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perturbation of both objective and constraint functions. Chuong [4] obtained the lower semi-
continuity of the Pareto solution mapping for quasiconvex semi-infinite vector optimization
problems. Fan et al. [9] obtained the upper semicontinuity of the weakly efficient solution
mapping for semi-infinite vector optimization problems with the continuous perturbation of
both objective and constraint functions. Recently, Gong [13] obtained sufficient conditions
of lower semicontinuity of efficient solution mappings for semi-infinite vector optimization
problems by scalarization methods. Very recently, Peng et al. [19] derived a sufficient condi-
tion of the lower semicontinuity of the Pareto solution mapping for nonconvex semi-infinite
vector optimization problems with the continuous perturbation of the objective function
and cone-lower semicontinuous perturbation of the constraint function. For the sensitivity
of semi-infinite vector optimization problems, we refer readers to [5, 6, 26].

On the other hand, essential stability was firstly introduced by Fort [11] for the study
of fixed points of a continuous mapping. Since then, essentiality was applied in many
nonlinear problems such as KKM points, vector equilibrium problems and Nash equilibrium
problems: see [3, 14, 18, 22, 27, 29, 30]. Recently, Xiang and Zhou [28] obtained the essential
stability of efficient solution sets for continuous vector optimization problems. Song et
al. [21] generalized the results obtained by Xiang and Zhou [28] to a set-valued case. They
obtained the essential stability of efficient solution sets for set-valued optimization problems
with the only perturbation of the objective function in compact metric spaces. Long et
al. [15] obtained the essential stability of the weakly efficient solution mapping for set-
valued optimization problems with the perturbation of both the objective function and the
constraint set in noncompact Banach spaces.

Recently, Fan et al. [10] obtained the essential stability for convex semi-infinite vector
optimization problems with continuous perturbation of the objective and constraint func-
tions. Since convexity and continuity do not satisfy in many cases. A natural question is
’How to weaken the convexity and continuity to get the essential stability for semi-infinite
vector optimization problems?’ This paper is an effort in this section.

The rest of the paper is organized as follows. In Section 2 we recall some basic definitions
and some known results. Section 3 obtains some properties of the feasible set mapping and
an existence theorem of the weakly efficient solution for semi-infinite vector optimization
problems. Section 4 contains the main results of this paper. We obtain a sufficient condition
of the upper semicontinuity of the weakly efficient solution mapping for semi-infinite vector
optimization problems. Moreover, we derive that, in the sense of Baire category, most
of semi-infinite vector optimization problems are essential. Our results obtained in this
paper do not required the continuity of the objective and constraint functions. Our results
generalize the corresponding results in [10].

2 Preliminaries

Throughout this paper, unless specified otherwise, we assume that X is a normed linear
space, Y and Z are Banach spaces with norms denoted by ∥ · ∥. Let C ⊆ Y be a closed
convex cone with nonempty interior intC, which induces an order in Y , i.e., for any x, y ∈ Y ,
x ≤C y if and only if y − x ∈ C. The corresponding ordered vector space is denoted by
(Y,C). Let A be a nonempty compact convex subset of X.

In this paper, we consider the following semi-infinite vector optimization problem:

(SIVP) MinC f(x),

s.t. g(x, t) ≤K b(t), t ∈ T,

x ∈ A,
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where T is a nonempty compact subset of a Hausdorff topological space, f : A → Y is a
vector-valued function, C ⊆ Y is a closed convex cone, g : A × T → Z and b : T → Z are
two vector-valued functions, K ⊆ Z is a closed convex cone.

We will use the following definitions of continuity for a set-valued mapping.

Definition 2.1. Let X and Y be topological vector spaces and F : X → 2Y be a set-valued
mapping. T is said to be

(i) upper semicontinuous at x0 ∈ X if, for any open set V containing F (x0), there exists
a neighborhood U of x0 such that F (x) ⊂ V for all x ∈ U ; F is said to be upper
semicontinuous on X if it is upper semicontinuous at each x ∈ X.

(ii) lower semicontinuous at x0 ∈ X if, for any open set V with F (x0) ∩ V ̸= ∅, there
exists a neighborhood U of x0 such that F (x) ∩ V ̸= ∅ for all x ∈ U ; F is said to be
lower semicontinuous on X if it is lower semicontinuous at each x ∈ X.

(iii) continuous on X if it is both upper semicontinuous and lower semicontinuous on X.

(iv) closed if Graph(F ) := {(x, y) : x ∈ X, y ∈ F (x)} is a closed set in X × Y .

Lemma 2.2 ([1]). Let X and Y be metric spaces and F : X → 2Y be a set-valued map-
ping.

(i) If F is closed and Y is compact, then F is upper semicontinuous.

(ii) If F is upper semicontinuous and for any x ∈ X, F (x) is a closed set, then F is
closed.

(iii) F is lower semicontinuous at x0 ∈ X if and only if for any y ∈ F (x0) and any
sequence {xα} with xα → x0, there exists a sequence {yα} such that yα ∈ F (xα) and
yα → y.

Definition 2.3 ([17]). Let X and Y be topological vector spaces, E be a nonempty subset
of X. A mapping h : E → Y is said to be C-lower semicontinuous at x0 ∈ E if, for any open
neighborhood V of 0 in Y , there exists an open neighborhood U of x0 such that

h(x) ∈ h(x0) + V + C (or equivalently, h(x0) ∈ h(x) + V − C), ∀ x ∈ U ∩ E.

h is said to be C-lower semicontinuous on E iff h is C-lower semicontinuous at every point
of E; and h is said to be C-upper semicontinuous on E iff −h is C-lower semicontinuous on
E.

Remark 2.4. It is easy to see that a continuous function is C-lower semicontinuous and
C-upper semicontinuous, but the converse is not true as demonstrated by the following
example.

Example 2.5. Let Y = R2 and C = {(x, y) ∈ R2 : x ∈ R, y ≥ 0}. Clearly, C is a closed
convex cone in Y . Define h : [−1, 1]× [−1, 1] → Y by

h(x, y) =

{
(0, 0), if y = 0,
(1/y, 0), if y ̸= 0.

It is easy to see that h is C-lower semicontinuous and C-upper semicontinuous at (0, 0), but
not continuous at (0, 0).
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Remark 2.6. For any ε > 0, we denote B(ε) := {y ∈ Y : ∥y∥ ≤ ε} and B◦(ε) := {y ∈ Y :
∥y∥ < ε}. Then, the open neighborhood V can be replaced by B◦(ε) in Definition 2.3 when
Y is a normed space.

Definition 2.7. Let E be a nonempty convex subset of X. A mapping h : E → Y is said
to be

(1) C-convex on E if, for any x1, x2 ∈ E and λ ∈ [0, 1], one has

λh(x1) + (1− λ)h(x2) ∈ h(λx1 + (1− λ)x2) + C.

(2) natural quasi-C-convex on E if, for any x1, x2 ∈ E and λ ∈ [0, 1], there exists
λ′ ∈ [0, 1], such that

λ′h(x1) + (1− λ′)h(x2) ∈ h(λx1 + (1− λ)x2) + C.

Remark 2.8. Every C-convex function is a natural quasi-C-convex function, but the con-
verse is not true illustrated by the following example.

Example 2.9 ([25]). Let X = R, E = [0, 1], Y = R2 and C = R2
+ = {(x, y) : x ≥ 0, y ≥ 0}.

Define h : E → Y by
h(x) = (x2, 1− x2).

Then h is natural quasi-C-convex on E, but it is not C-convex.

A topological space X is said to be a Baire space if the following condition holds: given
any countable collection {An}+∞

n=1 of the closed subsets of X each of which has empty interior
in X, their union ∪An also has empty interior in X. A Gδ set in a topological space X is
a set that equals a countable intersection of open sets of X. We now recall the following
lemmas which will be used in the sequel.

Lemma 2.10 ([2, Baire category theorem]). If X is a compact Hausdorff space or a complete
metric space, then X is a Baire space.

Lemma 2.11 ([11, Theorem 2]). Let Y be a metric space, X be a Baire space and h : X →
2Y be upper semicontinuous with compact values. Then there exists a dense Gδ subset Q of
X such that h is lower semicontinuous at each x ∈ Q.

3 Existence of Weakly Efficient Solutions

In this section, we recall some results about the feasible set mapping of semi-infinite vector
optimization problems. We also obtain an existence result of weakly efficient solutions for
the semi-infinite vector optimization problem.

Θ = {σ := (g, b) : g : A× T → Z satisfies: for any t ∈ T,

g(·, t) is K-lower semicontinuous and naturally quasi K-convex on A,

b : T → Z is continuous}.

For any pair σ1 = (g1, b1), σ2 = (g2, b2) ∈ Θ, we define

ρ′(σ1, σ2) := sup
(x,t)∈A×T

∥g1(x, t)− g2(x, t)∥+ sup
t∈T

∥b1(t)− b2(t)∥.
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Assume that sup(x,t)∈A×T ∥g(x, t)∥ < +∞ and supt∈T ∥b(t)∥ < +∞ for all σ ∈ Θ. Obviously,
(Θ, ρ′) is a metric space.

For σ ∈ Θ, we consider the stability of the feasible set mapping F : Θ → 2A such that

F (σ) = {x ∈ A : g(x, t) ≤K b(t), ∀ t ∈ T}.

In the rest of this section, we assume that for any σ ∈ Θ, F (σ) ̸= ∅.

Proposition 3.1. Let σ ∈ Θ. Then F (σ) is a convex set.

Proof. Let x1, x2 ∈ F (σ) and xλ := λx1 + (1 − λ)x2 for any λ ∈ [0, 1]. Then x1, x2 ∈ A.
Since A is a convex set, xλ ∈ A. Now we prove that xλ ∈ F (σ) for any λ ∈ [0, 1]. As
x1, x2 ∈ F (σ), for any λ ∈ [0, 1], we have

λ(g(x1, t)− b(t)) ∈ −K, ∀ t ∈ T, (3.1)

(1− λ)(g(x2, t)− b(t)) ∈ −K, ∀ t ∈ T. (3.2)

By the naturally quasi K-convexity of g(·, t) on A for any t ∈ T , there exists θ ∈ [0, 1] such
that

g(xλ, t) ∈ θg(x1, t) + (1− θ)g(x2, t)−K.

This fact together with (3.1) and (3.2) yields, for any t ∈ T ,

g(xλ, t)− b(t) ∈ θ(g(x1, t)− b(t)) + (1− θ)(g(x2, t)− b(t))−K

⊂ −K −K −K ⊂ −K.

It follows that xλ ∈ F (σ). Therefore, F (σ) is convex. This completes the proof.

Lemma 3.2 ([19]). Let σ ∈ Θ. Then the feasible set mapping F is closed at σ.

Since A is compact and F is closed at σ, by Lemma 2.2 (i), we obtain that F is upper
semicontinuous at σ.

Corollary 3.3. Let σ ∈ Θ. Then the feasible set mapping F is upper semicontinuous at σ.

The following lemma was given in [19]. For the sake of convenience, we give a short proof
here.

Lemma 3.4. Let σ ∈ Θ. Then, the feasible set mapping F is lower semicontinuous at σ.

Proof. Let us consider the following two cases.
Case 1: F (σ) is a singleton set. Denote the unique point by x0. Suppose by contradiction

that F is not lower semicontinuous at σ. Then there exist a sequence {σn} ⊆ Θ with σn → σ
and an open neighborhood U of x0 such that

F (σn) ∩ U = ∅ for all n = 1, 2, · · · . (3.3)

Since F (σn) ̸= ∅, we can take xn ∈ F (σn). Note that A is compact, without loss of generality
we can assume that xn → x′. By Lemma 3.2, F is closed at σ. It follows that x′ ∈ F (σ).
And so x0 = x′ since F (σ) is a singleton set. This contradicts (3.3) by xn → x′. Hence, F
is lower semicontinuous at σ.

Case 2: F (σ) is not a singleton set. Let V be an open convex set such that V ∩F (σ) ̸= ∅.
Let x0 ∈ V ∩ F (σ). Then

g(x0, t)− b(t) ≤K 0, ∀ t ∈ T. (3.4)
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Since F (σ) is not a singleton set, we can choose x′ ∈ F (σ) with x′ ̸= x0. Let r ∈ (0, 1) be
such that

xr := x0 + r(x′ − x0) ∈ V.

From (3.4) and x′ ∈ F (σ), for any t ∈ T and λ ∈ [0, 1], we have

λ(g(x0, t)− b(t)) + (1− λ)(g(x′, t)− b(t)) ≤K 0. (3.5)

Since g(·, t), t ∈ T is naturally quasi K-convex on A, there exists r′ ∈ [0, 1] such that

g(xr, t) ≤K r′g(x0, t) + (1− r′)g(x′, t), ∀ t ∈ T.

This together with (3.5) yields

g(xr, t)− b(t) ≤K 0, ∀ t ∈ T. (3.6)

Let σn = (gn, bn) ∈ Θ, n = 1, 2, · · · such that σn → σ. We now claim that there exists
n0 ∈ N such that xr ∈ F (σn) for all n ≥ n0. In fact, if there does not exist n0 ∈ N such that
xr ∈ F (σn) for all n ≥ n0; or equivalently, if for any n ∈ N, xr /∈ F (σn), then there exists
t′ ∈ T such that

gn(xr, t
′)− bn(t

′) �K 0,

or equivalently,
gn(xr, t

′)− bn(t
′) ∈ Y \ −K.

Note that Y \ −K is an open set. Then there exists a neighborhood U of 0 in Y such that

gn(xr, t
′)− bn(t

′) + U ⊂ Y \ −K.

For above U , there exists ε > 0 such that U ε
2
+ U ε

2
⊂ U , where U ε

2
:= {y ∈ Y : ∥y∥ ≤ ε

2}.
As σn → σ, for above ε > 0, there exists n1 ∈ N such that for n ≥ n1,

gn(xr, t
′)− g(xr, t

′) ∈ U ε
2
.

Similarly, there exists n2 ∈ N such that for n ≥ n2,

bn(t
′)− b(t′) ∈ U ε

2
.

It follows that for n ≥ max{n1, n2},

g(xr, t
′)− b(t′) = g(xr, t

′)− gn(xr, t
′) + gn(xr, t

′)− bn(t
′) + bn(t

′)− b(t′)

∈ U ε
2
+ U ε

2
+ gn(xr, t

′)− bn(t
′)

⊂ gn(xr, t
′)− bn(t

′) + U

⊂ Y \ −K,

which contradicts (3.6). Thus, there exists n0 ∈ N such that xr ∈ F (σn) for all n ≥ n0 and
so V ∩ F (σn) ̸= ∅ for all n ≥ n0. Therefore, F is lower semicontinuous at σ. The proof is
complete.

Now, we give an existence result for problem (SVIP).

Proposition 3.5. If f : A → Y is C-lower semicontinuous on A and σ ∈ Θ, then the
weakly efficient solution set Sw(f, σ) := {x ∈ F (σ) : f(y) − f(x) /∈ −intC, ∀ y ∈ F (σ)} is
nonempty.

Proof. By Lemma 3.2, F is closed at σ. Then, F (σ) is a closed set. Since A is compact,
F (σ) is compact. By the C-lower semicontinuity of f on A and Corollary 5.10 in [17, p. 60],
we get the efficient solution set S(f, σ) := {x ∈ F (σ) : f(y)− f(x) /∈ −C\{0}, ∀ y ∈ F (σ)}
is nonempty. Therefore, Sw(f, σ) is nonempty since S(f, σ) ⊂ Sw(f, σ).
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4 Generic Stability of the Solution Set Mapping

In this section, we discuss the generic stability of the weakly efficient solution set mapping
for semi-infinite vector optimization problems.

M = {(f, σ) : f : A → Y is C-lower semicontinuous and C-upper semicontinuous on A,

σ ∈ Θ and F (σ) ̸= ∅}.

For any pair π1 = (f1, σ1), π2 = (f2, σ2) ∈ M , we define

ρ(π1, π2) := sup
x∈A

∥f1(x)− f2(x)∥+ ρ′(σ1, σ2).

Assume that supx∈A ∥f(x)∥ < +∞. Clearly, (M,ρ) is a metric space. For any π = (f, σ) ∈
M , Proposition 3.5 implies problem (SIVP) must have at least one weakly efficient solution.
Denote by Γ(π) the weak efficient solution set of problem (SIVP) respect to π, i.e., Γ(π) :=
{x ∈ F (σ) : f(y) − f(x) /∈ −intC, ∀ y ∈ F (σ)}. Then Γ defines a set-valued map from M
to A and Γ(π) ̸= ∅ for each π ∈ M .

We first prove the following lemma.

Lemma 4.1. (M,ρ) is a complete metric space.

Proof. Let {πn} be any Cauchy sequence in M , where πn = (fn, σn) = (fn, (gn, bn)), n =
1, 2, · · · . Then, for any ε > 0, there exists a positive integer N such that

ρ(πn, πm) < ε, ∀ n,m > N.

This implies that for any x ∈ A and t ∈ T ,

∥fn(x)− fm(x)∥ < ε, ∥gn(x, t)− gm(x, t)∥ < ε and ∥bn(t)− bm(t)∥ < ε. (4.1)

Thus, for any fixed x ∈ A and t ∈ T , {fn(x)} is a Cauchy sequence in (Y, ∥·∥) and {gn(x, t)}
and {bn(t)} are Cauchy sequences in (Z, ∥ ·∥). Since Y and Z are Banach spaces, there exist
f(x) ∈ Y , g(x, t) ∈ Z and b(t) ∈ Z such that

fn(x)
∥·∥−−→ f(x), gn(x, t)

∥·∥−−→ g(x, t) and bn(t)
∥·∥−−→ b(t).

It follows that f : A → Y , g : A× T → Z and b : T → Z. Since ∥ · ∥ is continuous, by (4.1),
for any fixed n > N and any x ∈ A and t ∈ T , let m → +∞, we have

∥fn(x)− f(x)∥ ≤ ε, (4.2)

∥gn(x, t)− g(x, t)∥ ≤ ε (4.3)

and
∥bn(t)− b(t)∥ ≤ ε. (4.4)

We now prove π := (f, σ) ∈ M , where (f, σ) = (f, (g, b)). We divide the proof into four
steps.

(i) b is continuous on T . In fact, for any fixed t0 ∈ T , since bn is continuous on T , for
any ε > 0, there exists a neighborhood N(t0) of t0 in T such that

∥bn(t)− bn(t0)∥ < ε, ∀ t ∈ N(t0). (4.5)
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From (4.4) and (4.5), we have that, for any t ∈ N(t0),

∥b(t)− b(t0)∥ ≤ ∥b(t)− bn(t)∥+ ∥bn(t)− bn(t0)∥+ ∥bn(t0)− b(t0)∥
< ε+ ε+ ε = 3ε,

which implies that b is continuous on t0 ∈ T . By the arbitrariness of t0, b is continuous on
T .

(ii) g(·, t) is naturally quasi K-convex on A for any t ∈ T . Indeed, for any t ∈ T , for any
n, x1, x2 ∈ A and λ ∈ [0, 1], by the naturally quasi K-convexity of gn(·, t) on A, there exists
λ′ ∈ [0, 1] such that

gn(λx1 + (1− λ)x2, t)− λ′gn(x1, t)− (1− λ′)gn(x2, t) ∈ −K.

Since gn
∥·∥−−→ g and K is closed,

g(λx1 + (1− λ)x2, t)− λ′g(x1, t)− (1− λ′)g(x2, t) ∈ −K.

It follows that g(·, t) is naturally quasi K-convex on A for any t ∈ T .
(iii) f is C-lower semicontinuous on A. Since fn is C-lower semicontinuous on A, for any

fixed x0 ∈ A, there exists an open neighborhood U of x0 such that

fn(x) ∈ fn(x0) +B◦(ε) + C, ∀ x ∈ U ∩A. (4.6)

Combining (4.2) and (4.6) yields

f(x) ∈ fn(x) +B(ε)

⊂ fn(x0) +B◦(ε) + C +B(ε)

⊂ f(x0) +B◦(ε) +B(ε) + C +B(ε)

⊂ f(x0) +B◦(3ε) + C.

This implies that f is C-lower semicontinuous on A. Similarly, we can prove that f is
C-upper semicontinuous on A and g(·, t) is K-lower semicontinuous on A for any t ∈ T .

(iv) F (σ) ̸= ∅. Since F (σn) ̸= ∅ for all n, there exists xn ∈ F (σn) for all n. Without
loss of generality, we can assume that xn → x0 ∈ A as A is compact. By Lemma 3.2, F is
closed at σ. Note that σn → σ and xn → x0. This implies x0 ∈ F (σ) and so F (σ) ̸= ∅.

Hence, π = (f, σ) ∈ M and limn→+∞ ρ(πn, π) = 0. Therefore, (M,ρ) is a complete
metric space. The proof is complete.

Theorem 4.2. The weakly efficient solution mapping Γ : M → 2A is upper semicontinuous
with compact values on M .

Proof. Let π = (f, σ) ∈ M . First we show that Γ is closed at π. Let πn = (fn, σn) ∈ M and

xn ∈ Γ(πn) be sequences such that πn
ρ−→ π and xn → x0 as n → +∞. We shall prove that

x0 ∈ Γ(π).
Suppose by contradiction that x0 /∈ Γ(π). Then there exists y0 ∈ F (σ) such that

f(x0)− f(y0) ∈ intC. It follows that there exists ε0 > 0 such that

f(x0)− f(y0) +B◦(ε0) ⊂ intC. (4.7)

For σn → σ and y0 ∈ F (σ), by the lower semicontinuity of F at σ, there exists yn ∈ F (σn)
such that yn → y0. Since f is C-lower semicontinuous, for xn → x0 and for above ε0, there
exists positive integer N1 such that

f(xn) ∈ f(x0) +B◦(
1

4
ε0) + C, ∀ n > N1, (4.8)
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Also by the C-upper semicontinuity of f , for yn → y0 and for above ε0, there exists positive
integer N2 such that

f(yn) ∈ f(y0) +B◦(
1

4
ε0)− C, ∀ n > N2. (4.9)

Note that fn → f . Then there exists a positive integer N3 such that

fn(x) ∈ f(x) +B(
1

4
ε0) (or f(x) ∈ fn(x) +

1

4
B(ε0)), ∀ x ∈ A, ∀ n > N3, (4.10)

Let N = max{N1, N2, N3}. From (4.7)-(4.10), for all n > N , we have

fn(xn)− fn(yn) = f(x0)− f(y0) + fn(xn)− f(xn)

+ f(yn)− fn(yn) + f(xn)− f(x0) + f(y0)− f(yn)

⊂ f(x0)− f(y0) +B(
1

4
ε0) +B(

1

4
ε0) +B◦(

1

4
ε0) + C +B◦(

1

4
ε0) + C

⊂ f(x0)− f(y0) +B◦(ε0) + C

⊂ C + intC ⊂ intC,

which contradicts the fact that xn ∈ Γ(πn). It follows that x0 ∈ Γ(π) and so Γ is closed at
π.

Since A is compact and Γ is closed at π, by Lemma 2.2 (i), Γ is upper semicontinuous
at π. Moreover, Γ is closed at π implies that Γ(π) is a closed set. By the compactness of
A, Γ(π) is compact. Therefore, by the arbitrariness of π, Γ is upper semicontinuous with
compact values on M . This completes the proof.

Definition 4.3. Let π ∈ M . The weakly efficient solution set Γ(π) is called stable if the
set-valued mapping Γ is continuous at π.

Remark 4.4. The following example shows that there exists π ∈ M such that Γ(π) is not
stable.

Example 4.5 ([10]). Let A = [−1, 2] × [−1, 2] ⊂ R2, K = R2
+ = {(x1, x2) ∈ R2 : x1 ≥

0, x2 ≥ 0} and T = [1, 2] ∪ [3, 4] ∪ [5, 6] ∪ [7, 8]. Let f(x) = x,

g(x, t) =


tx1 − t, if t ∈ [1, 2];
−tx1, if t ∈ [3, 4];
tx2 − t, if t ∈ [5, 6];
−tx2, if t ∈ [7, 8];

gk(x, t) =


tx1 − t, if t ∈ [1, 2];
−tx1, if t ∈ [3, 4];
tx2 − t, if t ∈ [5, 6];
tx1

k − tx2, if t ∈ [7, 8]

for every x = (x1, x2) ∈ A and b(t) = 0 for any t ∈ T . Let π = (f, σ) and πk = (f, σk),
where σ = (g, b) and σk = (gk, b). It follows that π → πk, F (σ) = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤
x2 ≤ 1}, F (σk) = {(x1, x2) :

x1

k ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, Γ(π) = {(x1, x2) : x1 = 0, 0 ≤ x2 ≤
1} ∪ {(x1, x2) : x2 = 0, 0 ≤ x1 ≤ 1} and Γ(πk) = {(x1, x2) : x1 = 0, 0 ≤ x2 ≤ 1}. It is easy
to see that Γ is not lower semicontinuous at σ.

Definition 4.6. Let π ∈ M . A point x ∈ Γ(π) is said to be essential if, for any open
neighborhood U of x in A, there exists an open neighborhood V of π in M such that
Γ(π′) ∩ U ̸= ∅ for all π′ ∈ V . π is said to be essential if every x ∈ Γ(π) is essential.

Remark 4.7. From Definition 4.6, it is easy to see that the set-valued mapping Γ is lower
semicontinuous at π ∈ M if and only if π is essential.
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The following theorem is devoted to the generic stability for semi-infinite vector opti-
mization problems.

Theorem 4.8. There exists a dense Gδ subset of M such that π is essential for every
π ∈ Gδ.

Proof. By Lemmas 4.1 and 2.10, M is a Baire space. By Theorem 4.2, Γ : M → 2A is
upper semicontinuous with compact values on M . From Lemma 2.11, there exists a dense
Gδ subset of M such that Γ is lower semicontinuous at each π ∈ Gδ. By the Definition 4.3,
the result follows.

From Lemma 2.11 and the proof of Theorem 4.8, we obtain the density of the set of all
problems whose weakly efficient solution set mapping is continuous.

Corollary 4.9. Let M1 := {π ∈ M : Γ is continuous at π}. Then M1 contains a dense Gδ

subset of M .

Remark 4.10. Corollary 4.9 generalizes and improves Theorem 3.6 of Fan et al. [10], one
of main results of [10], from the following five aspects:

(1) the setting of the finite dimensional Euclidean spaces is generalized to Banach spaces;

(2) the convexity of f has been removed;

(3) the continuity of f is relaxed to the C-lower semicontinuity and the C-upper semi-
continuity;

(4) the C-convexity of g with respect to the first argument is extended to the natural
quasi-C-convexity;

(5) the continuity of g is relaxed to the K-lower semicontinuity.

Remark 4.11. It is noted that Corollary 4.9 shows that M1 not only is a dense subset but
also contains a dense Gδ subset of M . Moreover, every semi-infinite vector optimization
problem can be approximated by stable semi-infinite vector optimization problem (at which
the solution set mapping is continuous).

Remark 4.12. Example 4.5 shows that there exists π ∈ M such that π is not essential.

The following theorem gives a sufficient condition that π ∈ M is essential.

Theorem 4.13. If π ∈ M and Γ(π) is a singleton set, then π is essential.

Proof. Assume that Γ(π) = {x0}. Let U be any open set in X such that Γ(π) ∩ U ̸= ∅. It
follows that x0 ∈ U and Γ(π) ⊂ U . By Theorem 4.2, Γ is upper semicontinuous at π ∈ M .
Then there exists an open neighborhood V of π in M such that Γ(π′) ⊂ U for each π′ ∈ V .
This implies that Γ(π′)∩U ̸= ∅ for each π′ ∈ V . Therefore, Γ is lower semicontinuous at π.
By Remark 4.7, π is essential.
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