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A CLASS OF DIFFERENTIAL INVERSE MIXED
VARIATIONAL INEQUALITIES IN FINITE DIMENSIONAL
SPACES*
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Abstract: In this paper, we introduce and study a new class of differential inverse mixed variational
inequality in finite dimensional Euclidean spaces, which consists of a system of ordinary differential equations
and an inverse mixed variational inequality. We study linear growth properties and characteristics of the set
of solutions for the inverse mixed variational inequality and prove some existence theorems of weak solutions
for the differential inverse mixed variational inequality in the sense of Carathéodory by applying a result on
the differential inclusion involving an upper semicontinuous set-valued mapping with nonempty closed and
convex values. Moreover, we show the convergence of the Euler time-stepping method to a weak solution
of the differential inverse mixed variational inequality by employing some results concerned with differential
inclusions.

Key words: differential inverse mized variational inequality, linear growth, Carathéodory weak solution,
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Introduction

In 2008, Pang and Stewart [23] studied differential variational inequalities (DVIs) in finite
dimensional Euclidean space which provides a modeling ground for many applied problems
in engineering and economics such as differential Nash games, electrical circuits, robotics,
earthquake engineering, and structural dynamics see [1-3,9]. In their seminal papers the
authors have already shown that the DVI unifies several mathematical problem classes that
include ordinary differential equations (ODEs) with smooth and discontinuous right-hand
sides, dynamic complementarity systems, differential algebraic equations (DAEs), and evo-
lutionary variational inequalities. In 2010, Li et al. [20] introduced and investigated a class
of differential mixed variational inequalities (DMVIs) in finite-dimensional Euclidean spaces
which generalized the corresponding results of [23]. Stewart [27] investigated the uniqueness
for a class of index-one DVIs. Recently, Wang et al. [31] studied stability for differential
mixed variational inequalities (DMVIs). They proved an existence theorem of Carathéodory
weak solutions for DMVI and obtained some upper semicontinuity and continuity results
concerned with the Carath odory weak solution set mapping for DMVI. For more related
results, we refer to [4,5,7,8,21,22,26,29,30,32] and the references therein.
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On the other hand, the inverse variational inequality (IVI) was firstly proposed by He
and Liu [11] in 2006. It has many applications in various areas, such as market equilibrium
problems in economics and normative flow control problems appeared in transportation and
telecommunication networks (see [10,11]). In 2008, Yang [28] discussed the dynamic power
price problem, in both the discrete and the evolutionary cases, and characterized the optimal
price as a solution of IVI. Hu and Fang [15] investigated the well-posedness of IVI, and
established some characterizations of the well-posedness of inverse variational inequalities
under some suitable conditions. Recently, Hu and Fang [16] studied Levitin-Polyak well-
posedness by perturbations of inverse variational inequalities. As a generalization of IVI,
Li et al. [19] introduced and studied a new inverse mixed variational inequality (IMVI) in
the setting of Hilbert spaces. They constructed an iterative algorithm for solving IMVI and
proved the convergence of sequences generated by the algorithm. Some related works for
IVIs can be found in [12,13,24] and the references therein.

Very recently, Li et al. [18] introduced and studied a new class of differential inverse
variational inequality (DIVI) in finite dimensional Euclidean spaces, which consists of a
system of ordinary differential equations and an inverse variational inequality. They showed
the linear growth of the set of solutions for DIVIs and the existence theorems of Carathéodory
weak solutions for DIVIs. They also gave an application to the time-dependent spatial price
equilibrium control problem. We note that IMVI is not only a generalization of IVI but
also provides a model to the study for traffic network equilibrium control problems [19].
Therefore, it is important and interesting to study some kinds of differential inverse mixed
variational inequalities under suitable conditions. The main purpose of this paper is to
introduce and study a new class of differential inverse mixed variational inequality in finite
dimensional Euclidean spaces, which consists of an ordinary differential equation and an
inverse mixed variational inequality.

Recall IMVT in finite-dimensional Euclidean space as follows: find x € R™ such that

fl@)e K, (2" = f(x),z) + (") — p(f(x)) 20, Va'€K,

where f: R™ — R"™ is a mapping, K C R™ is a closed convex subset, ¢ : R" — (—00, +00]
is a proper lower semicontinuous (l.s.c.) convex functional. Let S(K, f, ) denote the set of
solutions for IMVI. Specially, if f~1 exists, setting y = f(x) and g(y) = f~(y), then it is
easy to see that IMVI reduces to MVI: find x € K, such that

(9(x), 2" — 2) + p(a’) — p(z) 20, Va' €K,

where g : R — R"™ is a mapping. If ¢ is the indicator functional on K, then IMVI reduces
to the following classical IVI: find x € R™ such that

flx) e K, (2 — f(z),z) >0, Va'eK.

Combining the differential equations with the inverse mixed variational inequalities,
in this paper, we consider an initial-value differential inverse mixed variational inequality
(DIMVI) as follows:

#(t) = al(t,z(t)) + b(t, z(t))u(t),
ut) € S(K,G(tx(t) + F(),¢), Vtel0,T], (1.1)
z(0) = a9

where K C R™ is a nonempty closed convex subset, @ = [0,7] x R™, a : @ — R™b :
Q —- R™" G : Q — R"™ are given functions, F' : R® — R" is a linear function and
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¢ : R — (—o00,+00] is a proper l.s.c. convex functional. We are interested in finding
the time-dependent trajectories z(t) and u(t) such that (1.1) holds in the weak sense of
Carathéodory for ¢ € [0,7], which means that x is an absolutely continuous function on
[0,T] and w is an integrable function on [0, 7] such that the differential equation is satisfied
for almost all ¢ € [0,T] and u(t) € S(K, G(t,z(t)) + F(-),¢) for almost all ¢ € [0, T].

It is well known that various theoretical results, numerical algorithms and applications
have been studied extensively for classical differential (inverse) variational inequalities in
the literature (see, for example, [4,5,7,8,18,20-23,27,29-32] and the references therein).
Nevertheless, in some real situations, it is necessary to study the generalized differential
variational inequality model where the state variable is described by an ordinary differential
equation and the control variable is governed by an inverse mixed variational inequality,
that is, DIMVI.

An example of DIMVI

In this subsection, we will give an example of DIMVI in the time-dependent spatial price
equilibrium control problem.

Assume that a single commodity is produced at m supply markets, with typical supply
market denoted by ¢ and is consumed at n demand markets, with typical demand market
denoted by j, during the time interval [0,7] with T > 0. Let (4,) denote the typical pair
of producers and consumers for i = 1,--- ;m and j = 1,--- ,n. Let S;(¢) be the supply of
the commodity produced at supply market ¢ at time ¢ € [0, 7] and group the supplies into
a column vector S(t) € R™. Let D;(t) be the demand of the commodity associated with
demand market j at time ¢ € [0, T] and group the demands into a column vector D(t) € R™.
Let x;;(t) be the commodity shipment from supply market ¢ to demand market j at time
t € [0, 7] and group the commodity shipments into a column vector z(t) € R™". Assume
that, for all t € [0,7], S;(t) = >_7_, i;(t) and D;(t) = 3772, 2ij(t).

Now, we consider the problem from the policy-makers point of view and formulate the
time-dependent optimal control equilibrium problem. Under this perspective, by adjusting
taxes u(t), it is possible to control the resource exploitations S(x(t), u(t)) at supply markets
and the consumption D(z(t),u(t)) at demands markets. Similar to Scrimali [24], let

Wt x(t), ut)) = (S(x(t), u(t), D(x(t), u(t))), Vte[0,T].

Assume that the function W (¢, z, u) can be written as W (¢, z(t), u(t)) = G(t, z(t)) + F (u(t))
for all ¢ € [0, T] such that G(t,z) is a Carathéodory function and F(u) is Lipschitz continu-
ous. Moreover, we assume that there exists y(t) € L2(0,T) such that ||G(t,z)| < ~v(t)+ ||z]|.
Then we know that W is a mapping from [0,7] x L?([0,T], R™") x L?([0,T], R™") to
L2([0,T], R™*™). Finally, the capacity constrains are assumed to be independent of z and
u. Thus, we are led to the following lower and upper capacity constrains w(t) = (S(¢), D(t))
and w(t) = (S(t),D(t)), where S(t),S(t) € L?([0,T],R™), D(t),D(t) € L*([0,T], R"),
0 < S(t) < S(t) for almost all t € [0,T] and 0 < D(t) < D(¢t) for almost all ¢ € [0, T].
Let us introduce the set of feasible states as follows:

K={weL*[0,T],R™") : w(t) < w(t) <w(t) for almost all t € [0,T]}.

Similar to the definition of Scrimali [24], we call that u*(t) is an optimal regulatory tax if it
makes the corresponding state W (¢, z(t), u*(t)) satisfying the constraint W (t, z(t), u*(t)) €
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K and for almost all ¢ € [0, 7], the following three conditions are satisfied:

Wr(t,x(t),u*(t)):ﬁr(t) = U:(t) 203 7':].72,"' 7m+na
W (t, z(t),u™(t)) = w,(t) = ur(t) <0, r=1,2,---,m+n,
w, (t) < Wp(t,z(t),u"(t)) < w,(t) = ur(t)=0, r=1,2,---,m+n.

By employing Theorem 2 of Scrimali [24], a regulatory tax vector u*(t) € L([0,T], R™*™)
is optimal if and only if it solves the following variational inequality:

W(t, (1), u* (1)) € K, / Wt z(t), u (1), u* (1)) dt <0, Yw(t)e K. (1.2)

Suppose that u(t) can be presented as the following form:
u(t) = QW (t, x(t), u(t))) + AW(t, (1), u(t)), Vtel0,T],

where Q, A : L*([0,T], R™*") — L2([0,T], R™*") are two mappings such that Q! (the
inverse of Q) exists. Under the above assumptions, we know that (1.2) can be rewritten as
follows:

Wt 2(t). 0" (1) € K. / Wt w(0), w” (4), QUV (t, (t), u ()))) e
7/0 (w(t) = W(t,z(t),u* (), AW (t, z(t),u" (1)) dt <0, Yw(t) € K. (1.3)
Moreover, assume that Q(t, z(t), u(t)) = Q(W (¢, z(t),u(t))) and let

p(w(t)) = <w(t)7A(Q_l(@(t,x(t),u(t))))>, vw € L([0,T], R™™).

Then it is easy to see that (1.3) can be formulated as follows:

Q1 (Q(t.x(t).u* (1)) € K. / Q Qb a(t).w* (1)), Qlt. x(2).u (1) ) de
- / p(w(t))dt + / S(@Q (Ot x(t) u* (0))dt <0, Vu(t) € K. (1.4)

On the other hand, we know that there is a relationship between the change rate of
commodity shipments x(¢) and regulatory taxes u(¢) with the commodity shipments x(t).
We require that

(t) = f(t,x(t)) + B(t, x(t))u(t), for almost all ¢ € (0,77, (1.5)

where f : [0,7] x R™ — R™ and B : [0,T] x R™ — R"™>(m*") are two functions
satisfying some suitable conditions.

Combining (1.4) and (1.5), we can show that (z(¢), u(t)) is a Carathéodory weak solution
of the following DIVI problem (see Lemma 4.1):

w(t) = ftx(t)) +B(t (t))u(t),
ut) € S(=K,—-QHQ(t,z(t),")), —¢), (1.6)
z(0) = xo.

The differential mixed variational inequality (1.6) is nothing but a form DIMVT (1.1)

associated to the mappings f, B, —Q~'(Q, to the functional —¢, and to the constrain set
—K.
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Preliminaries

In this section, we recall some preliminaries that shall be used in what follows.

Definition 2.1. A function a : Q@ — R™ (resp.,b : @ — R™ ™) is said to be Lipschitz
continuous if there exists a constant L, > 0 (resp., L, > 0) such that, for any (¢1, ), (t2,y) €
Q

)

[a(ty, ) —alts,y) [[< La(ltr — ta|+ [[ 2 =y [])
(resp., || b(t1, @) = b(t2, y) < Ly([ts — tal+ [ 2 =y [])).

Definition 2.2 ([23]). A function f : R™ — R™ is said to be monotone plus on a convex
set K C R™ if f is monotone on K, i.e.,

<f('U)—f(U),'U—U>ZO7 \V/U,UEK,
and the following plus property holds: for any v,u € K,
(f() = f(u),v —u) = 0= f(v) = f(u).
Definition 2.3 ( [17]). Let A be a nonempty subset of R™. The noncompactness measure
u of set A is defined by
w(A) =inf{e >0: AC UAi’ diamA; <e, i=1,2,--- ,n},
i=1
where diam means the diameter of a set.

Lemma 2.4 ([14, Theorem 1.2.8])). Let ¢ : R" — (—o00,+0o0] be a proper l.s.c. convex
functional. Then ¢ is bounded from below by an affine function, i.e., there exists a point

(v°, B) € R™ x R such that
o(x) > (x,y°) + 8, Yz e R™

Lemma 2.5 ([20]). Let ¢ : R" — (—00, +00] be a proper l.s.c. convex functional. Suppose
that the function o(u(-)) is integrable on [0,T) for every u € L*[0,T]. Then

o) = [ punir, we .1

s a proper l.s.c. convez functional.

In the rest of this paper, we assume that the following conditions (A) and (B) hold:

(A) a and b are Lipschitz continuous functions on €2 with Lipschitz constants L, > 0 and
Ly > 0, respectively;

(B) a and b are bounded on Q with

op = sup ||b(t,x)|| <oo, 04= sup |a(t,x)] < oo.
(t,x)eQ (t,z)eQ

Let F: 2 = R™ be a set-valued map defined as follows:

F(t,z) = {a(t,z) + b(t,x)u:u e S(K,G(t,x) + F,p)}. (2.1)
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Lemma 2.6 ([23]). Let F : Q = R™ be an upper semicontinuous set-valued map with
nonempty closed convexr values. Suppose that there exists a scalar pp > 0 satisfying

sup{[| y [l y € F(t,2)} < pr(1+ |z [), V(t,2) € Q. (2.2)

Then, for every 2° € R", the DI : & € F(t,z),z(0) = 2° has a weak solution in the sense of
Carathéodory.

Lemma 2.7 ([23]). Let h: Q@ x R™ — R™ be a continuous function and U : Q@ = R™ a
closed set-valued map such that, for some constant ny > 0,

sup | u [[<nu(+ ), V()€
w€eU (t,x)

Let v : [0,T] — R™ be a measurable function and z : [0,T] — R™ a continuous function
satisfying v(t) € h(t, z(t),U(t,xz(t))) for almost allt € [ ,T|. Then there exists a measurable
function u : [0,T] — R™ such that u(t) € U(t,z(t)) and v(t) = h(t,x(t),u(t)) for almost all
te0,T].

Definition 2.8. A sequence {z,} C R™ is called an «-approximating sequence for
IMVI(K, f,p) iff there exists €, > 0 with &, — 0 such that

f(zn) € K, <f(xn)_f/axn>+90(f($n))_¢(f/) < %Hf(xn)_f/HQ"’gm Vf' € K,¥n € N,

where « is a nonnegative number.

Remark 2.9. When ¢ is the indicator functional on K, a-approximating sequence for
IMVI(K, f,p) reduces to a-approximating sequence for IVI(K, f) in [15].

Lemma 2.10. Let o > 0 and f : R — R" be a function and K C R™ be a nonempty
conver set. Assume that z* € R"™ satisfying f(z*) € K. Then

(fl@™) = fa") +o(f(x") —o(f) <0, VfeK
if and only if

(@) = ")+ o(F @) = o) < SlIf") = FP VP € K.

Proof. 1t is easy to see that the necessity holds. Next we prove the sufficiency. Since K is
convex and f(z*) € K, for any given g € K and t € [0, 1], we know that f(z*)+t(g—f(z*)) €
K. Applying the convexity of ¢, it follows that

Hf(@") = g,27) +to(f(2")) — te(g)
(t (w*)—tga ) e(f(@7) + (= De(f(27)) = telg)

< (f(a*) = [f@") + g — f@ )], a") + o(f(@*)) — p(tg + (1 — 1) f(z*))
< SIFE) = (F@) + g — fla)?

a2
= Sl - gl (23)

Now (2.3) shows that

(f@) = g,2") + 9(f(z7)) — p(g) < O;IIf(x*) —gl*.
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Letting t — 0, we have

(f(@") —g,2") + o(f(")) —p(9) <0, VgeK.

This completes the proof. O

Remark 2.11. If ¢ is the indicator functional on a nonempty convex set K C R™, then
IMVI(K, f,¢) reduces to IVI(K, f). Thus, Lemma 2.10 extends Lemma 1.1 in [15].

Existence of Solutions for DIMVTI (1.1)

Lemma 3.1. Let K be a nonempty closed convex set of R™ and (a,b, G) satisfy conditions
(A) and (B) above. Let F : R™ — R™ be continuous and ¢ : R"* — (—o00,+00] be proper
l.s.c. convex. Suppose that there exists a constant p > 0 such that, for any q € G(Q),

sup{[| u [|: u € S(K,q+ F,0)} < p(1+ [ ¢ []). (3.1)

Then there exists a constant p* > 0 such that (2.2) holds for the map F > 0 defined by (2.1).
Hence F is upper semicontinuous and closed-valued on €.

Proof. Since a and G are Lipschitz continuous on 2, there exist p, > 0 and pg > 0 such
that, for all (¢,z) € Q,

la(t, 2)|| < pa(L+[zll),  [GE )] < pa(l + [l]).

It is easy to see that there exists p > 0 such that (2.2) holds. Thus the set-valued map F
has linear growth.

Next we prove F is upper semicontinuity on . Since F has linear growth, the upper
semicontinuous of F holds if F is closed (see [23]). Assume that the sequence {(¢,,z,)} C Q2
converges to some vector (tg,zg) € Q and {a(tn, zn) + b(tn, Tn)u,} converges to some vector
zo € R™ as n — oo, where u,, € S(K,G(tn,x,) + F, ) for every n, which means that

Gt n) + Flun) € K (3.2)
and
(F' = G(tn,xn) — Fup),un) + o(F') — o(G(tn,xn) + F(u,)) >0, VF' € K.  (3.3)

It follows from (3.1) that the sequence {u,} is bounded and so {u,} has a convergent
subsequence (denoted it by {u,} again) with a limit vy € R™. Since F' is continuous and K
is closed, by (3.2), one has

G(tn,zn) + Fun) = G(to,x0) + F(ug) € K.
Moreover, the lower semicontinuity of ¢ implies that
¢(G(to, w0) + F(uo)) < liminf p(G(tn, xn) + F(un)).
Thus, for any F’ € K,

(F" = G(to,z0) — F(uo), uo) + ¢(F') — ¢(G(to, w0) + F(uo))
l%rrl){)réf{ (F" = G(tn, zn) = F(un), un) + ¢(F') = @(G(tn, zn) + F(uy))}
> 0, (3.4)

v
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which means that ug € S(K, G(to, zo) + F, ) and
a(tn, Tn) + b(tn, Tn)un = 20 = alto, o) + b(to, zo)uo € F(to, zo).

Therefore, F is closed. This completes the proof. ]

Remark 3.2. We note that Lemma 3.1 extends Lemma 2.5 in [18]. Moreover, if (¢ + F)~!
exists and continuous, then Lemma 3.1 is also an extension of Lemma 2.3 in [20].

Lemma 3.3. Let (a,b,G) satisfy conditions (A) and (B) mentioned above and K C R™ be
nonempty, closed and convex. Let ¢ : R™ — (—o0,400] be a proper l.s.c. convex functional
and F : R™ — R™ be continuous and monotone plus function on R™. Suppose that S(K,q+
F,p) £ 0 for all g € G(Q). Then S(K,q+ F,p) is closed and convez for all ¢ € G().

Proof. Let {u,} C S(K,q+ F, ) with u,, = ug. Then ¢+ F(u,,) € K and for any F' € K,
<F/ _q_F(un)aun> +<P(F/) - @(Q+F(un)) = 0.

Since K is closed, F' is continuous on R™ and ¢ is lower semicontinuous, we know that
q+ F(ug) € K and for any F' € K,

(F' —q— F(ug),uo) + o(F") — (g + F(uo))
> liminf{ (F' — ¢ — F(un), un) + 9(F") — ¢(q+ F(us))}

n— o0

> 0. (3.5)

This means that ug € S(K,q+ F,¢) and so S(K,q+ F, ¢) is closed for all ¢ € G(£2). Next
we prove that S(K,q + F,¢) is convex for all ¢ € G(2). Let u1,us € S(K,q+ F, ). Then
one has

g+ F(uy) € K, q+ F(ug) € K, (3.6)
and for any F’ € K,
(F'—q— F(uy),u1) + o(F') — (g + F(u1)) > 0 (3.7)
and
(F" = q = F(uz),u2) + o(F') = o(q + F(uz)) = 0. (3.8)

It follows from (3.6) that, for A € (0,1),
Mg+ F(u1)) + (1 = A)(g+ F(uz)) = ¢+ AF(u1) + (1 = ) F(ug) = ¢+ F(a) € K,

where @& = Aug + (1 — A)ug. Letting F’ = g+ F(uz) in (3.7), we have

(F(uz) = Fu1),u1) + @(q + F(uz)) — @(q + F(u1)) = 0. (3.9)
Letting F’ = ¢ + F(u1) in (3.8), one has
(F(u1) = F(uz), u2) + (g + F(u1)) — (g + F(uz)) > 0. (3.10)

Adding (3.9) and (3.10), we obtain
<F(U2) — F(ul), Uy — UQ> Z 0.
Since F' is monotone plus, we know that F'(uz) = F(uq). It follows from (3.7) and (3.8) that

(F' = q = F(u1), Auy + (1 = Nug) + @(F') = Ap(q + F(ur)) = (1 = Ne(g + F(uz)) = 0.
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Since ¢ is convex, we get

(F'' —q— F(up + (1 = Nuz), At + (1 = Nug) + @(F') — (g + F(Auy + (1 = Nus))
(F' —q— AF(u1) — (1 = N)F(ug), Aug + (1 — XNuz)

+o(F') = Xp(g + F(ur)) — (1 = Nep(q + F(uz))

(F' —q— F(u1), iy + (1 = Nug) + o(F') = Ap(q + F(u1)) — (1 = Np(g + F(uz))
> 0.

v

It follows that Auj + (1 — MNug € S(K,q+ F(+),¢) and so S(K,q+ F(-), ) is convex for all
q € G(Q). This completes the proof. O

Remark 3.4. It is worth to mention that Lemma 3.3 extends Lemma 2.6 in [18].

Lemma 3.5. Let (a,b,G) satisfy conditions (A) and (B) above, K C R™ be a nonempty,
closed and convex set, ¢ : R™ — (—o00,+00] be a proper Ls.c. convex functional and F :
R™ — R™ be continuous and monotone plus function on R™. Suppose that S(K,q+F,p) # 0
for all ¢ € G(Q) and a constant p > 0 exists such that (3.1) holds for all ¢ € G(Q). Then
DIMVI(1.1) has weak solutions in the sense of Carathéodory.

Proof. Similar the proof of Proposition 6.1 of [23], applying Lemmas 2.6, 2.7, 3.1 and 3.3,
we can obtain that DIMVI (1.1) has weak solutions in the sense of Carathéodory. This
completes the proof. O

Remark 3.6. We would like to point out that Lemma 3.5 extends Lemma 2.7 in [18].

By Lemma 3.5, we know that DIMVT (1.1) has solutions in the weak sense of Carathéodory
if (3.1) holds. Next, in Theorems 3.1-3.5, we shall give some conditions to guarantee that
(3.1) holds.

Let a, F, K be defined as in the previous sections. Consider the a-approximating solution
set Ty (e) of IMVI(K, q + F, ¢):

To(e) ={z € R" :q+ F(x) € K, (g + F(a) = F',2) + ¢(q + F(x)) — o(F")
< Slla+ Fla) = F|P +=, VF € K.Y= > 0}.

Theorem 3.7. Let K C R"™ be a nonempty, closed and conver set, F' : R" — R™ be
a continuous function and ¢ : R"* — (—o0,+00] be a proper l.s.c. convex functional. If

To(e) # 0 for any e > 0 and
diamT,(e) = 0 as & — 0,

then IMVI(K,q + F, ) has only one solution and there exists p > 0 such that (3.1) holds
for all g € R™.

Proof. : Let {u,} C R™ be a-approximating sequences for IMVI(K, g + F,¢). Then there
exists €, > 0 with e, — 0 such that ¢ + F(u,) € K and

(a4 F(un) = F'stn) +(a+ Flun)) = 9(F') < S+ Flun) = F'| e, VF' € K,¥n € N,

(3.11)
which implies that w, € To(e). Since diam T, () — 0 as € — 0, we deduce that {u,} is a
Cauchy sequence. Let u,, — u € R". By the continuity of F' and the closedness of K, we

have
q+ F(u,) > ¢+ F(u) e K
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Now the lower semicontinuity of ¢ implies that

liminf (g + F(un)) > (g + F(a)).
It follows from (3.11) that, for all F' € K

(q+ F(a) — F',u) + (g + F() — o(F)

< liminf{{g+ Fun) = ' un) + ol + Flun)) — o(F)}
L. @ o2
< 117{r_1)101<1>f(2||Q+F(Un) F|° +en)

o _
g+ F@) - I
By Lemma 2.10, we get
(g4 F(u) — F',u) + p(g+ F(u)) — p(F') <0, VF' e€K.

This shows that @ is a solution of IMVI(K, g + F, ¢).
Next we prove the uniqueness of the solution of IMVI(K, g+ F, ). Let 4y and @y be two
solutions of IMVI(K, q + F, ). Then @y, as € T, () for all € > 0. It follows that

|a1 — 12| < diamT,(e) = 0 (e = 0),

which implies that @; = @2 and so there exists p > 0 such that (3.1) holds for all ¢ € R™.
This completes the proof. O

Theorem 3.8. Let K C R™ be a nonempty, closed and convex set, F' : R® — R™ be a
continuous and monotone plus function, ¢ : R — (—o0,+00) be a proper ls.c. convex
functional, p(Ty(g)) be noncompactness measure of set To(e). Suppose the following condi-
tions hold:

(i) Tale) #0 for alle >0 and pu(T,(g)) — 0 as e — 0;
(ii) there exists a vector Fy € K such that

s L= ). w) = (F(w). o)

l[ull—o0 ]2

<0, (3.12)

where y° is defined in Lemma 2.4.

Then S(K,q+ F,p) is a nonempty closed convex set for all ¢ € R™, and there exists p > 0
such that (3.1) holds for all ¢ € R".

Proof. Similar to the proof of Theorem 2.2 in [15], we can easily obtain that S(K, ¢+ F, ¢)
is nonempty for all ¢ € R™ by virtue of condition (i). It follows from Lemma 3.3 that
S(K,q + F,p) is nonempty closed and convex for all ¢ € R™. Next we prove the second
assertion. If the assertion is not true, then there exist sequences {q;} C R™ and {ux} C R"
such that, for any F’ € K, q; + F(uy) € K and

(F' = qx — Flug), ugp) + ¢(F') = o(q + F(uy)) >0 (3.13)
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with [Jug|| > k(14 ]/gk]|)- It is obvious that {ug} is unbounded and limy_, |“Z’;‘||| = 0. Taking
F' = FY in (3.13), we have

(F° — i — F(ug), ug) + 9(F°) = p(gr + Flug)) > 0
and so
(FO = F(ug),ur) — (qr + F(ur)) > (g, ur) — o(F°).
Since ¢ is a proper l.s.c. convex functional, it follows from Lemma 2.4 that
(FO — F(ug),ur) — (qx + F(ur), y°) — B > (qr, ur) — @(F°)

This shows that

(FO — F(ug), ug) — (F(ur), 4°) > (. ue) — o(F°) + B+ (qr, y°)

and so M _p P 0
koo [ |
which contradicts with (3.12). This completes the proof. O

Theorem 3.9. Let K C R"™ be a nonempty, closed and convex set, F' : R" — R™ be a
continuous and monotone plus function, ¢ : R™ — (—o00,+00) be a proper l.s.c. conver
functional, u(Ty(€)) be noncompactness measure of set T, (e). Suppose the following condi-
tions hold:

(i) To(e) £ 0 for alle >0 and p(T,(g)) — 0 as e — 0;
(ii) there exists a vector Fy € K such that

(FO = F(u), u) — (F(u),y°)
[l

— —00 as |ul| = +oo, (3.14)
where y° is defined as in Lemma 2.4.

Then S(K,q+ F,p) is a nonempty closed convex set for all ¢ € R"™, and there exists p > 0
such that (3.1) holds for all ¢ € M, where M C R™ is a bounded subset.

Proof. By Theorem 3.8, we know that S(K,q + F,¢) is nonempty closed and convex for
all ¢ € R™. Next we prove the second assertion. Suppose to the contrary that there exist
{gr} € M and {ur} C R"™ such that, for any F’ € K,

(F" = qr = F(u),ur) + o(F') = @(ax + F(ug)) = 0

and ||ug| > k(1 + ||lgxl|). It is easy to see that {uy} is unbounded and limg_, |||Z’;;|“I = 0.
Similar to the proof of Theorem 3.8, we know that

(F = F(ur),ue) — (F(ur), y°) = {ar,un) — @(F°) + B+ (a. y°).
Since {qx} and ¢(F?) are bounded, there exists N > 0 and D < 0 such that, for all k > N,

(FO — F(ug), up) — (F(ug), y")
[Jul

>D

)

which contradicts with (3.14). This completes the proof. O



582 W. LI, X. WANG, X.-S. LI AND N.-J. HUAN

Theorem 3.10. Let K = R, F : R® — R"™ be a continuous and monotone plus function
and ¢ : R — (—00,+00) be a proper l.s.c. convex functional. Suppose that (¢ + F)~1 is
single-valued continuous on R", and a vector Fy € R™ exists such that (3.12) holds. Then
S(K,q+ F,p) is a nonempty closed convex set for all ¢ € R™, and there exists a p > 0 such
that (8.1) holds for all ¢ € R".

Proof. For any u € R", let S(u) = (¢ + F)~*(u). Since F is monotone, we have

(S(u1) = S(uz),ur —u2) = (Y1 — Y2, ¢+ F(y1) — ¢ — F(y2)) = (y1 — y2, F(y1) — F(y2)) > 0,

where S(u1) = y1 and S(uz) = y2. This shows that S is monotone on R™. By Theorem 3.1
of [6], we know that SOL(R™, S, ¢) is nonempty, here SOL(R", S, ¢) denotes the solution
set of VI(R™, S, ¢). Thus, there exists vg € R"™ such that

(S(vo),v —vo) +p(v) —@(vg) >0, YveR"
Letting S(vg) = ug, one has
(o, v —q = F(uo)) + ¢(v) — (g + F(ug)) =0, Vv e R,
which means that uwg € S(R", ¢ + F,¢). By Lemma 3.3 we know that S(K,q + F, ) is
nonempty closed and convex for all ¢ € R™. It follows from Theorem 3.8 that there exists

p > 0 such that (3.1) holds for all ¢ € R™. This completes the proof. ]

Corollary 3.11. Under the conditions of Theorem 3.10 we can obtain Theorem 3.3 in [20].
Moreover, if for any v € R™, p(v) = 0, then we can obtain Proposition 6.2 in [23].

Proof. For any u € R"™, let S(u) = (¢ + F)~1(u). From Theorem 3.10 we know that S is
monotone continuous. Letting v = ¢ + F(u), it follows from Lemma 2.4 that

(S)v=Fo)+ o) _ (wg+Fu) = Fo) +v(g+ F(u)
o] ]2
> (u,F(u)—F0>+<u,q>+<q+F(u),y0>+ﬂ
- llg + F[2[|u? '

By (3.12), we have

(5(v),v = Fo) + ¢(v)

lim inf

o] —+o00 [v]|?
> liming (B F@) = Fo) + (w,q) + (g + F(u),y°) + 5
T lulls oo ||q+F||2Hu||2
— _ _ 0\ _ o0\
> — limsup (u, Fo = F(u)) — {u. 9) gF(“gvy> (¢.9") — B
l[f| =00 llg + F|]2]||ull
_ _ 0
>~ lmsup (T FO0) (P00
auf| = +o0 llg + F'[|?{|ull

Thus, we know that Theorem 3.3 in [20] holds. Moreover, when ¢(v) = 0, it is easy to see
that Proposition 6.2 in [23] holds. This completes the proof. O
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Theorem 3.12. Let K = R"™ and F' : R™ — R™ be a continuous and monotone plus
function. Let ¢ : R — (—o00,+00) be a proper l.s.c. convex functional. Suppose that
(¢ + F)~! is single-valued continuous on R™, and there exists a vector Fy € R"™ such that
(3.14) holds. Then S(K,q+ F, ) is a nonempty closed convez set for all ¢ € R™, and there
exists p > 0 such that (3.1) holds for all ¢ € M, where M C R™ is a bounded set.

Proof. By Theorem 3.10, we know that S(K,q + F, ) is a nonempty closed convex set for
all ¢ € R™. It follows from Theorem 3.9 that there exists p > 0 such that (3.1) holds for all
q € M. This completes the proof. O

Corollary 3.13. Under the conditions in Theorem 3.12, we can obtain Theorem 3.2 in [20].

Proof. By Theorem 3.10, we know that S(K,q+ F,¢) is a nonempty closed convex set for
all ¢ € R™. For any q € M,

(S),v = Fo) +o(v)  (u, F(u) = Fo) + (u,q) + (g + F(u),y°) + 8
[l B llg + Fl[lull '

It follows from (3.14) that

(S(v),v— Fo) + ¢(v)
[[o]]

— 400, as ||jv|| = oo.

Thus, it is clear that Theorem 3.2 in [20] holds. This completes the proof. O

Theorem 3.14. Let F': R™ = R™ be a continuous and monotone plus function and (a,b, Q)
satisfy conditions (A) and (B). Let K C R™ be a nonempty, closed and convex subset, and
v : R" — (—o00,+00) be a proper l.s.c. convex functional. Then DIMVI(1.1) has weak
solutions in the sense of Carathéodory if any one of the following conditions holds:

(a) Tn(e) #0 for any e > 0 and diamT,(¢) — 0 as ¢ — 0;

(b) (i) for anye >0, T,(e) #0 and u(Ty(e)) = 0 as e — 0;
(i) there exists a vector Fy € K such that (3.12) holds;

(¢) G(Q) is bounded and

(i) for anye >0, To(c) # 0 and u(Ty(e)) = 0 as € — 0;
(i) there exists a vector Fy € K such that (3.14) holds;

(d) K = R", (¢+F)~1 is single-valued continuous on R™ and there exists a vector Fy € R"
such that (3.12) holds;

(e) G() is bounded, K = R™, (q+ F)~! is single-valued continuous on R™ and there
exists a vector Fy € R™ such that (3.14) holds.

Proof. Tt follows from Theorems 3.7-3.12 that S(K,q + F,¢) is a nonempty closed convex
set satisfying (3.1). By Lemma 3.5, we know that DIMVI (1.1) has weak solutions in the
sense of Carathéodory. This completes the proof. O

Remark 3.15. It is worth mentioning that Theorem 3.14 extends some corresponding
results of Theorem 3.8 in [18].
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Computational Methods for DIMVT (1.1)

Lemma 4.1. Let G : Q x R"® — R"™ be Lipschitz continuous and F : L?[0,T] — L?[0,T] be
continuous. Assume that G(t,z(t)) + F(u(t)) € K for all z € C([0,T]; R") and u € L?[0,T)
with t € [0,T). Suppose that p(v(t)) is integrable on [0,T] for all v € L%[0,T]. Then
((z(t),u(t)) is a weak solutions in the sense of Carathéodory for DIMVI (1.1) if and only if
x is an absolutely continuous function on [0,T] and u is an integrable function on [0,T] such
that the differential equation in (1.1) holds for almost all t € [0,T] and for any continuous
function P : [0,T] — K,

T
/0 {(P(t) = G(t,2(t) = F(u(?), u(t)) + ¢(P(t)) — @[G(t, x(t)) + F(u(t))]} dt = 0. (4.1)

Proof. =. Suppose that ((z(t),u(t)) is a weak solutions in the sense of Carathéodory for
DIMVI (1.1), then z is an absolutely continuous function on [0,7] and u is an integrable
function on [0, 7] such that the differential equation in (1.1) holds for almost all ¢ € [0, 7
and u(t) € S(K,G(t,x(t)) + F, ) for almost all ¢t € [0,T]. Thus, it is easy to see that, for
any continuous function P : [0, 7] — K, inequality (4.1) holds.

<. We assume that the contrary holds. Then there exists a subset £ C [0,7] with
m(E) > 0 (where 7 (E) denotes the Lebesgue measure of E) such that, for any ¢t € E,

u(t) ¢ S(K,G(t, z(t)) + F, ¢).

By Lusin theorem, we know that there exists a closed subset Ey of E with m(E;) > 0 such
that w(t) is continuous on Ej. Thus, there exists a closed subset Ey of Ey with m(E2) > 0
such that [G(t,z(t)) + F(u(t)] is continuous on Es and so there exists a Py € K such that,
for almost all t € F,

: {(Po = G(t,x(t)) = F(u(t), u(t)) + ¢(Fo) — [G (¢, 2(t)) + F(u(t))]} dt < 0.

Let
Fo(t):{ P, t € B,
G(t,z(t)) + F(u(t)), tel[0,T\E>.
Then it is clear that Fy(t) is an integrable function on [0, T]. Since the space of continuous
functions C([0,T]; R™) is dense in L'([0,T]; R"), we can approximate Fy(t) € L'([0,T]; R")
by continuous function. Thus, there exists a continuous function F(t) : [0,7] — K such
that

(4.2)

T
/0 {(F(t) = G(t,z(t)) = F(u(t)), u(t)) + ¢(Po) — ¢[G(t,x(t)) + F(u(t))]} dt <0,

which contradicts with (4.1). This completes the proof. O
Now we discuss the convergence for a weak solution of the initial-value DIMVI(1.1). Let
us choose an equidistant grid 0 = ty < t; < ---ty = T, with stepsize h = % Setting

a0 = 20, we compute iterates
{J?h’l,xh"Q,"' ’xh,N} CRm, {uh,l’uh,2’_” 7uh,N} C R" (43)
as follows: for i =0,1,---, Ny,

{ Ih,iJrl — xh,i 4 h [a(th,i+1a al,h,i 4 (1 o o)xh,iJrl) 4 b(th7i7xh,i)uh,i+1] ) (4 4)

uh7i+1 € S(K? G(th,i+17 Ih,i—‘rl) + F7 (p)a
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1. Let #"(-) be the continuous piecewise linear interpolant of the family

where N, = £
4" () be the constant piecewise interpolant of the family {u™*1}, i.e.,

{2+ and

M) = ahi4 BEh(ahit — gt VL€ [ty thiga),
h

(t) = ’U,h’i+1, Vit € (ti, ti+1] (45)

A
for i =0,1,---, N,. We denote, by L?[0,T], the set of all measurable functions v : [0,7] —
R" satisfying fOT |lu()]|?dt < oo, in which the inner product is defined as

T
(u, v) = /0 (w(t), v(®)dt, Yu,v € L2[0,T].

Lemma 4.2. Let a,b,G satisfy (A)and (B). Suppose that S(K,q + F, ) satisfies (3.1).
Then there exist hy > 0, p,, and v, such that for all h € (0, h;1] and all nonnegative integers
i with (i+1)h <T,

(4.6)

{ hll_u};’i“llh} < Pu(1+2llw’2’?||)7
[l =2 < A (14 [l2™])).

Proof. Throughout the proof below, the scalar h > 0 is sufficiently small. Applying Lemma
7.1 of [23], we have

hyi+1l $h,i” < hpa(l + ||xhﬂ||) + Ub”uh’HlH

g2

1- h(l - 0)pa
Let
o Pa + 0
P T T = 0)pa
Then

[2m i+ — ghi|| < poh(1+ (|| + [[u ). (4.7)

By the linear growth of solutions to IMVI, one has

[u < p(L+ |G (thirr, ™)
< oL+ pell+ 2" )
< p(L+ pa(L+ (|2 + poh(L + [l + [l )
< p+ppa + pehppc + (ppa + pehppa)l|2” || + pahppau™ .
Letting M = p + ppc + pzhppc and N = pyppa, we have
[u | < M+ Ml | + Najlu™ |
which implies that 4 ,
(1= hN) [ < ML+ [l2™7])).
Choosing 0 < h < %, we get
hitl| < 1 hi
)] < e (1 )
and so there exists a p,, > 0 such that
lu™ | < pu(L+ 2[|2"7)). (4.8)
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Taking hy = 5% and ¥y = py + 2pzpu, it follows from (4.7) and (4.8) that, for h € (0, h],

2™ =™ < hpa (L 2] 4 pu (1 4+ 2]|2"7])))
< e+ pupu + (pr + 2p000)|12"])))
< hpr + 200p0) (1 + |27
< b (L [|2")).
This completes the proof. O

Similar to the proof of Proposition 7.1 of [23], we can obtain the following result.

Proposition 4.3. Let (a,b,G) satisfy conditions (A) and (B) above and, K C R" be a
nonempty, closed and convex set and F' : R == R™ be a continuous and monotone plus
function and ¢ : R™ — (—00,4+00) be a proper l.s.c. convexr functional. Suppose that
there exists a constant p > 0 such that (3.1) holds for all ¢ € G(R2). Then there exists a
scalar hg > 0 such that, for any h € (0,hg], 6 € [0,1] and 2° € R", there exists a pair
(L MY satisfying (4.4) for every i =0,1,---, Nj.

Theorem 4.4. Let (a,b,G) satisfy conditions (A) and (B) above, K C R™ be a nonempty
closed and conver set. Let the mapping F' : R — R™ be continuous and monotone plus,
¢ R" — (—00,400) be a proper l.s.c. convex and integrable functional on R™. Suppose
that S(K,G(t,z) + F(-),p) # 0, there exists a constant M > 0 such that for any y € R™,
o(y) < M, moreover there exists a constant p > 0 such that (3.1) holds. Then every sequence
pair {(&",a")} defined by (4.5) has a subsequence pair {(&", a")} such that 3" — &
uniformly in [0,T] and 4" — @ weakly in L*([0,T]), as v — oco. Furthermore, suppose that
F(u) = ¢(Eu), where E € R™*"™ and ¢ : R™ — R™ is Lipschitz continuous, and a constant
C > 0 exists such that for all h sufficiently small,

| Eu* — Bul?| < hC, (4.9)
Then, (%,u) is a Carathéodory weak solution of the initial-value DIMVI(1.1).
Proof. By Lemma 4.2, we have

Ju | < pu(1+ 2l

and ‘ ‘ ‘
" — 2| < by (14 ||l2™)).
It follows from Lemma 7.2 of [23] that there exist constants ¢ 4, €1 4, 1,4 such that, for any

h € (0,h1] and any ¢ = 0,1,--- , N,

{||33h’i+1|| < CO,x"'CLx”afO”a
<

) 4.10
" < com + e all2?]) (4.10)

By (4.10) and (4.7), we deduce that, for A > 0 sufficiently small, there exists L, > 0, which
is independent of h, such that
| — 2P| < Lyoh, i=0,1,..., Ny (4.11)

It follows from (4.5) that #" is Lipschitz continuous on [0, 7], and the Lipschitz constant is
independent of h. Thus, there exists an hy > 0 such that the family of functions {#"}(h €
(0, ho)) is an equicontinuous family of functions. Letting

12" | = sup [|2"(8)]],
t€[0,T]
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it follows from (4.5) and (4.10) that {2"} is uniformly bounded. By using the Arzeld-Ascoli
theorem, there exists a sequence {h,} | 0 such that {2"} converges uniformly to 7 on [0, 7).
Thus, from (3.1) and (4.10), we know that the iterates {u"**1} is uniformly bounded in
the L norm on [0, 7] and so {@"} is uniformly bounded in the L> norm on [0,T]. Since
L?[0,T)] is a reflective Banach space, it is easy to know that there exists a sequence {h,} | 0
such that 4" — @ weakly in L2[0,T).

Now we show that (Z,a) is a Carathéodory weak solution of DIMVI(1.1).

(I) We first prove that #(0) = 2°. In fact, since £7(0) = z° for all h > 0 sufficiently small
and 2" — 7 uniformly as v — oo, we know that #(0) = z°.

(IT) We next show that, for almost all ¢ € [0, 7],

a(t) € S(K,G(t,z(t)) + F(-), ¢).

In fact, by Theorem 7.1 in [23], we know that {G(t, 2"*)+F(4/)} converges to G(t, %)+ F(@).
It follows from Lemma 2.5 and Corollary 3.35 [25] that ¢ is an l.s.c. functional in the weak
topology, where ¢ is defined in Lemma 2.5. Consequently, for any continuous function
F:[0,T] — K, one has

vV— 00

T
fimsup [ {(P(0) =~ plG(t, 3" (1) + w(Ea ()]} d

</ {e(F(1) = @lG(t,2(t) +p(Ea(t))]} dt

and so

T
limsup [ {(F(t) — G(t, 2" (t)) — w(Ea"™), 0" (1))

v—oo Jo
+o(F(1) = @Gt 3" (1)) + p(Bat)]}dt

A {(F(t) - G(t,2(t) — (Ea), u(t))
+@(F(t) = ¢lG(t,2(t) + »(Ea)] hdt.
On the other hand, since

-
fch(t) A )

(@™ — 2™ V€ [t thin),
we have

||jh o xh,i+1|| _ Ht_ t;L_ h(xh,i—&-l _ mh,i)

Applying (4.11), we get 4
|Z" — 2™ < Lyoh
and so

Nh th,i+1 ‘ ‘
Z/ {<G(th,i+1, :Uh’“rl) — G(t, jh)’uh,z+1>

i=0 Vthi

+ (Gtier, 2+ Y(BuY) =[G ") + (BuT)] ) di
< Nh{(Lgh+ LgLyoh)|u™™| L~ + 2M}. (4.12)
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It follows from (4.12) that
/ ((F — G(t,3") — (B, a") + o(F) — p(G(t, ") + (i)}t

= Z/t n, z+1{<F(t) — G(t, 8" (1)) — Y(BuTY), u

L PP - oI008 + 9B

- NZ / :’”1{<F<t> = Gltnagn, a1 — (Bt i)
(P 1) — @{Gltnrer,a™H1) (B
" %j / (Gl ) = G, ), )

+@[G thisv1, @) Y (BuT] =[Gt ") + p(Bu )]t
thiv1 . . .
Soi ]P0 = Gltnia ) - p(B Y
th1

+ so(F( ) = @G tn,ip1, ™)+ p(BuH)]dt
— Nh[Lgh(1 + Lyo)||a" ||z + 2M]. (4.13)

Y

Now the convexity of K shows that

1 [thi+r _
AT S
h t

hi

Since ut1 € S(K,G(tp iv1,2™F1) + F,¢), one has

T
limsup/0 {(F(H)=G(t,2" (1) —p(Ba" (1), 0" (£)+o(F (1) —plG(t, 2" () +v (Ea" (t))]}dt > 0.

h—0

It follows from (4.13) that, for all continuous functions F : [0,T] — K,

T
/0 {(F(t) - G(t,z(t)) — v(Ba(t),a(t)) + ¢(F(t) — ¢[G(t, 2(t)) + »(Ea(t))]}dt > 0.
From Lemma 4.1, it is easy to see that, for almost all ¢ € [0, 7],
u(t) € S(K,G(t,xz(t)) + F(), p).
(III) Similar to the proof of Theorem 7.1 in [23], we can show that, forany 0 < s <t < T,
I(t) — x(s) = / [a(7, (7)) + b(7, 2(7))u(T)]dT.

From (I)-(IIT) discussed above, we know that (Z, %) is a Carathéodory weak solution of
DIMVI(1.1). This completes the proof. O
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