solvable if and only
if there exists a vector x ≥ 0 such that Axm > 0. Hence, deciding the solvability of EiCP-T
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is at least as difficult as finding a vector y ≥ 0 such that y⊤Ay > 0 (yi = xk
i ). It has

been proved that the latter problem is NP-hard (see Theorem 2.18 of [17]). The conclusion
follows immediately. 2

It follows that solving EiCP-T is NP-hard in general. Despite the fact, the solvability of
EiCP-T can be answered easily for some structured tensors.

Proposition 3.7. Suppose A = (ai1···im) ∈ Sm,n. If A satisfies one of the conditions

(a) ∃ i ∈ [n] such that aii···i > 0;

(b) A ≥ 0 and A ̸= 0;

(c) A is a nonsingular M -tensor;

(d) A is strictly copositive [20], i.e., Axm > 0 for all x ∈ Rn
+ \ {0},

then there exists x̄ ≥ 0 such that Ax̄m > 0 and the corresponding EiCP-T is solvable.

Proof. (a) Let x̄ = ei; (b) Let x̄ = e; (c) Since A is a nonsingular M -tensor, by Theorem 2
of [7], there exists x̄ ≥ 0 such that Ax̄m−1 > 0. It follows that Ax̄m > 0. (d) Trivial. 2

Recall that a tensor A ∈ Tm,n is called weakly symmetric [3] if

∇(Axm) = mAxm−1, ∀x ∈ Rn.

And it has also been shown [3] that a symmetric tensor is weakly symmetric, but the converse
is not true in general. It is worth mentioning that most of the results in this section can be
extended to weakly symmetric tensors since only the derivative information is used here.

4 Shifted Projected Power Method

According to Proposition 2.1, the relationship between GEiCP-T and the generalized eigen-
value problem is established. Based on this, the solution set GEiCP-T can be obtained via
complete enumeration.

Algorithm 1. A procedure to compute all the complementary eigenpairs of (GEiCP-T)J
Input: Given a subset J ⊆ [n], A ∈ Tm,n and a positive definite tensor B ∈ Sm,n.
Output: The solution set S.
Step 1. Find all the subsets I such that J̄ ⊆ I ⊆ [n].
Step 2. Compute all the generalized eigenpairs (λ,xI) of (AI ,BI) for each I, where xI is
normalized by ∥xI∥ = 1. Denote the set by σ(I).
Step 3. For any (λ,xI) ∈ σ(I), let x = (xI , 0)

⊤ ∈ Rn. Check λ > 0,
xI∩J ≥ 0,
λBxm−1 −Axm−1 ≥ 0.

If all the conditions hold, then (λ,x) ∈ S.

Here, we may assume that the solution set σ(I) is finite. For example, when A is
symmetric, it has been shown [4] that σ(I) is finite due to the fact that the corresponding
polynomial optimization problem has finitely many critical values. On the the other hand, we
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can see that the Step 2 in Algorithm 1 is exactly a generalized eigenvalue problem. Recently,
several methods have been proposed to solve this problem (or partially). For example, Ng et
al. [18] proposed an iterative method for finding the largest eigenvalue of nonnegative tensors.
Kolda et al. [12] presented a shifted power method for computing Z-eigenvalues, and they also
generalized this method to compute generalized eigenpairs by choosing the shift adaptively
[13]. Hao et al. [10] presented a sequential subspace projection method for computing
extreme Z-eigenvalues. Han [9] introduced an unconstrained optimization method for even
order symmetric tensors. By using the Jacobian SDP relaxations in polynomial optimization,
Cui et al. [4] proposed an method for computing all the real eigenvalues of symmetric tensors.

However, Algorithm 1 may do not work in practice. The computational cost can be
very high, especially when the scale of the problem becomes large. And it is not necessary
to compute all the solutions of the (GEiCP-T)J . In fact, it provides a way to decide the
solvability of the (GEiCP-T)J , i.e., the (GEiCP-T)J is unsolvable if the solution set S is
empty. As stated in Theorem 3.6, it is an NP-hard problem in general.

Motivated by the work of Kolda and Mayo [12,13], we propose a shifted projected power
method for finding a solution of the symmetric GEiCP-T. Here, we assume that the GEiCP-T
given is solvable. Instead of using the gradient directly, we do a projection of the gradient to
make the new iterative point feasible. And it will be shown that the monotonic convergence
is also guaranteed.

Given a set J ⊆ [n], denote Ω = {x ∈ Rn : xJ ≥ 0, x⊤x = 1}. Clearly, Ω is compact.
Consider the following nonlinear program

max f(x) subject to x ∈ Ω,

where f(x) is a given nonlinear function.

Theorem 4.1. Suppose that w ∈ Ω and f(x) is a given function. Let Σ(w) be the open
neighborhood of w such that f(x) is convex and continuously differentiable on it. Let d(w) ∈
Rn be given by

d(w)i =

{
0 if i ∈ J and ∇f(w)i < 0,
∇f(w)i otherwise.

(4.1)

Assume ∥d(w)∥ ̸= 0. Define v = d(w)
∥d(w)∥ . If v ∈ Σ(w) and v ̸= w, then f(v)− f(w) > 0.

Proof. Clearly, v ∈ Ω. By definition, we have ∇f(w)⊤d(w) = ∥d(w)∥2. Note that wJ ≥
0. It follows that ∇f(w)⊤w ≤ d(w)⊤w. Then, by Cauchy-Schwarz inequality, we get
∇f(w)⊤(v − w) ≥ ∥d(w)∥ − d(w)⊤w > 0 since w ∈ Ω and v ̸= w. On the other hand,
since f(x) is convex on Σ(w), we have

f(v)− f(w) ≥ ∇f(w)⊤(v −w).

Consequently, f(v)− f(w) > 0. 2

We can see that d(w) is a ascent direction since ∇f(w)⊤d(w) = ∥d(w)∥2 ≥ 0. In fact,
by the definition of d(w), it can be seen as the projection of the gradient ∇f(w) on the set
{x ∈ Rn : xJ ≥ 0}. According to Theorem 4.1, the simple iterative algorithm, i.e.,

x+ = d(x)/∥d(x)∥,

will monotonically ascent if f(x) is local convex. Unfortunately, the objective function f(x)
in (P )J is λ(x), defined as (3.1). It is not convex in general.
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To fix this, we consider an equivalent optimization problem of (P )J , i.e.,

max f̂(x) = λ(x) + α∥x∥m subject to x ∈ Ω,

where α is a shifted factor which makes the objective function f̂(x) locally convex. Denote
by H(x) the Hessian of λ(x). By simple computation, we have

∇λ(x) =
m

Bxm
[Axm−1 − λ(x)Bxm−1] (4.2)

and

H(x) =
m(m− 1)

Bxm
Axm−2 − m2

(Bxm)2
Axm−1(Bxm−1)⊤ − m(m− 1)

(Bxm)2
AxmBxm−2

− m2

(Bxm)3
Bxm−1(BxmAxm−1 − 2AxmBxm−1)⊤. (4.3)

Here, for a tensor A ∈ Tm,n and a vector x ∈ Rn, Axm−2 is a matrix in Rn×n whose (i, j)-th
component is defined by

(Axm−2)ij =
n∑

i3,...,im=1

aiji3···imxi3 · · ·xim .

It follows that for x ∈ Ω,
∇f̂(x) = ∇λ(x) + αmx (4.4)

and the corresponding Hessian of f̂ is given by

Ĥ(x) = H(x) + αmI + αm(m− 2)xx⊤. (4.5)

Our goal is choose the shifted factor α to make f̂(x) locally convex, i.e., Ĥ(x) is positive
semi-definite. The following result gives a way to choose the shifted factor adaptively.
Denote by λmin(H) the minimal eigenvalue of the matrix H.

Lemma 4.2 (Corollary 4.4 of [13]). Assume x ∈ Ω. Let τ > 0. If

α = max{0, (τ − λmin(H))/m},

the λmin(Ĥ) > τ.

Then, given x ∈ Ω, a shifted factor can be chosen to make f̂(x) locally convex according
to Lemma 4.2. It follows that

x+ =
d̂(x)

∥d̂(x)∥
∈ Σ(x) ⇒ f̂(x+)− f̂(x) > 0 ⇒ λ(x+)− λ(x) > 0,

where d̂(x) is defined as (4.1) for ∇f̂(x). Though the shifted factor changes adaptively, we
can see that the original function increases after each iteration. In particular, the shifted
projected power method can be described as follows.

Algorithm 2. Shifted projected power method for solving the symmetric (GEiCP-T)J
Step 0. Given J ⊆ [n], τ > 0 and let x0 ∈ Ω be the vector so that A(x0)m > 0. Set k = 0.
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Step 1. Compute the gradient ∇λ(xk) and the Hessian H(xk) by (4.2) and (4.3), respec-

tively. Let αk = max{0, (τ−λmin(H(xk)))/m}, ∇f̂(xk) = ∇λ(xk)+αkmxk and d̂(xk) ∈ Rn

be given by

d̂(xk)i =

{
0 if i ∈ J and ∇f̂(xk)i < 0,

∇f̂(xk)i otherwise.
(4.6)

Step 2. If ∥d̂(xk)∥ = 0, stop. Otherwise,

xk+1 =
d̂(xk)

∥d̂(xk)∥
.

Step 3. Set k = k + 1 and go back to Step 1.

The convergence of this method is also established as follows.

Theorem 4.3. If there is a vector x ∈ Ω such that d̂(x) = 0, then (λ(x),x) is a solution of
the symmetric (GEiCP-T)J with a given index set J ⊆ [n].

Proof. According to (4.6), we have ∇f̂(x)J̄ = 0 and ∇f̂(x)J ≤ 0 since d̂(x) = 0. Clearly,

xJ ≥ 0 since x ∈ Ω. It follows that x⊤∇f̂(x) = x⊤
J ∇f̂(x)J ≤ 0. On the other hand,∇f̂(x) =

∇λ(x)+αmx. Note that ∥x∥ = 1 and x⊤∇λ(x) = m
Bxmx⊤[Axm−1−λ(x)Bxm−1] = 0. Thus,

x⊤∇f̂(x) = αm ≥ 0 since α ≥ 0. As a result, x⊤∇f̂(x) = αm = 0. It implies that α = 0.
Recall that w = λ(x)Bxm−1 − Axm−1 for the symmetric (GEiCP-T)J . Then, we have
xJ ≥ 0, wJ̄ = 0 and wJ ≥ 0. Moreover, w⊤

J xJ = w⊤x = 0. This exactly means that
(λ(x),x) is a solution of the symmetric (GEiCP-T)J . The proof is completed. 2

Theorem 4.4. Suppose that d̂(xk) ̸= 0 for all k ≥ 0 in Algorithm 2. Let {xk}∞k=0 be
the corresponding generated sequence. Then, xk ∈ Ω for any k ≥ 0. Furthermore, if
xk+1 ∈ Σ(xk) for all k ≥ 0, then the sequence {λ(xk)}∞k=0 increases monotonically, and
converges to a λ-solution of the symmetric (GEiCP-T)J with a given index set J ⊆ [n].

Proof. Based on the analysis above, it is obvious that xk ∈ Ω for any k ≥ 0, and λ(xk+1) ≥
λ(xk) if xk+1 ∈ Σ(xk). Note that Ω is compact and λ(x) is continuous. Then λ(x) is
bounded on Ω. Hence, the sequence {λ(xk)} converges. Let λ∗ = limk→∞ λ(xk). It follows
that λ∗ is a local maximal value of the optimization problem (P )J . By Theorem 3.1, λ∗ is
a λ-solution of the symmetric (GEiCP-T)J . 2

Note that xk need not converge to optimal point, although any accumulation point of
the sequence {xk} is a local maximal point of the optimization problem (P )J . Here, we
assume that x+ ∈ Σ(x) for each iteration. It means that x+ should be located in the open

neighborhood of x, on which f̂(x) is convex. If the condition does not hold, we may see
decrease in the origin function. As explained in [13], one strategy is to choose a sufficiently
large α until the condition is satisfied. However, from the numerical experiments in the next
section, it is not necessary to worry about the unexpected case. Thus, we do not include
this technique in the implementation of the algorithm.

5 Numerical Experiments

In this section, the numerical performance of the shifted projected power method is pre-
sented. All codes were written by using Matlab Version R2012b and the Tensor Toolbox
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Version 2.6 [1]. And the numerical experiments were done on a laptop with an Intel Core
i5-2430M CPU (2.4GHz) and RAM of 5.58GB.

In the implementation of Algorithm 2, we set the parameter τ = 10−6, where τ is
the tolerance on being positive definite. We consider the iterates to be converged once
|λ(xk+1) − λ(xk)| ≤ 10−10. The maximum iterations is 1000. For simplicity, the positive
definite tensor B ∈ Sm,n is chosen such that Bxm−1 = x for all x⊤x = 1, where m is
even [13]. To solve the minimal eigenvalue of the matrix in Step 1, we use the eig function
built in Matlab to compute all the eigenvalues and select the minimal one. In some ways,
the speed of our method can be accelerated if a better algorithm is used to find the minimal
eigenvalue of a given matrix.

First, we use a randomly generated example to show the performance of Algorithm 2.
In the example, the tensor A ∈ S6,4 is generated randomly as follows: we select random
entries from [−1, 1], symmetrize the result, and round to four decimal places. To make
the (GEiCP-T)J solvable, we reset its first entry by a111111 = 0.5. It follows that Ae61 =
a111111 > 0. By Theorem 3.3, the corresponding (GEiCP-T)J is solvable if 1 ∈ J . Hence,
we execute our experiment under all possible cases, i.e.,

J = {1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}.

For all cases, the initial point is chosen by x0 = e1. The tensor A is specified in Table 1.
The numerical results are reported in Table 2. To show the monotonic convergence of the
shifted projective power method, the courses of iteration are presented in Figure 1.

In Table 2, Ite. denotes the iteration number of Algorithm 2 and (λ∗,x∗) denote the so-
lution derived at the final iteration. And w∗ is computed by w∗ = B(x∗)m−1−λ∗A(x∗)m−1.
We can see that for all cases, the shifted projected power method can find a solution of the
corresponding (GEiCP-T)J successfully, i.e.,

λ∗ > 0, x∗
J ≥ 0, w∗

J ≥ 0, w∗
J̄ = 0 and (w∗

J)
⊤x∗

J = 0.

Notice that there are four typical solutions for the cases J = {1}, {1, 2}, {1, 3, 4}, {1, 2, 3, 4}.
Any other solution is the same with one of these typical solutions. This phenomenon can
be well explained by Lemma 2.8. For instance, if J = {1, 3, 4}, (λ∗,x∗) is a solution of
the (GEiCP-T)J with λ∗ = 1.2894 and x∗ = (0.8801,−0.2669, 0.3927, 0)⊤. It follows that
w∗ = (0, 0, 0, 0.4676)⊤. By definition, we have J0 = {4} and J1 = {1, 3, 4}. According
to Lemma 2.8, since J0 ⊆ {1, 4} ⊆ J1, (λ

∗,x∗) is still a solution of the (GEiCP-T)Ĵ with

Ĵ = {1, 4}.
For these typical cases, the courses of iteration are shown in Figure 1. We can see that the

generated sequence {λ(xk)} is monotonically increasing, and converges to a local maximal
value quickly. It is also shown that the new iteration point x+ is always located in Σ(x), on

which f̂(x) is convex.
Second, we test our method by randomly generated tensors. Given order m and dimen-

sion n, the tensor A ∈ Sm,n is randomly generated as before, i.e., we select random entries
from [−1, 1] and symmetrize the result. To make the (GEiCP-T)J solvable, we reset its
first entry by a111111 = 0.5. The initial point is chosen by x0 = e1. And the (EiCP-T) is
considered i.e., J = [n]. For each case, ten symmetric tensors are generated and the average
time, the average λ-solution and the average number of iteration are recorded, respectively.
The results are reported in Table 3.

From Table 3, we can see that our method is very efficient for randomly generated tensors.
For each case, one can find a λ-solution within 500 iterations. Note that the tensor may be
out of the memory of our laptop when its scale becomes large.
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Table 1: A randomly generated tensor A = (ai1i2···i6) ∈ S6,4

a111111 = 0.5000, a111112 = −0.2369, a111113 = 0.1953, a111114 = −0.2691,
a111122 = 0.0835, a111123 = −0.2016, a111124 = −0.0441, a111133 = 0.0567,
a111134 = −0.2784, a111144 = 0.2321, a111222 = −0.1250, a111223 = 0.0333,
a111224 = 0.0235, a111233 = 0.0093, a111234 = −0.0304, a111244 = −0.0167,
a111333 = 0.1028, a111334 = −0.0385, a111344 = 0.0068, a111444 = 0.1627,
a112222 = −0.1002, a112223 = 0.0733, a112224 = 0.0607, a112233 = −0.1125,
a112234 = 0.0096, a112244 = −0.0810, a112333 = −0.0299, a112334 = 0.0153,
a112344 = 0.0572, a112444 = 0.0251, a113333 = 0.1927, a113334 = −0.1024,
a113344 = −0.0885, a113444 = 0.0289, a114444 = −0.0668, a122222 = −0.2707,
a122223 = −0.1066, a122224 = −0.1592, a122233 = 0.0805, a122234 = −0.0540,
a122244 = −0.0434, a122333 = −0.0048, a122334 = −0.0118, a122344 = 0.0196,
a122444 = −0.0585, a123333 = −0.0442, a123334 = −0.0618, a123344 = 0.0318,
a123444 = 0.0332, a124444 = −0.2490, a133333 = 0.1291, a133334 = 0.0704,
a133344 = −0.0032, a133444 = 0.0270, a134444 = 0.0232, a144444 = −0.3403,
a222222 = −0.6637, a222223 = 0.2191, a222224 = 0.3280, a222233 = 0.1834,
a222234 = 0.0627, a222244 = 0.0860, a222333 = 0.1590, a222334 = −0.0217,
a222344 = 0.1198, a222444 = −0.1674, a223333 = 0.0549, a223334 = −0.0868,
a223344 = 0.0043, a223444 = 0.0101, a224444 = −0.0307, a233333 = −0.3553,
a233334 = 0.0207, a233344 = 0.1544, a233444 = −0.1707, a234444 = −0.3557,
a244444 = −0.1706, a333333 = 0.7354, a333334 = −0.3628, a333344 = −0.2650,
a333444 = −0.0479, a334444 = −0.0084, a344444 = −0.0559, a444444 = 0.6136.

Table 2: Numerical results for the tensor A given in Table 1

J Ite. Time(s) λ∗ x∗ w∗

{1} 38 0.5636 1.7230 (0.8646,−0.1272, 0.4080,−0.2642)⊤ (0, 0, 0, 0)⊤

{1, 2} 41 0.6048 1.6381 (0.8513, 0, 0.4315,−0.2985)⊤ (0, 0.2180, 0, 0)⊤

{1, 3} 38 0.5662 1.7230 (0.8646,−0.1272, 0.4080,−0.2642)⊤ (0, 0, 0, 0)⊤

{1, 4} 101 1.4926 1.2894 (0.8801,−0.2669, 0.3927, 0)⊤ (0, 0, 0, 0.4676)⊤

{1, 2, 3} 41 0.6066 1.6381 (0.8513, 0, 0.4315,−0.2985)⊤ (0, 0.2180, 0, 0)⊤

{1, 2, 4} 52 0.7673 1.1666 (0.5781, 0, 0.8160, 0)⊤ (0, 0.3347, 0, 0.4207)⊤

{1, 3, 4} 101 1.4949 1.2894 (0.8801,−0.2669, 0.3927, 0)⊤ (0, 0, 0, 0.4676)⊤

{1, 2, 3, 4} 52 0.7684 1.1666 (0.5781, 0, 0.8160, 0)⊤ (0, 0.3347, 0, 0.4207)⊤

6 Conclusion

In this paper, the generalized eigenvalue complementarity problem for tensors (GEiCP-T) is
considered, which arises from the stability analysis of finite dimensional mechanical systems.
In theory, we mainly discuss the existence of the solution of GEiCP-T. It is shown that if
exist, the number of λ-solutions is finite. And there always exists a unique solution of EiCP-
T (i.e. J = [n]) for irreducible nonnegative tensors. For the symmetric case, GEiCP-T is
solvable if and only if there exists a feasible point of the corresponding nonlinear program
such that the objective function value is positive. It has also been proved that deciding the
solvability of EiCP-T is NP-hard in general.

In the aspect of algorithm, a shifted projected power method is proposed to solve the
symmetric GEiCP-T. The monotonic convergence of the algorithm is established. And the
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Figure 1: The course of iteration for the tensor A given in Table 1

Table 3: Numerical results for randomly generated tensors

m n Ite. Time(s) λ∗

4 5 50.0 0.3839 1.2143
4 10 65.7 0.5832 1.9260
4 15 116.4 1.1597 2.5069
4 20 162.8 2.3462 2.7829
4 25 187.7 4.3628 3.3754
4 30 195.1 9.9900 3.8642
4 35 225.6 21.3616 4.2010
4 40 278.7 44.2750 4.4314
4 45 432.7 91.8715 4.7232
6 4 23.8 0.3576 1.2637
6 5 38.6 0.6745 1.0581
6 6 40.5 0.8180 1.1849
6 7 51.6 1.0999 1.4305
6 8 82.3 2.2646 1.9459
6 9 95.7 3.8606 2.0624
8 4 29.3 0.8645 0.7863
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numerical experiments show that the algorithm presented is efficient and promising.
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