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the solution mapping to a parametric implicit Ky Fan Inequality. By virtue of a density
result and scalarization technique, Gong and Yao [11] first discussed the lower semiconti-
nuity of the solution mapping to a generalized Ky Fan Inequality. Li et al. [16] obtained
sufficient conditions for the lower semicontinuity of solution mappings to a generalized Ky
Fan Inequality. Peng and Yang [19] discussed the lower semicontinuity of solution mappings
to two classes of parametric weak generalized Ky Fan Inequalities. Chen and Huang [6]
studied the continuity of the solution mapping to a parametric weak generalized Ky Fan
Inequality. Recently, Anh et al. [2] discuss the Hölder continuity of solution mappings of
parametric primal and dual Ky Fan inequalities. Peng et al. [21] establish Hölder continuity
of the approximate solution mapping to generalized parametric Ky Fan Inequalities by using
scalarization technique.

On the other hand, essential component is also an interesting and important topic in the
stability analysis of Ky Fan’s inequalities or variational inequalities under perturbations.
There have been some papers concerning with essential components of the solutions set
to various nonlinear problems, such as optimization problems, Ky Fan inequalities and
equilibrium problems, see [18, 22, 24, 25] and the references therein. Based on results of
essential components, they established some sufficient conditions of the upper semicontinuity
and/or the generic lower semicontinuity of (weakly) efficient solution mappings. In 1995, Tan
et al. [22] established stability results for Ky Fan inequality problems in compact setting and
non-compact setting, respectively. Recently, Chen and Gong [7] proved a generic stability
theorem and given an existence theorem for essentially connected components of the set of
solutions to symmetric generalized Ky Fan’s inequalities. Very recently, by virtue of the
main idea of [22, 24, 25], Li et al. [17] obtained the sufficient and necessary conditions of
upper semicontinuity of the efficient solution mapping for a class of generalized Fan Ky
inequality.

But, up to now, on the subject of sufficient and necessary conditions of upper/lower
semicontinuity, few results for the Ky Fan inequality with mapping sequences of converg-
ing are available (it appears that only two relevant papers are [22] and [17]). Moreover,
we also point out that there are two actualities as follows: (i) In [17], the continuity and
proper quasiconvexity on objective functions play an important role in characterizing the
semicontinuity of solution mappings of generalized Fan Ky inequalities, which are strong
assumptions actually; (ii) to the best of our knowledge, no paper deals with sufficient and
necessary conditions of semicontinuity of solution mappings to generalized approximate Ky
Fan inequalities. Thus, a natural question is ‘How to get a sufficient and necessary condition
of upper or lower semicontinuity of the solution mapping for generalized approximate Ky
Fan inequalities without imposing continuity and proper quasiconvexity?’ The purpose of
this paper is to establish sufficient and necessary conditions of the upper semicontinuity of
solution mappings to generalized approximate Ky Fan inequalities by removing the assump-
tions of continuity and proper quasiconvexity, under perturbations of both on the objective
functions and constraints set sequences. The obtained results are new and different form
the corresponding results in [17,22].

The rest of the paper is organized as follows. In Section 2, we recall some basic defini-
tions and preliminaries from nonlinear analysis, set-valued analysis and vector optimization,
which will be used in the sequel. In Section 3, we give a sufficient condition of completeness
to the space P of perturbed generalized approximate Ky Fan inequality problems. Based
on the result, in Section 4, we obtain sufficient and necessary conditions of upper semicon-
tinuity of solution mappings for generalized approximate Ky Fan inequality problems under
perturbations without using continuity and proper quasiconvexity of objective functions,
and give examples to illustrate that our main result extends the corresponding ones in the
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literature.

2 Preliminaries

Throughout this paper, unless otherwise specified, let X be a real Banach space and K be
a nonempty compact convex subset of X. Let f : X ×X −→ R be a real-valued function.
Fan [8] introduced the following inequality (called Ky Fan inequality) of finding x ∈ K such
that

f(x, y) ≥ 0, ∀y ∈ K,

which plays a very important role in nonlinear analysis and was intensively studied in past
years. In some cases, Ky Fan inequalities are also called equilibrium problems or systems.

Let Y be a real Banach space and Y ∗ be the dual space of Y. Let C ⊂ Y be a point
closed convex cone with intC ̸= ∅, where intC denotes the interior of C. In the sequel, we
shall use the following ordering relations: for any x, y ∈ Y,

y 5C x ⇔ x− y ∈ C; y �C x ⇔ x− y /∈ C;

y ≤C x ⇔ x− y ∈ C \ {0Y }; y �C x ⇔ x− y /∈ C \ {0Y };

y <C x ⇔ x− y ∈ intC; y ≮C x ⇔ x− y /∈ intC.

Let

C∗ := {ξ ∈ Y ∗ : ξ(y) ≥ 0, ∀y ∈ C}

be the dual cone of C. Denote the quasi-interior of C∗ by C♮, i.e.,

C♮ := {f ∈ Y ∗ : f(y) > 0, ∀y ∈ C \ {0Y }}.

It is easy to see that C♮ ̸= ∅ if and only if C has a base. Letting e ∈ intC be given, we
denote the set C♯ as

C♯ := {ξ ∈ C♮ : ξ(e) = 1}.

In the sequel, we always assume that C♯ ̸= ∅. Let K be a nonempty compact convex
subset of X and f : X ×X −→ Y be a vector-valued mapping. We consider the following
generalized approximate Ky Fan’s inequality problems of

finding x ∈ K such that f(x, y) + εe �C 0, ∀y ∈ K (∗1)

and

finding x ∈ K such that f(x, y) + εe ≮C 0, ∀y ∈ K (∗2)

where e ∈ intC, ε ≥ 0 is any nonnegative real number. We call that a vector x ∈ K is
a generalized approximate Ky Fan’s efficient (resp. weakly efficient) point of f in K if x
satisfies (∗1) (resp. (∗2)).

Special case

(i) When ε = 0, the generalized approximate Ky Fan inequality reduces to the generalized
Ky Fan inequality in [17].

(ii) Let ε = 0, and f : X ×X → R be real-valued, then the generalized approximate Ky
Fan inequality reduces to the wellknown Ky Fan inequality in [9, 22].
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Now, we recall some notions and results which will be used in the sequel.

Definition 2.1. Let E be a nonempty convex subset of a vector space X. Let f be a
mapping from X to Y. We say that

(i) f is properly quasi C-convex on E, iff for every x1, x2 ∈ E, and any λ ∈ [0, 1], either

f(λx1 + (1− λ)x2) 5C f(x1) or f(λx1 + (1− λ)x2) 5C f(x2);

(ii) f is C-convex on E, iff for every x1, x2 ∈ E, and any λ ∈ [0, 1],

f(λx1 + (1− λ)x2) 5C λf(x1) + (1− λ)f(x2).

Remark 2.2. From Definition 2.1, we can find that a C-convex function is not necessary
a properly quasi C-convex function, meanwhile, a properly quasi C-convex function is also
not necessary a C-convex function in general.

The following example shows that a C-convex function is not necessary a properly quasi
C-convex function.

Example 2.3. Let X = E = R2, Y = R2, C = R2
+ = {(x, y) ∈ R2|x ≥ 0, y ≥ 0}. Define

f : E → Y by

f(x) =
(1
2
x2
1, 2x

2
2

)
.

For every x, y ∈ E, and any λ ∈ [0, 1], one has

f(λx+ (1− λ)y) =
(1
2
(λx1 + (1− λ)y1

)2

, 2(λx2 + (1− λ)y2)
2)

5C

(1
2
(λx2

1 + (1− λ)y21

)
, 2(λx2

2 + (1− λ)y22))

= λf(x) + (1− λ)f(y),

which means f is a C-convex function.
However, choosing x = (2, 0), y = (0, 1), λ = 1

2 , one get that

f(λx+ (1− λ)y) =
(1
2
,
1

2

)
�C (2, 0) = f(x),

and

f(λx+ (1− λ)y) =
(1
2
,
1

2

)
�C (0, 2) = f(y).

f is not a properly quasi C-convex function on E.

Definition 2.4. Let e ∈ intC be any given point and any ε ≥ 0. A vector-valued mapping
f : X×X → Y is approximate C-quasimonotone on X if and only if for any x, y ∈ X : x ̸= y,

f(x, y) + εe �C 0 =⇒ f(y, x) + εe 5C 0.

Definition 2.5 ([1]). Let X and Y be topological vector spaces, F : X → 2Y be a set-valued
mapping.
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(i) F is said to be upper semicontinuous (u.s.c, for short) at x0 ∈ X, if for any open set
V with F (x0) ⊂ V, there exists a neighborhood U of x0 in X such that F (x) ⊂ V for
all x ∈ U ;

(ii) F is said to be lower semicontinuous (l.s.c, for short) at x0 ∈ X, if for any open set V
with F (x0)∩V ̸= ∅, there exists a neighborhood U of x0 in X such that F (x)∩V ̸= ∅
for all x ∈ U ;

(iii) F is said to be continuous at x0 ∈ X, if it is both l.s.c and u.s.c at x0 ∈ X. F is said
to be l.s.c (resp. u.s.c) on X, iff it is l.s.c (resp. u.s.c) at each x ∈ X;

F is said to be closed, if the graph of F , i.e., Graph(F ) = {(x, y) : x ∈ X, y ∈ F (x)}, is a
closed set in X × Y . F is said to be compact, if the closure of range F (X), i.e., F (X), is
compact, where F (X) =

∪
x∈X F (x).

Definition 2.6. Let E be a nonempty subset of X, and let f be a mapping from E to Y.
f is said to be C-upper semicontinuous (resp.(−C)-upper semicontinuous) at x0 ∈ E, if for
any neighborhood W of 0Y in Y, there is a neighborhood U(x0) of x0 such that for each
x ∈ U(x0) ∩ E,

f(x) ∈ f(x0) +W + C (resp.f(x) ∈ f(x0) +W − C).

f is said to be C-upper semicontinuous (resp.(−C)-upper semicontinuous) on E iff f is
C-upper semicontinuous (resp.(−C)-upper semicontinuous) at every point of E.

Remark 2.7. Obviously, the C and (−C)-upper semicontinuity is strictly larger than the
continuity of f, that is

continuity =⇒ C and (−C)-upper semicontinuity,

but the converse implication does not hold in general.

We give example 2.8 to illustrate that there exists function f which is C and (−C)-upper
semicontinuous, but it is not continuous.

Example 2.8. Let Y := R2 and C = {(x, y) ∈ R2 : x ∈ R, y ≥ 0}. Clearly, C is a closed
convex cone in Y. Defined f : [−1, 1]× [−1, 1] → Y by

f(x, y) =

{
(0, 0), if y = 0;
(− 1

2y ,−
y
3 ), if y ̸= 0.

By virtue of Definition 2.6, we can verify that f is C-upper semicontinuous and (−C)-
upper semicontinuous at (0, 0), but f is not continuous at (0, 0).

3 Completeness of the Space P

In this section, we establish a metric space P with perturbations on the objective functions
and set sequences as follows. The space P of problems (∗1) and (∗2) is defined by

P :=

{
π = (f,K, ε) : f,K, ε satisfies the following conditions:

(i) f : X ×X → Y is C and (−C)-upper semicontinous on X ×X;
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(ii) ∀x ∈ X, f(x, ·) is C-convex on X;

(iii) f is approximate C-quasimonotone on X ×X;

(iv) ∀x ∈ X, f(x, x) =C 0 and sup(x,y)∈X×X∥f(x, y)∥ < +∞;

(v) ε ∈ R+ and K is nonempty compact convex subset of X

}
.

For any π1 = (f1,K1, ε1), π2 = (f2,K2, ε2) ∈ P, define the metric as

ρ := ρ(π1, π2) = sup(x,y)∈X×X∥f1(x, y)− f2(x, y)∥+H(K1,K2) + |ε1 − ε2|,

where H is the Hausdorff metric on X, i.e., H(K1,K2) = max{e(K1,K2), e(K2,K1)} and
e(K1,K2) = sup{d(a,K2) : a ∈ K1}.

In this section, under weaker assumptions, we obtain the completeness of the space
P with perturbed generalized approximate Ky Fan inequality problems. In the rest of
paper, for convenience, for any δ ∈ R, δ > 0, we denote B(δ) := {y ∈ Y : ∥y∥ ≤ δ} and
B0(δ) := {y ∈ Y : ∥y∥ < δ}.

Proposition 3.1. (P, ρ) is a complete metric space.

Proof. Obviously, (P, ρ) is a metric space as ρ is a metric. Then, we verity that (P, ρ) is
complete. Let {πn}+∞

n=1 be a Cauchy sequence of P, where πn := (fn,Kn, εn). Then, for any
δ > 0, there exists a positive integer N(δ) such that

ρ(πn, πm) ≤ δ, for all m,n ≥ N(δ).

This implies that for all x, y ∈ X,

∥fn(x, y)− fm(x, y)∥ ≤ δ, H(Kn,Km) ≤ δ and |εn − εm| ≤ δ. (3.1)

Then, for fixed x, y ∈ X, {fn(x, y)}+∞
n=1 is a Cauchy sequence in (Y, ∥ · ∥), {Kn}+∞

n=1 is a
Cauchy sequence of L(X), where L(X) is all nonempty compact convex subsets of X and
{εn}+∞

n=1 is a Cauchy sequence in R. From the completeness of R, Y and (L(X), H), there
exist ε ∈ R, f(x, y) ∈ Y and K ∈ L(X) such that

fn(x, y)
∥·∥−→ f(x, y), Kn

H−→ K and εn → ε. (3.2)

For fixed n ≥ N(δ) and any (x, y) ∈ X ×X, let m → +∞, it follows from (3.1) and (3.2)
that

fn(x, y) ∈ f(x, y) +B(δ) and f(x, y) ∈ fn(x, y) +B(δ). (3.3)

Now we need to show π := (f,K, ε) ∈ M, and we divide the proof into four steps.
(i) For each x ∈ X, f(x, ·) is C-convex on X. For any positive integer n, any λ ∈ [0, 1]

and for every y1, y2 ∈ X, by the C-convexity of fn(x, ·),

fn(x, λy1 + (1− λ)y2) 5C λfn(x, y1) + (1− λ)fn(x, y2),

which together with (3.2) and the closedness of C yields that

f(x, λy1 + (1− λ)y2) 5C λf(x, y1) + (1− λ)f(x, y2), ∀λ ∈ [0, 1].
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Then, f(x, ·) is C-convex on X.

(ii) f is approximate C-quasimonotone on X × X. Indeed, for any x, y ∈ X : x ̸=
y, f(x, y) + εe �C 0, i.e., f(x, y) + εe /∈ −C. By the openness of Y \ −C and fn

∥·∥−→ f, we
obtain that when n is large enough, fn(x, y) + εe ∈ Y \ −C, that is,

fn(x, y) + εe �C 0.

From the approximate C-quasimonotonicity of fn, one has

fn(y, x) + εe ∈ −C.

Therefore, together with fn
∥·∥−→ f and the closedness of C yields that

f(y, x) + εe ∈ −C,

which implies that f(y, x) + εe 5C 0.

(iii) f is C and (−C)-upper semicontinous on X×X. Since fn is C-upper semicontinous
on X ×X, for any fixed (x0, y0) ∈ X ×X and for any δ ≥ 0, there exists a neighborhood U
of (x0, y0) in X ×X such that

fn(x, y) ∈ fn(x0, y0) +B0(δ) + C, ∀(x, y) ∈ U. (3.4)

Combining (3.3) and (3.4), when n → ∞ we have

f(x, y) ∈ fn(x, y) +B(δ)

⊂ fn(x0, y0) +B0(δ) + C +B(δ)

⊂ f(x0, y0) +B(δ) +B0(δ) + C +B(δ)

⊂ f(x0, y0) +B0(3δ) + C, ∀(x, y) ∈ U.

By the arbitrariness of δ, we get f is C-upper semicontinous. Similarly, using the same
method, we can get f is (−C)-upper semicontinous on X ×X.

(iv) Finally, we can easily verify sup(x,y)∈X×X∥f(x, y)∥ < +∞ and f(x, x) =C 0 for
every x ∈ X. Therefore, there exists π := (f,K, ε) ∈ P. By (3.2) and (3.3), we also get that

πn
ρ−→ π. Thus, (P, ρ) is a complete metric space. This completes the proof.

Remark 3.2. (i) For each π := (f,K, ε) ∈ P, we denote by Sε(π) and Sw
ε (π) the set of

generalized approximate Ky Fan’s efficient points and generalized approximate Ky Fan’s
weak efficient points, respectively. When ε = 0, Sε(π) and Sw

ε (π) collapse to S(π) and
Sw(π), respectively.

(ii) In the paper, we mainly discuss the characterization of u.s.c of approximate solution
mappings, so we always assume that Sε(π) is nonempty for each π = (f,K, ε) ∈ P. Then,
Sw
ε (π) ̸= ∅ since Sε(π) ⊂ Sw

ε (π) by definition.

Remark 3.3. By using the assumptions of C-convexity and C and (−C)-upper semicontinu-
ity, which are differ from the properly quasi C-convexity and even weaker than the continuity
of f , respectively (see Remark 2.2 and Remark 2.6), we obtain the the completeness of the
space P . The result is different from the corresponding ones in the literature.
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4 Characterization of u.s.c of Approximate Solution Mappings

In this section, we mainly characterize the upper semicontinuity of the solution mapping for
the generalized approximate Ky Fan inequality.

Some facts about u.s.c appear as follows.

Lemma 4.1 ([1,3]). Let X and Y be topological vector spaces, F : X → 2Y be a set-valued
mapping. If F has compact values (i.e., F (x) is a compact set for each x ∈ X), then F is
u.s.c at x0 ∈ X if and only if for any net (xα) in X with xα → x0 and for any yα ∈ F (xα),
there exist y0 ∈ F (x0) and a subnet (yβ) of (yα) such that yβ → y0.

Lemma 4.2 ([1]). Let X and Y be two locally convex Hausdorff spaces, F : X → 2Y be a
set-valued mapping.

(i) If Y is compact and F is closed, then F is u.s.c.

(ii) If F is u.s.c with closed values, then F is a closed.

Lemma 4.3 ([25]). Let K and Kn (n = 1, 2, ...) all be nonempty compact subsets of Haus-

dorff topological space X with Kn
H−→ K. Then the following statements holds:

(i) ∪+∞
n=1kn ∪K is also a nonempty compact subset of X;

(ii) If xn ∈ Kn converging to x, then x ∈ K.

Lemma 4.4 ([3]). Let Y be a topological vector space. For each neighborhood U of zero in
Y, there exist two neighborhoods U1, U2 of zero in Y such that U1 + U2 ⊂ U.

Theorem 4.5 (Characterization of u.s.c of approximate solution mappings). Let π :=
(f,K, ϵ) ∈ P. Then, the approximate efficient solution mapping Sε : P ⇒ X is u.s.c at
π if and only if Sε(π) = Sw

ε (π).

Proof. (i) (Necessity) We proof Sε(π) = Sw
ε (π). Suppose to the contrary that Sε(π) ̸=

Sw
ε (π). Then there exists x′ ∈ Sw

ε (π) such that x′ /∈ Sε(π) as Sε(π) ⊂ Sw
ε (π). Now, we may

structure a sequence:

πn := (fn,Kn, εn) such that πn ∈ P and πn
ρ−→ π.

For each x, y ∈ X, let η : X ×X → R be defined by

η(x, y) :=
(∥y − x′∥

3

)
− ∥x− x′∥

3

)
∨
(
− 1

2

)
∧
(1
2

)
.

Then, η(·, ·) is continuous on X ×X; for every x ∈ X, η(x, x) = 0 and η(x, ·) is convex on
X.

Let e ∈ intC. For each positive integer n, define πn := (fn,Kn, εn) as follows:

fn := f(x, y) +
η(x, y)

2n
e, ∀x, y ∈ X,

Kn :=
(
1− 1

2n+ 1

)
K +

1

2n+ 1
x′ and εn := ε+

η(x, y)

2n
.

We can verify that πn ∈ P, πn := (fn,Kn, εn)
ρ−→ π := (f,K, ε) and x′ ∈ Kn ⊂ K easily.
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Now, we can conclude that x′ ∈ Sε(πn). Otherwise, there exists y′ ∈ Kn with y′ ̸= x′

such that

fn(x
′, y′) + εe = f(x′, y′) +

(η(x′, y′)

2n
+ ε

)
e ∈ −C \ {0}.

This implies that there exists ν ∈ C \ {0} such that

fn(x
′, y′) + εe = f(x′, y′) +

η(x′, y′)

2n
e+ εe = −ν. (4.1)

By (4.1), ν ∈ C \ {0} and η(x′,y′)
n > 0, we get f(x′, y′) + εe = −η(x′,y′)

2n e− ν ∈ −intC, which
contradicts the fact x′ ∈ Sw

ε (π). Then, we have

x′ ∈ Sε(πn). (4.2)

Since x′ /∈ Sε(π), we can find V which is a open neighborhood of Sε(π) in X, such that

x′ /∈ V. (4.3)

It follows from (4.2)-(4.3), πn
ρ−→ π and the upper semicontinuity of Sε that

Sε(πn) ⊂ V and x′ ∈ V,

which contradicts (4.3). Thus, we obtain Sε(π) = Sw
ε (π).

(ii) (Sufficiency) We prove the approximate weak efficient solution mapping Sw
ε : P ⇒ X

is u.s.c at π when Sε(π) = Sw
ε (π). On the contrary, assume that Sw

ε is not upper semicontinu-
ous at π. Then, there exist an open set U with Sw

ε (π) ⊂ U, a sequence {πn := (fn,Kn, εn)} ⊂
P converging to π := (f,K, ϵ) with xn ∈ Sw

ε (πn), s.t.

xn ̸∈ U,∀n ∈ N.

By Lemma 4.3, ∪+∞
n=1Kn ∪ K is compact due to the compactness of K and Kn for any n.

Then, {xn}+∞
n=1 ⊂ ∪+∞

n=1Kn ∪ K has a convergent subsequence. Without loss of generality,
assume that {xn}+∞

n=1 is convergent. By virtue of Lemma 4.3, we have

x0 := limn→+∞xn ∈ K.

Now, we proceed to show x0 ∈ SW
ε (π). If not, x0 ̸∈ Sw

ε (π), there exists z0 ∈ K such that

f(x0, z0) + εe <C 0, i.e., f(x0, z0) + εe ∈ −intC. (4.4)

For (4.4), there exists a neighborhood W of zero in Y, such that

f(x0, z0) + εe+W ∈ −intC. (4.5)

By virtue of Lemma 4.4, there exist two neighborhoods W1, W2 of zero in Y such that

W1 +W2 ⊂ W. (4.6)

It follows from πn
ρ−→ π that fn

∥·∥−→ f, i.e., for above W1 > 0, there exists n1 ∈ N such
that

fn(x0, z0) ∈ f(x0, z0) +W1, ∀n ≥ n1. (4.7)
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By virtue of (−C)-upper semicontinuity of fn, for W2, there exists n2 ∈ N, when n ≥ n2,
we have

fn(xn, zn) ∈ fn(x0, z0) +W2 − C, (4.8)

where (xn, zn) ∈ U(x0, z0) (U(x0, z0) is a neighborhood of (x0, z0)). Letting γ0 := max{γ1, γ2},
from (4.5)-(4.8), when n ≥ max{n1, n2}, we have

fn(xn, zn)− f(x0, z0) = fn(xn, zn)− fn(x0, z0) + fn(x0, z0)− f(x0, z0)

∈ W2 − C +W1

⊂ W − C.

By ϕ ∈ C♯, one has
ϕ(fn(xn, zn)) ≤ ϕ(f(x0, z0)). (4.9)

Combining (4.4) and (4.9), for all n large enough, we have

ϕ(fn(xn, zn)) + ε ≤ ϕ(f(x0, z0)) + ε <C 0,

which contradicts the fact xn ∈ Sw
ε (πn). Thus,

x0 ∈ Sw
ε (π) ⊂ U. (4.10)

On the other hand, since xn ̸∈ U and xn → x0, then from the openness of U, one has

x0 ̸∈ U,

which contradicts (4.10). Hence, we conclude that Sε is u.s.c. at π. This completes the
proof.

Remark 4.6. Theorem 4.5 generalizes and improves the main result of [17] (see, [17, The-
orem 4.2]) in the following three aspects:

(i) the key assumption of the continuity for object function in [17] is removed by the C
and (−C) -upper semicontinuity, which is weaker than the continuity;

(ii) the properly quasi C-convexity of object function is replaced by the C-convexity, which
is differ from the former;

(iii) the model is extended from generalized Ky Fan’s inequality to generalized approximate
Ky Fan’s inequality.

Moreover, the proof method for u.s.c is different from the one in [17], and Theorem 4.5 also
generalizes and improves the corresponding results of Tan et al. [22].

Remark 4.7. In fact, when the assumption f(x, x) =C 0(∀x ∈ X) is relaxed to f(x, x) +
εe =C 0(∀x ∈ X) in Theorem 4.5, we can also get the result. The following example is given
to illustrate the case (the space of problems can be marked as P ′ in this case).

Example 4.8. Let X := [−5, 5] ⊂ R, Y := R2, C := R2
+ = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0},

let ε = 1
8 , εn = 1

8 + 1
n2 , e = ( 12 ,

1
2 ), and let K := [0, 1], and Kn := [ 1n , 1 + 1

n ]. Define the
mappings f, fn : X ×X −→ R2 by

f(x, y) =
(
− 1

16
+ x,

1

3
x2(x− y)− 1

16

)
, for all x, y ∈ K
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and

fn(x, y) =
(
− 1

16
+ x− 1

2n2
,
1

3
x2(1 +

2

3n2
)(x− y)− 1

16
− 1

2n2

)
, for all x, y ∈ K.

Then we can verity that f(x, x) �C 0, but f(x, x) + εe =C 0, for any x ∈ X in the (new)

system P ′, πn := (fn, An, εn) ∈ P ′ and πn := (fn,Kn, εn)
ρ−→ π := (f,K, ε) ∈ P ′ when

n → +∞.
It follows from direct computation shows that

Sε(π) = Sw
ε (π) = [0, 1] and Sε(πn) = Sw

ε (πn) =
[ 1
n
, 1 +

1

n

]
.

From Definition 2.5, we can check that Sε : P
′ ⇒ X is u.s.c at π easily.

By virtue of Theorem 4.5 and the definition of usco (u.s.c and compact valued, see
also [4, Chapter 8.2, p.190]), we can obtain Theorem 4.9 as follows.

Theorem 4.9 (Characterization of usco for approximate solution mappings). Let π :=
(f,K, ϵ) ∈ P. Then, the approximate efficient solution mapping Sε : P ⇒ X is usco at π if
and only if Sε(π) = Sw

ε (π).

Proof. (i) Obviously, the necessity can be obtained directly by Theorem 4.5.
(ii) For sufficiency, from Theorem 4.5, we can first obtain that Sε is u.s.c. at π. Then by

virtue of Berge’s Theorem 3 in [3, Chapter 6.1], Sε(π) is compact. Therefore, we conclude
that Sε is usco at π. This completes the proof.

When (i) ε = 0 and (ii) the C and (−C) -upper semicontinuity collapses to the continuity,
we can get the space of problems P ∗ as

P ∗ :=

{
π = (f,K) : f,K satisfies the following conditions:

(i) f : X ×X → Y is continous on X ×X;

(ii) ∀x ∈ X, f(x, ·) is C-convex on X;

(iii) f is C-quasimonotone on X ×X;

(iv) ∀x ∈ X, f(x, x) =C 0 and sup(x,y)∈X×X∥f(x, y)∥ < +∞;

(v) K is nonempty compact convex subset of X

}
.

Then, we can get the following Corollary.

Corollary 4.10. Assume π := (f,K) ∈ P ∗ and S(π) ̸= ∅. Then the efficient solution
mapping S : P ∗ ⇒ X is usco at π if and only if S(π) = Sw(π).

Finally, we give Example 4.11 to illustrate Corollary 4.10.

Example 4.11. Let X := [−7, 7] ⊂ R, Y := R2, C := R2
+ = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0},

and let K = [0, 1],Kn = [ 1n , 1−
1
4n ] (n ≥ 2). Define the mapping f : X ×X −→ R2 by

f(x, y) :=
(1
2
y − x

2
+

5

4
,
1

2
y − 1

2
x
)
,
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and define fn : X ×X −→ R2 by

fn(x, y) :=
(1
2
y − x

2
+

5

4
− 1

3n2
,
1

2
y − 1

2
x+

1

n
− 1

n2

)
.

Therefore, πn := (fn,Kn) ∈ P ∗ and πn := (fn,Kn)
ρ−→ π := (f,K) ∈ P ∗ when n → +∞,

and we can verity that all assumptions in Corollary 4.10 are satisfied.
It follows from direct computation shows that

S(π) = Sw(π) = [0, 1] and S(πn) = Sw(πn) =
[ 1
n
, 1− 1

4n

]
.

Therefor, S : P ∗ ⇒ X is usco (u.s.c and compact valued) at π and Corollary 4.10 is
applicable.
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