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the existence and uniqueness of the central path. For a brief survey on the recent devel-
opments related to SO and symmetric cone complementarity problems (SCCP), we refer
to [1, 4, 12,13,15,18–22,30–32,34].

Let I+(x) = {ν : ⟨x(ν), [A(x)](ν)⟩ > 0} and I−(x) = {ν : ⟨x(ν), [A(x)](ν)⟩ < 0} be two
index sets. We call SCLCP the Cartesian P∗(κ)-SCLCP if A has the Cartesian P∗(κ)-
property, i.e.,

(1 + 4κ)
∑

ν∈I+(x)

⟨x(ν), [A(x)](ν)⟩+
∑

ν∈I−(x)

⟨x(ν), [A(x)](ν)⟩ ≥ 0, κ ≥ 0.

This problem has been recently considered in [22] as the generalization of the more commonly
known and more widely used monotone SCLCPs (see, e.g., [12, 15,18,21,29,33,34]).

The recent development of primal-dual IPMs is based on the barrier functions that are
defined by a large class of univariate functions. The univariate functions called eligible kernel
functions [2] which have been successfully used to design new IPMs for various optimization
problems. It is well known that the use of certain eligible kernel functions lead to significant
reduction of the complexity gap between large- and small-update methods comparing to the
logarithmic kernel function. This was one of the main motivations of considering eligible
kernel functions as an alternative to classical logarithmic kernel function. For some other
related kernel-function based IPMs we refer to the monograph [6] and the references [3,5,7,
14,16,17,24,25,28,35].

In this paper, we introduce a new kind of parametric kernel function with trigonometric
barrier term as follows:

ψ(t) =
t2 − 1

2
− log t−

∫ t

1

u2

2p(x+ 2u)
2 tan

2p(h(x))dx, t > 0, p ∈ N, p > 1 (1.1)

where

h(x) =
πu(1− x)

x+ 2u
, (1.2)

and 0 < u ≤ u∗, (u∗ ≈ 0.4275), u∗ is the unique solution of the following equation

g(u) := tan

(
(1− 2u)π

4

)
− 2

3π(1 + 2u)
= 0. (1.3)

It should be noted that if u = 0, then ψ(t) = t2−1
2 − log t, which is the kernel function

of the classic barrier function. Some properties of the parametric kernel function, as well
as the corresponding barrier function, are studied. Based on this new parametric kernel
function, we proposed a class of primal-dual IPMs for the Cartesian P∗(κ)-SCLCP. The
obtained complexity results match the currently best known iteration bounds for large-
update methods, O((1+2κ)

√
r log r log r

ϵ ), and small-update methods, O((1+2κ)
√
r log r

ϵ ),
respectively. Thus, the iteration bounds are as good as they can be in the current state-of-
the-art.

The paper is organized as follows. In Section 2, some well known results on EJAs that
are needed in this paper are studied. In Section 3, we introduce the new parametric kernel
function with a trigonometric barrier term and develop some useful properties of the new
kernel function, as well as the corresponding barrier function. In Section 4, we present the
framework of kernel function-based IPMs for the Cartesian P∗(κ)-SCLCP. The analysis and
complexity of the algorithms for large- and small-update methods are presented in Section
5. Finally, some conclusions and remarks are made in Section 6.
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2 Preliminaries

In this section, we briefly recall some well known results on EJAs that are used in this
paper. A comprehensive treatment of EJAs can be found in the monograph [8] and the
references [23,27,31,32].

The bilinear form on V is defined as

x ⋄ s :=
(
x(1) ◦ s(1), . . . , x(N) ◦ s(N)

)T
,

where x =
(
x(1), . . . , x(N)

)T
and s =

(
s(1), . . . , s(N)

)T
in V with x(j), s(j) ∈ Vj , j = 1, . . . , N .

Similarly, the identity element in V is defined as

e =
(
e(1), . . . , e(N)

)T
,

where e(j) ∈ Vj is the identity element in Vj ,

The spectral decomposition of x =
(
x(1), . . . , x(N)

)T
in V is given by

x =

(
r1∑
i=1

λi(x
(1))c

(1)
i , . . . ,

rN∑
i=1

λi(x
(N))c

(N)
i

)T

,

where

x(j) =

rj∑
i=1

λi(x
(j))c

(j)
i

is the spectral decomposition of x(j) ∈ Vj with respect to the Jordan frame {c(j)1 , . . . , c
(j)
rj }

for j = 1, . . . , N . Corresponding, the vector-valued function ψ(x) can be defined as

ψ(x) = (ψ(x(1)), . . . , ψ(x(N)))T , (2.1)

where

ψ(x(j)) = ψ(λ1(x
(j))) c

(j)
1 + · · ·+ ψ(λrj (x

(j))) c(j)rj , j = 1, . . . , N.

Furthermore, if ψ(t) is differentiable, the derivative ψ′(t) exists, and we also have the vector-
valued function ψ′(x), namely

ψ′(x) = (ψ′(x(1)), . . . , ψ′(x(N)))T , (2.2)

where
ψ′(x(j)) = ψ′(λ1(x

(j))) c
(j)
1 + · · ·+ ψ′(λrj (x

(j))) c(j)rj , j = 1, . . . , N. (2.3)

The Peirce decomposition of x(j) ∈ Vj with respect to the Jordan frame {c(j)1 , . . . , c
(j)
rj }

is given by

x(j) =

rj∑
i=1

x
(j)
i c

(j)
i +

∑
i<mj

x
(j)
i,mj

, j = 1, . . . , N,

with x
(j)
i ∈ R, i = 1, . . . , rj and x

(j)
i,mj

∈ V(j)
i,mj

, 1 ≤ i < mj ≤ rj . The V(j)
imj

for 1 ≤ i < mj ≤
rj are the Peirce subspaces of Vj induced by the Jordan frame {c(j)1 , . . . , c

(j)
rj }. The Peirce
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decomposition of x ∈ V can be defined straightforwardly by using the Peirce decomposition
of components x(j) ∈ Vj as follows

x =

(
r1∑
i=1

x
(1)
i c

(1)
i +

∑
i<m1

x
(1)
im1

, . . . ,

rN∑
i=1

x
(N)
i c

(N)
i +

∑
i<mN

x
(N)
i,mN

)T

.

The trace and the determinant of x in V are given by

tr(x) =

N∑
j=1

rj∑
i=1

λi(x
(j)) and det(x) =

N∏
j=1

rj∏
i=1

λi(x
(j)).

Furthermore, we define the canonical inner product and the Frobenius norm as follows

⟨x, s⟩ =
N∑
j=1

⟨x(j), s(j)⟩ =
N∑
j=1

tr
(
x(j) ◦ s(j)

)
and

∥x∥F =

√√√√ N∑
j=1

rj∑
i=1

λ2i (x
(j)).

Let

λmax(x) = max{λi(x(j)) : 1 ≤ i ≤ rj , j = 1, . . . , N}

and

λmin(x) = min{λi(x(j)) : 1 ≤ i ≤ rj , j = 1, . . . , N}.

Then

|λmax(x)| ≤ ∥x∥F and |λmin(x)| ≤ ∥x∥F .

Let x(j) =
∑rj

i=1 λi(x
(j))c

(j)
i be the spectral decomposition of x(j) ∈ Vj with respect to

the Jordan frame {c(j)1 , . . . , c
(j)
rj } for j = 1, · · ·, N , f and g are continuously differentiable

functions in a suitable domain that contains all the eigenvalues of x(j). Then we define
F : Vj → R and G : Vj → Vj by

F (x(j)) :=

rj∑
i=1

f(λi(x
(j))) and G(x(j)) :=

rj∑
i=1

g(λi(x
(j)))c

(j)
i . (2.4)

The first derivatives DxF (x
(j)) and DxG(x

(j)) of the function F (x(j)) and G(x(j)) are given
by

∇F (x(j)) = DxF (x
(j)) = F ′(x(j)) =

rj∑
i=1

f ′(λi(x
(j)))c

(j)
i , (2.5)

and

DxG(x
(j)) = G′(x(j)) =

rj∑
i=1

g′(λi(x
(j)))P

(j)
ii +

∑
l<k

λl(x(j))=λk(x(j))

g′(λl(x
(j)))P

(j)
lk
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+
∑
l<k

λl(x(j) )̸=λk(x(j))

g(λl(x
(j)))− g(λk(x

(j)))

λl(x(j))− λk(x(j))
P

(j)
lk (2.6)

respectively. Here P
(j)
lk , 1 ≤ l ≤ k ≤ rj are orthogonal projection operators that appear in

the Peirce decomposition of Vj with respect to the Jordan frame {c(j)1 , . . . , c
(j)
rj }.

The separable spectral functions F (x) and G(x) are defined as

F (x) =
m∑
j=1

F (x(j)) and G(x) =
(
G(x(1)), . . . , G(x(m))

)T
,

where the components are defined by (2.4). Then we have

F ′(x) =
(
F ′(x(1)), . . . , F ′(x(m))

)T
, (2.7)

and

G′(x) =
(
G′(x(1)), . . . , G′(x(m))

)T
, (2.8)

where the derivatives of the components are given by (2.5) and (2.6), respectively.

3 New Parametric Kernel Function and its Properties

For ease of reference, we give the first three derivatives of ψ(t) given by (1.1) with respect
to t as follows

ψ′(t) = t− 1

t
− u2

2p(t+ 2u)
2 tan

2p(h(t)), (3.1)

ψ′′(t) = 1 +
1

t2
+

u2

p(t+ 2u)
3 tan

2p(h(t))

+
πu3(1 + 2u)

(t+ 2u)
4 tan2p−1(h(t)) sec2(h(t)), (3.2)

ψ′′′(t) = − 2

t3
− 3u2

p(t+ 2u)
4 tan

2p(h(t))− 6πu3(1 + 2u)

(t+ 2u)
5 tan2p−1(h(t)) sec2(h(t))

− π2u4(1 + 2u)
2
(2p− 1)

(t+ 2u)
6 tan2p−2(h(t)) sec4(h(t))

− 2πu4(1 + 2u)2

(t+ 2u)
6 tan2p(h(t)) sec2(h(t)). (3.3)

One can conclude that

ψ(1) = ψ′(1) = 0, and lim
t→0+

ψ(t) = lim
t→+∞

ψ(t) = +∞.

This implies that the proposed kernel function ψ(t) is completely defined by its second
derivative, namely,

ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ)dζdξ.

In what follows, we develop some technical lemmas that are needed in this paper.
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Lemma 3.1. For the function g(u), defined in (1.3), one has

g(u) > 0, 0 < u < u∗.

Proof. Consider the function g(u) = tan
(

(1−2u)π
4

)
− 2

3π(1+2u) as defined in (1.3), and using

that cos(x) = sin(π2 − x) < π
2 − x for 0 ≤ x < π

2 . Hence, we have

g′(u) = −π
2
sec2

(
π(1− 2u)

4

)
+

4

3π(1 + 2u)
2

= sec2
(
π(1− 2u)

4

)(
−π
2
+

4

3π(1 + 2u)
2 cos

2

(
π(1− 2u)

4

))

≤ sec2
(
π(1− 2u)

4

)(
−π
2
+

4

3π(1 + 2u)
2

π2(1 + 2u)
2

16

)

= −5π

12
sec2

(
π(1− 2u)

4

)
< 0.

This implies that g(u) is decreasing in (0, u∗). Due to the fact that g(u∗) = 0, we can
conclude that g(u) > 0 for 0 < u < u∗. This completes the proof.

Lemma 3.2. Let h(t) be given by (1.2). Then

f(t, u) := tan(h(t))− 4u

3π(1 + 2u)t
> 0, 0 < t ≤ 2u , 0 < u < u∗.

Proof. For 0 < t ≤ 1, one has 0 ≤ h(t) < π
2 , therefore cos(h(t)) ≤ π

2 − h(t). Differentiating
the function f(t, u) with respect to t, we have

∂f(t, u)

∂t
=

1

cos2h(t)
h′(t) +

4u

3(1 + 2u)πt2

=
1

3πt2cos2h(t)

(
3πt2h′(t) +

4u

1 + 2u
cos2h(t)

)
≤ 1

3πt2cos2h(t)

(
3πt2h′(t) +

4u

1 + 2u

(π
2
− h(t)

)2)
=

1

3πt2cos2h(t)

(
−3πt2

πu(1 + 2u)

(t+ 2u)
2 +

4u

1 + 2u

π2(1 + 2u)
2
t2

4(t+ 2u)
2

)

= − 2πu(1 + 2u)

3(t+ 2u)
2
cos2h(t)

< 0.

This implies that f(t, u) is strictly monotonically decreasing with respect to t ∈ (0, 2u]. It
follows from Lemma 3.1 that

f(2u, u) = tan

(
(1− 2u)π

4

)
− 2

3π(1 + 2u)
= g(u) > 0, 0 < u < u∗.

Then, we can conclude that f(t, u) > 0 for t ∈ (0, 2u]. This completes the proof.
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Lemma 3.3 (Lemma 2 in [3]). Let a be a constant, and

w(t, λ) = Ln(λ)t
n + Ln−1(λ)t

n−1 + · · ·+ L1(λ)t+ L0(λ), t ∈ R.

Here Li(λ) are functions of parameter λ ∈ R for i = 0, 1, . . . , n. If Ln(λ) > 0, w(a, λ) > 0

and ∂iw(t,λ)
∂ti |t=a > 0 for i = 1, . . . , n− 1, then we have w(t, λ) > 0 for all t > a.

The next lemma serves to prove that the proposed parametric kernel function has some
good properties.

Lemma 3.4. Let ψ(t) be as defined in (1.1). Then

ψ′′(t) > 1, ∀t > 0; (4-a)

tψ′′(t) + ψ′(t) > 0, ∀t > 0; (4-b)

tψ′′(t)− ψ′(t) > 0, ∀t > 1; (4-c)

ψ′′′(t) < 0, ∀t > 0. (4-d)

Proof. We first prove (4-a). The second derivative of ψ(t) is given in (3.2). Using that
tan(h(t)) > 0 for all 0 < t < 1, thus ψ′′(t) > 1 for 0 < t < 1.

Now let t ≥ 1. Define the function

ξ(t) :=
1

t2
+

u2

p(t+ 2u)
3 tan

2p(h(t)) +
πu3(1 + 2u)

(t+ 2u)
4 tan2p−1(h(t)) sec2(h(t)),

we need to prove that when 0 < u < u∗ and t ≥ 1, ξ(t) > 0 holds. To do this we consider
the following two cases:

Case 4-a.1: For 0 < u ≤ 1
4 . Then we have −π

4 ≤ −πu < h(t) < 0. This implies that
−1 < − tan(πu) < tan(h(t)) ≤ 0 for t ≥ 1. We have

ξ(t) ≥ 1

t2
+

u2

p(t+ 2u)
3 tan

2p(h(t))− 2πu3(1 + 2u)

(t+ 2u)
4

=
u2

p(t+ 2u)
3 tan

2p(h(t)) +
η1(t)

t2(t+ 2u)
4 ,

where

η1(t) := (t+ 2u)4 − 2πu3(1 + 2u)t2, t ≥ 1.

One can easily verify that

η1(1) = (1 + 2u)4 − 2πu3(1 + 2u) = (1 + 2u)((1 + 2u)3 − 2πu3) > 0.

Similarly, we can prove that η1
′(1) > 0, η1

′′(1) > 0 and η1
′′′(t) = 24(t + 2u) > 0. From

Lemma 3.3, we have η1(t) > 0 for t ≥ 1. This shows that ψ′′(t) > 1 holds when 0 < u ≤ 1
4

and t > 0.

Case 4-a.2: Let 1
4 < u ≤ u∗. We consider two situations to prove that ξ(t) > 0 holds

for t ≥ 1.

Situation 4-a.2.1: Let 1 ≤ t < 6u
4u−1 . Then −π

4 < h(t) ≤ 0, which implies that
−1 < tan(h(t)) ≤ 0. Similar to the proof in the Case 4-a.1, we can easily verify that (4-a)
holds.
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Situation 4-a.2.2: Let t ≥ 6u
4u−1 . Then −πu∗ < h(t) ≤ −π

4 , which implies that
− tan(πu∗) < tan(h(t)) ≤ −1. We have

ξ(t) =
1

tan2p(h(t))

(
tan2p(h(t))

t2
+

u2

p(t+ 2u)
3 +

πu3(1 + 2u)

(t+ 2u)
4 tan−1(h(t)) sec2(h(t))

)

≥ 1

tan2p(h(t))

(
1

t2
+

u2

p(t+ 2u)
3 − πu3(1 + 2u)sec2(πu∗)

(t+ 2u)
4

)

=
1

tan2p(h(t))

(
u2

p(t+ 2u)
3 +

η2(t)

t2(t+ 2u)
4

)
,

where

η2(t) := (t+ 2u)4 − πu3(1 + 2u)sec2(πu∗)t2, t ≥ 6u

4u− 1
.

Since u∗ ≈ 0.4275 < 0.428, so sec2(πu∗) < sec2(0.428π) < 20, and use the fact that π < 3.2,
thus for 1

4 < u < u∗ < 1
2 , we have

η2

(
6u

4u− 1

)
=

4u4(1 + 2u)

(4u− 1)
4 (64(1 + 2u)3 − 9πu(4u− 1)2)sec2(πu∗)

>
4u4(1 + 2u)

(4u− 1)
4 (64(1 + 2u)3 − 576u(4u− 1)2)

=
256u4(1 + 2u)

(4u− 1)
4 (1 + 3u(4u− 1) + 4u2 + 68u2(1− 2u))

> 0.

Similarly, we can verify that η2
′( 6u

4u−1 ) > 0, η2
′′( 6u

4u−1 ) > 0 and η2
′′′(t) = 24(t + 2u) > 0.

From Lemma 3.3, we have η2(t) > 0 when t ≥ 6u
4u−1 . This means that ψ′′(t) > 1 when

1
4 < u < u∗ and t ≥ 6u

4u−1 .
From the two cases above we can conclude that (4-a) holds.
By using (3.1) and (3.2), we have

tψ′′(t) + ψ′(t) = 2t+
u2(t− 2u)

2p(t+ 2u)
3 tan

2p(h(t)) +
πu3(1 + 2u)t

(t+ 2u)
4 tan2p−1(h(t))(1 + tan2(h(t))).

We will consider three cases to prove (4-b).
Case 4-b.1: Let 0 < t ≤ 2u. After some elementary reductions, we have, by Lemma

3.2,

tψ′′(t) + ψ′(t) > 2t+
πu3(1 + 2u)t

(t+ 2u)
4 tan2p−1(h(t)) +

3u2t2 + (8p− 12)u4

6p(t+ 2u)
4 tan2p(h(t)),

which indicates that tψ′(t) + ψ′(t) > 0 holds in this case.
Case 4-b.2: Let 2u < t ≤ 1. Then t − 2u > 0 and tan(h(t)) ≥ 0. It follows that

tψ′′(t) + ψ′(t) > 0 holds in this case.
Case 4-b.3: Let t > 1. It follows from (4-a) that ψ′(t) is an increasing function for

t > 0. Due to the fact that ψ′(1) = 0, we can conclude that ψ′(t) > 0 holds for t > 1, so
tψ′′(t) + ψ′(t) > 0.
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From the three cases above we can conclude that (4-b) holds.

To prove (4-c), we consider two cases:

Case 4-c.1: Let 0 < u ≤ 1
4 . Then −π

4 ≤ −πu < h(t) ≤ 0 for t ≥ 1, which implies that
−1 < tan(h(t)) ≤ 0 for t ≥ 1. We have

tψ′′(t)− ψ′(t) ≥ 2

t
+

3u2t+ 2u3

2p(t+ 2u)
3 tan

2p(h(t))− 2πu3(1 + 2u)t

(t+ 2u)
4

=
3u2t+ 2u3

2p(t+ 2u)
3 tan

2p(h(t)) +
η3(t)

t(t+ 2u)
4 ,

where

η3(t) := 2(t+ 2u)4 − 2πu3(1 + 2u)t2 = (t+ 2u)4 + η1(t) > 0, t > 1.

Thus tψ′′(t)− ψ′(t) > 0 holds for t > 1.

Case 4-c.2: Let 1
4 < u < u∗. We consider two situations to prove (4-c) holds in this

case.

Situation 4-c.2.1: Let 1 ≤ t < 6u
4u−1 . Then −π

4 < h(t) ≤ 0, which implies that
−1 < tan(h(t)) ≤ 0. Similar to the proof in Situation 4-a.2.1, we can easily verify that (4-c)
holds.

Situation 4-c.2.2: Let t ≥ 6u
4u−1 . Then −πu∗ < h(t) ≤ −π

4 , which implies that
− tan(πu∗) < tan(h(t)) ≤ −1. We have

tψ′′(t)− ψ′(t) ≥ 1

tan2p(h(t))

(
2

t
+

3u2t+ 2u3

2p(t+ 2u)
3 − πu3(1 + 2u)sec2(πu∗)t

(t+ 2u)
4

)

=
1

tan2p(h(t))

(
3u2t+ 2u3

2p(t+ 2u)
3 +

η4(t)

t(t+ 2u)
4

)
,

where

η4(t) := 2(t+ 2u)4 − πu3(1 + 2u)(1 + tan2(πu∗))t2 = (t+ 2u)4 + η2(t) > 0, t ≥ 6u

4u− 1
.

This implies that tψ′′(t)− ψ′(t) > 0 holds when 1
4 < u < u∗ and t ≥ 6u

4u−1 .

From the two cases above we can conclude that (4-c) holds.

Finally we need to prove that (4-d) holds.

Using (3.3) and since tan(h(t)) > 0 for 0 < t < 1, therefore ψ′′′(t) < 0.

Now let t ≥ 1. To prove ψ′′′(t) < 0 we consider two cases.

Case 4-d.1: Let 0 < u ≤ 1
4 . Then −π

4 ≤ −πu < h(t) ≤ 0 for t ≥ 1, which implies that
−1 < tan(h(t)) ≤ 0 for t ≥ 1. We have

ψ′′′(t) ≤ − 2

t3
− 6πu3(1 + 2u)

(t+ 2u)
5 tan2p−1(h(t)) sec2(h(t))

≤ − 2

t3
+

12πu3(1 + 2u)

(t+ 2u)
5 = − 2η5(t)

t3(t+ 2u)
5 ,

where

η5(t) := (t+ 2u)5 − 6πu3(1 + 2u)t3, t ≥ 1.
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Let 0 < u ≤ 1
4 . Then

η5(1) = (1 + 2u)5 − 6πu3(1 + 2u) ≥ (1 + 2u)

(
1− 3π

32

)
> 0.

Similarly, we can verify that η5
′(1) > 0, η5

′′(1) > 0, η5
′′′(1) > 0 and η5

(4)(t) = 120(t+2u) >
0. From Lemma 3.3, we have η5(t) > 0 for t ≥ 1. This shows that ψ′′′(t) < 0 when 0 < u ≤ 1

4
and t ≥ 1.

Case 4-d.2: Let 1
4 < u < u∗. We consider two situations to prove (4-d) holds in this

case.

Situation 4-d.2.1: Let 1 ≤ t < 6u
4u−1 . Then −π

4 < h(t) ≤ 0. This implies that
−1 < tan(h(t)) ≤ 0. Similar to the proof in Case 4-a.2.1, we can easily verify that (4-d)
holds.

Situation 4-d.2.2: Let t ≥ 6u
4u−1 . Then − tan(πu∗) < tan(h(t)) ≤ −1. We have

ψ′′′(t) ≤ − 2

t3
− 6πu3(1 + 2u)

(t+ 2u)
5 tan2p−1(h(t)) sec2(h(t))

= − 2

tan2p(h(t))

(
tan2p(h(t))

t3
+

3πu3(1 + 2u)

(t+ 2u)
5 tan−1(h(t)) sec2(h(t))

)

≤ − 2

tan2p(h(t))

(
1

t3
− 3πu3(1 + 2u)

(t+ 2u)
5 sec2(πu∗)

)

= − 2η6(t)

t3(t+ 2u)
5
tan2p(h(t))

,

where

η6(t) := (t+ 2u)5 − 3πu3(1 + 2u)sec2(πu∗)t3, t ≥ 6u

4u− 1
.

Since sec2(πu∗) < 20 and π < 3.2, thus for 1
4 < u < u∗ < 1

2 , we have

η6

(
6u

4u− 1

)
=

(
4u(1 + 2u)

4u− 1

)5

− 3π(1 + tan2(πu∗))u3(1 + 2u)

(
6u

4u− 1

)3

>
512u5(1 + 2u)

(4u− 1)
5

(
2(1 + 2u)4 − 81u(4u− 1)2

)
> 0.

Similarly, we can verify that η6
′( 6u

4u−1 ) > 0, η6
′′( 6u

4u−1 ) > 0, η6
′′′( 6u

4u−1 ) > 0 and η6
(4)(t) =

120(t + 2u) > 0. From Lemma 3.3, we have η6(t) > 0 when t ≥ 6u
4u−1 . This means that

ψ′′′(t) < 0 for 1
4 < u < u∗ and t ≥ 6u

4u−1 .

From the above all we complete the proof of the lemma.

The following lemma means that the proposed parametric kernel function ψ(t) is expo-
nential convex, which is equivalent to the second property (4-b) in Lemma 3.4, (see, e.g.,
Lemma 1 in [25]).

Lemma 3.5. Let t1, t2 ≥ 0. Then

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)).
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We consider the barrier function of the form

Ψ(x, s;µ) := Ψ(v) := tr(ψ(v)) =
N∑
j=1

tr(ψ(v(j))) =
N∑
j=1

rj∑
i=1

ψ(λi(v
(j)))

defined by the parametric kernel function ψ(t). It follows immediately from (2.7) that

DvΨ(v) = ψ′(v) =

(
r1∑
i=1

ψ′(λi(v
(1)))c

(1)
i , . . . ,

rN∑
i=1

ψ′(λi(v
(N)))c

(N)
i

)T

.

Furthermore, we can conclude that Ψ(v) is nonnegative and strictly convex with respect to
v ≻K 0 and vanishes at its global minimal point v = e, i.e.,

Ψ(v) = 0 ⇔ ψ(v) = 0 ⇔ ψ′(v) = 0 ⇔ v = e.

As a result of Lemma 3.5, we have the following theorem, which is crucial for the analysis
of kernel function-based IPMs for the Cartesian P∗(κ)-SCLCP, (see, e.g., Theorem 4.1 in
[31]).

Theorem 3.6. x, s ∈ K+. Then

Ψ
(
(P (x)1/2s)1/2

)
≤ 1

2
(Ψ(x) + Ψ(s)),

where K+ is the interior of K and the map P (x) is the quadratic representation of K.

The norm-based proximity measure δ(v) is given by

δ(v) :=
1

2
∥ψ′(v)∥F =

1

2

√√√√ N∑
j=1

rj∑
i=1

ψ′(λi(v(j)))2. (3.5)

This implies that δ(v) ≥ 0, and δ(v) = 0 if and only if Ψ(v) = 0.
The proposed parametric kernel function ψ(t) is strongly convex due to the fact that

(4-a) of Lemma 3.4, i.e., ψ′′(t) > 1. As a consequence of this property, the following lemma
can be directly obtained from the corresponding results in [2].

Lemma 3.7. Let t > 0. Then

1

2
(t− 1)2 ≤ ψ(t) ≤ 1

2
ψ′(t)2.

Lemma 3.8. Let ϱ : [0,∞) → [1,∞) be the inverse function of the parametric kernel
function ψ(t) for t ≥ 1. Then

ϱ(s) ≤ 1 +
√
2s.

Proof. It follows immediately from the first inequality of Lemma 3.7 that the result is obvi-
ous.

As the consequences of Lemma 3.7, we have the following two corollaries, which provide
a lower bound on δ(v) and an upper bound on ∥v∥F in terms of Ψ(v), respectively.

Corollary 3.9. Let Ψ(v) ≥ 1. Then

δ(v) ≥
√

Ψ(v)

2
.
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Corollary 3.10. Let Ψ(v) ≥ 1. Then

∥v∥F ≤
√
r +

√
2Ψ(v).

In the analysis of the algorithms, we need to consider the derivatives of the function

Ψ(x(t)) with respect to t, where x(t) =
(
x(1)(t), . . . , x(N)(t)

)T
such that x(j)(t) := x

(j)
0 +tu(j)

with t ∈ R and u(j) ∈ Vj and assume that x(j)(t) ∈ (Kj)+. For more details, we refer to [23].

Let x(j)(t) =
∑rj

i=1 λi(x
(j)(t))c

(j)
i be the spectral decomposition of x(j)(t) and u(j) =∑rj

i=1 u
(j)
i c

(j)
i +

∑
l<k u

(j)
lk be the Peirce decomposition of u(j) with respect to the Jordan

frame {c(j)1 , . . . , c
(j)
rj } for j = 1, · · ·, N . From (2.7) with (2.5), we have

DtΨ(x(j)(t)) = tr

(
rj∑
i=1

ψ′(λi(x
(j)(t)))c

(j)
i ◦ u(j)

)
. (3.6)

Furthermore, we have, by (2.8) with (2.6),

D2
tΨ(x(j)(t)) =

rj∑
i=1

ψ′′(λ
(j)
i )(u

(j)
i )2 +

∑
l<k

λ
(j)
l =λ

(j)
k

ψ′′(λ
(j)
l )tr

(
(u

(j)
lk )2

)

+
∑
l<k

λ
(j)
l ̸=λ

(j)
k

ψ′(λ
(j)
l )− ψ′(λ

(j)
k )

λ
(j)
l − λ

(j)
k

tr
(
(u

(j)
lk )2

)
,

where λ
(j)
l and λ

(j)
k represent λl(x

(j)(t)) and λk(x
(j)(t)), respectively. Now the derivatives

on the Cartesian product V are given by

DtΨ(x(t)) =
N∑
j=1

DtΨ(x(j)(t)) = tr (Ψ′(x(t)) ◦ x′(t))

and

D2
tΨ(x(t)) =

N∑
j=1

D2
tΨ(x(j)(t)).

Let λl(x(t)) ≥ λk(x(t)) under the assumption that l < k. Then the following inequality
gives an upper bound of the second-order derivative of Ψ(x(t)) with respect to t, i.e.,

D2
tΨ(x(t)) ≤

N∑
j=1

(
rj∑
i=1

ψ′′(λ
(j)
i )(u

(j)
i )2 +

∑
l<k

ψ′′(λ
(j)
l )tr

(
(u

(j)
lk )2

))
. (3.7)

The detailed can be founded in [23].

4 Kernel Function-based IPMs for the Cartesian P∗(κ)-SCLCP

Throughout the paper we assume that the Cartesian P∗(κ)-SCLCP satisfies the interior-
point condition (IPC), i.e., there exists (x0 ≻κ 0, s0 ≻κ 0) such that s0 = A(x0) + q. For
this and other properties of the Cartesian P∗(κ)-SCLCP, we refer to [22]. Under the IPC
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holds, by relaxing the complementarity slackness x ⋄ s = 0 with x ⋄ s = µe for µ > 0. We
have (

A(x)− s
x ⋄ s

)
=

(
−q
µe

)
, x, s ≽K 0 (4.1)

The parameterized system (4.1) has a unique solution, for each µ > 0. This solution is
denoted as (x(µ), s(µ)) and we call (x(µ), s(µ)) the µ-center of the Cartesian P∗(κ)-SCLCP.
The set of µ-centers (with µ running through all positive real numbers) gives a homotopy
path, which is called the central path of the Cartesian P∗(κ)-SCLCP. If µ→ 0, then the limit
of the central path exists and since the limit points satisfy the complementarity condition
x ⋄ s = 0, the limit yields a solution for the Cartesian P∗(κ)-SCLCP.

The basic idea of kernel function-based IPMs is to follow the central path and approach
the optimal set of the Cartesian P∗(κ)-SCLCP by letting µ go to zero. Applying Newton’s
method, we have the following system.(

A(∆x)−∆s
s ⋄∆x+ x ⋄∆s

)
=

(
0

−x ⋄ s+ µe

)
.

Since x and s do not operator commute in general, that is, L(x)L(s) ̸= L(s)L(x), then
the above system unfortunately does not have a unique solution. We can use the following
scaling scheme to overcome this difficulty.

Lemma 4.1 (Lemma 28 in [27]). Let u ∈ K+. Then

x ◦ s = µe ⇔ P (u)x ◦ P (u)−1s = µe.

Replacing x ⋄ s = µe with P (u)x ⋄ P (u)−1s = µe and applying Newton’s method again,
we have(

A(∆x)−∆s
P (u−1)s ◦ P (u)∆x+ P (u)x ◦ P (u−1)∆s

)
=

(
0

−P (u)x ◦ P (u−1)s+ µe

)
. (4.2)

The appropriate choices of u that lead to obtaining unique search directions from the system
(4.2) can be generalized from the semidefinite optimization (SDO) case.

In this paper, we consider the classical NT-scaling scheme to find the unique NT-
direction. Let u = w− 1

2 , where

w = P (x
1
2 )
(
P (x

1
2 )s
)− 1

2

= P (s−
1
2 )
(
P (s

1
2 )x
) 1

2

. (4.3)

Furthermore, we define

v :=
P (w)−

1
2x

√
µ

[
=
P (w)

1
2 s

√
µ

]
, (4.4)

and

A := P (w)
1
2AP (w) 1

2 , dx :=
P (w)−

1
2∆x

√
µ

, ds :=
P (w)

1
2∆s

√
µ

. (4.5)

It follows from Proposition 3.4 in [22] that the transformation A has the Cartesian P∗(κ)-
property if the linear transformation A has the Cartesian P∗(κ)-property. From (4.4) and
(4.5), we have (

A(dx)− ds
dx + ds

)
=

(
0

v−1 − v

)
. (4.6)
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We can conclude that the system (4.6) has a unique solution (cf. Theorem 3.6 in [22]).
The classical logarithmic barrier function is given by

Ψc(v) := tr(ψc(v)) =
N∑
j=1

tr(ψc(v
(j))) =

N∑
j=1

rj∑
i=1

(
λi(v

(j))2 − 1

2
− log λi(v

(j))

)
.

We have v−1 − v = −ψ′
c(v). This means that the system (4.6) can be rewritten as(

A(dx)− ds
dx + ds

)
=

(
0

−ψ′
c(v)

)
. (4.7)

Given the parametric kernel function ψ(t) and the associated vector-valued function
ψ′(v) defined by (2.3), we replace the right-hand side of the second equation in (4.7) by
−ψ′(v), i.e., −DvΨ(v). Thus we have(

A(dx)− ds
dx + ds

)
=

(
0

−ψ′(v)

)
. (4.8)

The new search directions dx and ds are obtained by solving (4.8) and then ∆x and ∆s can
be computed via (4.5). If (x, s) ̸= (x(µ), s(µ)) then (∆x,∆s) is nonzero. By taking a default
step size α along the search directions, we get the new iteration point (x+, s+) according to

x+ := x+ α△x and s+ := s+ α△s. (4.9)

The generic IPM for the Cartesian P∗(κ)-SCLCP presented in the Figure 1.

Figure 1: Generic IPM for the Cartesian P∗(κ)-SCLCP
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5 Analysis and Complexity of the Algorithms

5.1 Growth behavior of the barrier function during an outer iteration

During the course of the algorithms, the largest values of Ψ(v) occur just after the update
of µ. In what follows, we need to consider the effect of a µ-update on the value of Ψ(v).

Lemma 5.1. Let β ≥ 1. Then

ψ(βt) ≤ ψ(t) +
1

2
(β2 − 1)t2.

Proof. Let

w(t) := − log t−
∫ t

1

u2

2p(x+ 2u)
2 tan

2p(h(x))dx , 0 < u ≤ u∗.

We have

ψ(t) =
1

2
(t2 − 1) + w(t)

and

ψ(βt)− ψ(t) =
1

2
(β2 − 1)t2 + w(βt)− w(t).

As β ≥ 1, to prove the lemma, it is sufficient to show that the function w(t) is a decreasing
function. This can be seen from the following inequality:

w′(t) = −1

t
− u2

2p(t+ 2u)2
tan2p(h(t)) < 0.

This completes the proof.

Theorem 5.2. Let 0 < θ < 1 and v+ = v√
1−θ

. Then

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)

(
2Ψ(v) + 2

√
2rΨ(v) + r

)
.

Proof. It follows from Lemma 5.1 with β = 1√
1−θ

that

Ψ(βv) ≤ Ψ(v) +
1

2

N∑
j=1

rj∑
i=1

(β2 − 1)λ2i (v
(j)) = Ψ(v) +

θ∥v∥2F
2(1− θ)

.

Thus, we have, by Corollary 3.10,

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)

(
2Ψ(v) + 2

√
2rΨ(v) + r

)
.

This completes the proof.
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5.2 Choice of the default step size

By using (4.9) and (4.5), we have

x+ =
√
µP (w)

1
2 (v + αdx) and s+ =

√
µP (w)−

1
2 (v + αds).

Then
v+ = P (w+)

− 1
2P (w)

1
2 (v + αdx) = P (w+)

1
2P (w)−

1
2 (v + αds),

where, w+ is given as it is defined in (4.3),

w+ = P
(
x

1
2
+

)(
P
(
x

1
2
+

)
s+

)− 1
2

.

To calculate the decrease of the barrier function Ψ(v) during an inner iteration it is
standard to consider the decrease as a function of α defined by

f(α) := Ψ(v+)−Ψ(v).

Our aim is to find an upper bound for f(α) by using the exponential convexity of ψ(t), and
according to Lemma 3.5. However, working with f(α) may not be easy because in general
f(α) is not convex. Thus, we are searching for the convex function f1(α) that is an upper
bound of f(α) and whose derivatives are easier to calculate than those of f(α).

It follows from Proposition 5.9.3 in [23] that

v+ ∼
(
P (v + αdx)

1
2 (v + αds)

) 1
2 .

Then
Ψ(v+) = Ψ

(
P (v + αdx)

1
2 (v + αds)

) 1
2 .

We have, by Theorem 3.6,

Ψ(v+) ≤
1

2
(Ψ(v + αdx) + Ψ(v + αds)).

Let

f1(α) :=
1

2
Ψ(v + αdx) + Ψ(v + αds)−Ψ(v).

Then, we have f(α) ≤ f1(α) and f(0) = f1(0) = 0. This means that f1(α) gives an upper
bound for the decrease of the barrier function Ψ(v).

It follows from (3.6) that

f ′1(α) =
1

2

N∑
j=1

(
tr(ψ′(v(j) + αd(j)x ) ◦ d(j)x ) + tr(ψ′(v(j) + αd(j)s ) ◦ d(j)s )

)
=

1

2
(tr(ψ′(v + αdx) ⋄ dx) + tr(ψ′(v + αds) ⋄ ds)).

By using (4.7) and (3.5), we have

f ′1(0) =
1

2
tr(ψ′(v) ⋄ (dx + ds)) = −1

2
tr(ψ′(v)diamondψ′(v)) = −1

2
∥ψ′(v)∥2F = −2δ(v)2 < 0.

Let

d(j)x =

rj∑
i=1

(dx)
(j)
i c

(j)
i +

∑
i<mj

(dx)
(j)
i,mj

, j = 1, . . . , N
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be the Peirce decomposition of d
(j)
x with respect to the Jordan frame {c(j)1 , . . . , c

(j)
rj }, and

d(j)s =

rj∑
i=1

(ds)
(j)
i c

(j)
i +

∑
i<mj

(ds)
(j)
i,mj

, j = 1, . . . , N

be the Peirce decomposition of d
(j)
s with respect to the Jordan frame {b(j)1 , . . . , b

(j)
rj }. Fur-

thermore, we can write

(v + αdx)
(j) =

rj∑
i=1

λi(v + αdx)
(j)c

(j)
i , (v + αds)

(j) =

rj∑
i=1

λi(v + αds)
(j)b

(j)
i .

To simplify the notations we used (and will use below), λi(η)
(j) = λi(v + αdx)

(j) and
λi(η)

(j) = λi(v + αds)
(j) for i = 1, · · ·, rj and j = 1, · · ·, N .

From (3.7), we have

f ′′1 (α) ≤ 1

2

N∑
j=1

 rj∑
i=1

ψ′′(λi(η
(j)))((dx)

(j)
i )2 +

∑
i<mj

ψ′′(λmj (η
(j)))tr

(
((dx)

(j)
i,mj

)2
)

+
1

2

N∑
j=1

 rj∑
i=1

ψ′′(λi(γ
(j)))((ds)

(j)
i )2 +

∑
i<mj

ψ′′(λmj
(γ(j)))tr

(
((ds)

(j)
i,mj

)2
) .

Below we use the shorthand notation: δ := δ(v). The following lemma provides an upper
bound of f ′′1 (α), which can be found in Lemma 3.3 in [31].

Lemma 5.3. One has

f ′′1 (α) ≤ 2(1 + 2κ)δ2ψ′′(λmin(v)− 2α
√
1 + 2κδ).

Following the strategy considered in [31], we briefly recall how to choose the default step
size. Suppose that the step size α satisfies

−ψ′(vmin − 2α
√
1 + 2κδ) + ψ′(vmin) ≤

2δ√
1 + 2κ

. (5.1)

Then f1(α) ≤ 0. The largest possible value of the step size of α satisfying (5.1) is given by

ᾱ :=
1

2
√
1 + 2κδ

(
ρ(δ)− ρ

((
1 +

1√
1 + 2κ

)
δ

))
,

where ρ(s) : [0,+∞) → (0, 1] is the inverse function of − 1
2ψ

′(t) for t ∈ (0, 1]. Furthermore,
we can conclude that

ᾱ ≥ 1

(1 + 2κ)ψ′′
(
ρ
((

1 + 1√
1+2κ

)
δ
)) .

Let − 1
2ψ

′(t) = s for t ∈ (0, 1]. Then

−t+ 1

t
+

u2

2p(t+ 2u)2
tan2p(h(t)) = 2s.



564 X.Z. CAI, L. LI, M. El GHAMI, T. STEIHAUG AND G.Q. WANG

For all t ∈ (0, 1], we have

tan2p(h(t)) =
2p(t+ 2u)2

u2

(
2s+ t− 1

t

)
≤ 4(1 + 2u)2ps

u2
.

Hence, putting t = ρ
((

1 + 1√
1+2κ

)
δ
)
, we have −ψ′(t) = 2

(
1 + 1√

1+2κ

)
δ ≤ 4δ. Then

tan2p(h(t)) ≤ 16(1 + 2u)2pδ

u2
:= δu.

This implies that

tan(h(t)) ≤ (δu)
1
2p .

We have, by Lemma 3.2,

1 + tan(h(t)) >
4u

3π(1 + 2u)t
, 0 < t ≤ 1.

This implies that
1

t
<

3π(1 + 2u)

4u
(1 + tan(h(t))) , 0 < t ≤ 1.

Note that 1
t+2u <

1
2u for 0 < t ≤ 1, together with p > 1, then we have

(1 + 2κ)α̃ = ψ′′(t)
−1

=

(
1 +

1

t2
+

u2

p(t+ 2u)
3 tan

2p(h(t)) +
πu3(1 + 2u)

(t+ 2u)
4 tan2p−1(h(t))sec2(h(t))

)−1

≥

(
1+

9π2(1+ 2u)
2

16u2

(
1 + (δu)

1
2p

)2
+

1

8u
δu+

π(1+ 2u)

16u
(δu)

2p−1
2p

(
1+ (δu)

2
2p

))−1

.

Using Corollary 3.9 (i.e.,
√
2δ ≥

√
Ψ(v) ≥ 1) and note that p ∈ N, p > 1, we can conclude

that pδ > 1. After some elementary reductions, we have

(1 + 2κ)α̃ ≥

1 +
9π2(1 + 2u)

2

16u2

(
1 +

(
16(1 + 2u)

u2

) 1
2p

)2

+
(1 + 2u)

2

u3

+
π(1 + 2u)

16u

(
16(1 + 2u)

u2

) 2p−1
2p

(
1 +

(
16(1 + 2u)

u2

) 2
2p

))−1

(pδ)−
2p+1
2p

≥

(
1 +

9π2(1 + 2u)
2

16u2

(
1 +

4(1 + 2u)

u

)2

+
(1 + 2u)

2

u3

+
π(1 + 2u)

16u

16(1 + 2u)
2

u2

(
1 +

16(1 + 2u)

u2

))−1

(pδ)−
2p+1
2p

=
1

C(u)(pδ)
2p+1
2p

,

where

C(u) = 1 +
9π2(1 + 2u)

2

16u2

(
1 +

4(1 + 2u)

u

)2

+
(1 + 2u)

2

u3
+
π(1 + 2u)

3

2u3
+

4π(1 + 2u)
5

u5
.



KERNEL FUNCTION-BASED IPMS FOR THE CARTESIAN P∗(κ)-SCLCP 565

In this paper, we use

α̃ :=
1

(1 + 2κ)C(u)(pδ)
2p+1
2p

, (5.2)

as the default step size.

5.3 Decrease of the value of Ψ(v) during an inner iteration

Lemma 5.4 (Lemma 12 in [25]). Let h(t) be a twice differentiable convex function with
h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t) is increasing
for t ∈ [0, t∗], then

h(t) ≤ th′(0)

2
, 0 ≤ t ≤ t∗.

As a consequences of Lemma 5.4 and the fact that f(α) ≤ f1(α), which is a twice
differentiable convex function with f1(0) = 0, and f ′1(0) = −2δ2 < 0, we can easily prove
the following lemma.

Lemma 5.5. Let the step size α is such that α ≤ α̃. Then

f(α) ≤ −αδ2.

The following theorem shows that the default step size (5.2) yields the sufficient decrease
of the barrier function value during each inner iteration.

Theorem 5.6. One has

f(α̃) ≤ − 1
√
2(1 + 2κ)C(u)p

2p+1
2p

Ψ(v)
2p−1
4p .

Proof. Since α̃ ≤ ᾱ, we have, by Corollary 3.9,

f(α̃) ≤ −α̃δ2 ≤ − δ2

(1 + 2κ)C(u)(pδ)
2p+1
2p

≤ − 1
√
2(1 + 2κ)C(u)p

2p+1
2p

Ψ(v)
2p−1
4p .

This completes the proof.

5.4 Iteration bounds for large-update methods

From Theorem 5.2, we have, by updating of the parameter µ,

Ψ(v+) ≤ Ψ(v) +
θ

2(1− θ)
(2Ψ(v) + 2

√
2rΨ(v) + r).

In the sequel, we want to count how many inner iterations are required to return to the situ-
ation where Ψ(v) ≤ τ . Let Ψ0 denotes the value of Ψ(v) after the µ-update, the subsequent
values in the same outer iteration are denoted as Ψk, k = 1, 2, . . . ,K, where K denotes the
total number of inner iterations in the outer iteration. Hence, we have

Ψ0 ≤ τ +
θ

2(1− θ)

(
2τ + 2

√
2rτ + r

)
.

According to the decrease of f(α̃) in Theorem 5.6, we have

Ψk+1 ≤ Ψk − β(Ψk)
1−γ , k = 0, 1, . . . ,K − 1, (5.3)

where β = 1
√
2(1+2κ)C(u)p

2p+1
2p

and γ = 2p+1
4p .
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Lemma 5.7 (Lemma 14 in [25]). Suppose t0, t1, . . . , tK be a sequence of positive numbers
such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, . . . ,K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤ ⌈ tγ0
βγ ⌉.

The following lemma provides an estimate for the number of inner iterations between
two successive barrier parameter updates, in terms of Ψ0.

Lemma 5.8. One has

K ≤ 2
√
2(1 + 2κ)C(u)p

2p+1
2p Ψ

2p+1
4p

0

Proof. Combining the results of (5.3) and Lemma 5.7, we can easily obtain the result of the
lemma. This completes the proof.

The number of outer iterations is bounded above by 1
θ log

r
ε (cf. [26] Π.17, page 116). By

multiplying the number of outer iterations and the number of inner iterations, we get an
upper bound for the total number of iterations, namely,

O

(
(1 + 2κ)C(u)p

2p+1
2p

θ

(
τ +

θ

2(1− θ)

(
2τ + 2

√
2rτ + r

)) 2p+1
4p

log
r

ε

)
.

Then, the iteration bounds for large-update methods is established in the following theorem.

Theorem 5.9. For large-update methods, one takes for θ a constant (independent on r),
namely θ = Θ(1), and τ = O(r). The best iteration bound then becomes

O
(
(1 + 2κ)p

2p+1
2p r

2p+1
4p log

r

ε

)
.

Corollary 5.10. Let p = O(log r). Then the iteration bound for large-update methods
reduces to

O
(
(1 + 2κ)

√
r log r log

r

ε

)
,

which matches the currently best known iteration bound for large-update methods.

5.5 Iteration bounds for small-update methods

For the analysis of the iteration bound of a small-update method, we need to estimate the
upper bound of Ψ0 more accurately. This due to the following lemma.

Lemma 5.11 (Corollary 6.1 in [31]). Let 0 < θ < 1 and v+ =
v√
1− θ

. If Ψ(v) ≤ τ , then

Ψ(v+) ≤ rψ

(
ϱ( τr )√
1− θ

)
.

From Lemma 5.11, Lemma 3.8, and the fact that 1−
√
1− θ = θ

1+
√
1−θ

≤ θ, we have

Ψ0 ≤ rψ

(
ϱ( τr )√
1− θ

)
≤ r

(
ϱ( τr )√
1− θ

− 1

)2

≤ 1

1− θ

(
θ
√
r +

√
2τ
)2
.

It follows from Theorem 5.8 that the total number of iterations is bounded above by

O

(
(1 + 2κ)C(µ)p

2p+1
2p

θ

(
1

1− θ

(
θ
√
r +

√
2τ
)2) 2p+1

4p

log
r

ε

)
.
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The following theorem provides the currently best known iteration bound for small-
update methods.

Theorem 5.12. For small-update methods, one takes θ = Θ( 1√
r
) and τ = O(1). The best

iteration bound then becomes

O
(
(1 + 2κ)

√
r log

r

ε

)
,

which matches the currently best known iteration bound for small-update methods.

6 Conclusions and Remarks

In this paper, we have considered a new parametric kernel function with trigonometric
barrier term as well as the corresponding barrier function. Based on this parametric kernel
function, we designed and analyzed a class of large- and small-update versions of the primal-
dual IPMs for the Cartesian P∗(κ)-SCLCP. The parametric kernel function is not only used
for determining the search directions but also for measuring the distance between the given
iterate and the corresponding µ-center for the algorithms. By using EJAs, we derived the
iteration bounds that match the currently best known iteration bounds for large- and small-
update methods, namely O((1 + 2κ)

√
r log r log r

ε ) and O((1 + 2κ)
√
r log r

ε ), respectively.
The generalization of the general nonlinear complementarity problems over symmetric

cone deserves to be investigated.
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