
2017



622 X.-K. SUN, X.-B. LI, X.-J. LONG AND Z.-Y. PENG

Recently, optimization problems in the face of data uncertainty have received a great deal
of attention due to the reality of uncertainty in many real-world optimization problems. As
we know, robust optimization approach (worst-case approach), has emerged as a power-
ful deterministic approach for studying optimization problems with data uncertainty [3],
associates an uncertain optimization problem with its robust counterpart [2]. And many
researchers have obtained different kinds of characterizations of the optimal solutions for
scalar and vector optimization problems under uncertainty data by using robust optimiza-
tion methodology, see, for example, [9, 19, 29–31, 35] and the references therein. However,
to the best of our knowledge, there have been few papers on approximate solutions of an
optimization problem in the face of data uncertainty, see Ref. [22]. So, the aim of this paper
is to establish necessary and sufficient optimality conditions for ε-optimal solutions with a
constraint qualification hypothesis and to provide some corresponding robust approximate
duality results for an uncertain optimization problem. To do this, let X and Y be locally
convex vector spaces, C ⊆ X be a nonempty closed convex set, K ⊆ Y be a nonempty closed
convex cone, f : X → R be a convex function, and g : X → Y be a K-convex function.
Consider the following convex optimization problem

(P)

 inf f(x)
s.t. g(x) ∈ −K,

x ∈ C.

This problem (P) in the face of data uncertainty can be captured by the following optimiza-
tion problem

(UP)

 inf f(x)
s.t. g(x, v) ∈ −K,

x ∈ C.

Here, Z is a locally convex vector space, v is an uncertain parameter and belongs to a convex
and compact uncertainty set V ⊆ Z.

Following [2], in this paper, we consider robust approximate optimal solutions for (UP)
by examining its robust (worst-case) counterpart

(RUP)

 inf f(x)
s.t. g(x, v) ∈ −K, ∀v ∈ V,

x ∈ C,

where the uncertain constraint is enforced for every parameter v in the prescribed uncer-
tainty set V. It is worth noting that the robust counterpart, which is termed as the robust
optimization problem, aims at finding a worst-case solution that is immunized against the
data uncertainty.

As was mentioned above, the aim of this paper is to generalize the theory of approximate
optimality conditions and approximate duality theorems for certain optimization problems
to the uncertain cases. We make some contributions to the study of approximate theory
for uncertain optimization problems. More precisely, by using a robust type closed convex
constraint qualification, we first obtain necessary and sufficient optimality conditions for
robust approximate optimal solutions of an uncertain convex optimization problem which
provides a new generalization of the celebrated necessary and sufficient optimality condi-
tions for approximate optimal solutions of certain convex optimization problems to uncertain
cases. Then, along with approximate optimality conditions, we propose types of Wolfe and
Mond-Weir robust dual problems to the primal one, and examine robust approximate weak
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and strong duality, respectively. As a consequence, by using a scalarization method ( see
also [10, 11, 21] ), we establish necessary and sufficient optimality conditions for weakly ro-
bust approximate efficient solutions and to provide some corresponding approximate robust
duality results for a multi-objective optimization problem with uncertainty data. This ap-
proach seems to be new in the literature, and we hope it will provide a useful opportunity
to learn about approximate theory for an uncertain multi-objective optimization problem
from the related scalar optimization problem.

The paper is organized as follows. In Section 2, we recall some notions and give some
preliminary results. In Section 3, we first introduce a robust type closed convex constraint
qualification, and then obtain necessary and sufficient optimality conditions for robust ap-
proximate optimal solutions of (UP). We also show that our results encompass as special
cases some optimization problems considered in the recent literature. In Section 4, we first
introduce a Wolfe type and a Mond-Weir type robust dual problems for (UP) by virtue
of robust optimization approach, and then discuss the robust approximate weak duality
and strong duality properties. In Section 5, we establish optimality conditions and duality
theorems for weakly robust approximate efficient solutions of an uncertain multi-objective
optimization problem.

2 Preliminaries

In this paper, we use the standard notation, please see [27, 36]. Unless otherwise specified,
let X be a locally convex vector space with its topological dual space X∗, endowed with
the weak∗ topology w(X∗, X). For x∗ ∈ X∗ and x ∈ X, ⟨x∗, x⟩ denotes the value of x∗ at
x, that is ⟨x∗, x⟩ = x∗(x). Given a set D ⊆ X∗ or D ⊆ X∗ × R, the weak∗ closure (resp.

convex hull) of D is denoted by clw
∗
D (resp. co D ). Moreover, for a nonempty set C ⊆ X,

the indicator function δC of C is defined as δC(x) = 0 if x ∈ C and δC(x) = +∞ if x ̸∈ C.

Let f : X → R ∪ {+∞} be an extended real valued function. The effective domain, the
epigraph and the conjugate function of f are defined by

dom f := {x ∈ X : f(x) < +∞},

epif := {(x, r) ∈ X × R : f(x) ≤ r} ,

and

f∗(x∗) := sup
x∈X

{⟨x∗, x⟩ − f(x)},

respectively. Let x̄ ∈ dom f . Then, following [16], we have

epi f∗ =
∪
ε≥0

{(
x∗, ⟨x∗, x̄⟩+ ε− f(x̄)

)
: x∗ ∈ ∂εf(x̄)

}
, (2.1)

where, for a given ε ≥ 0, the ε-subdifferential of f at x̄ ∈ dom f is defined by

∂εf(x̄) := {x∗ ∈ X∗ : f(x) ≥ f(x̄) + ⟨x∗, x− x̄⟩ − ε,∀x ∈ X} ,

and ∂εf(x̄) = ∅, for any x̄ ̸∈ dom f . If ε = 0, the set ∂f(x̄) := ∂0f(x̄) is the classical
subdifferential of convex analysis, that is,

∂f(x̄) = {x∗ ∈ X∗ : f(x) ≥ f(x̄) + ⟨x∗, x− x̄⟩, ∀x ∈ X} .
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Let Y be another locally convex vector space with its topological dual space Y ∗, endowed
with the weak∗ topology w(Y ∗, Y ). Let K ⊆ Y be a nonempty closed convex cone. Its
(positive) dual cone is defined by

K∗ = {y∗ ∈ Y ∗ : ⟨y∗, y⟩ ≥ 0,∀y ∈ K}.

We say that vector valued function h : X → Y is K-convex, iff for any x, y ∈ X and
α ∈ [0, 1],

h(αx+ (1− α)y)− αh(x)− (1− α)h(y) ∈ −K.
Moreover, we say that h is K-concave iff −h is K-convex. For convenience, for any λ ∈ Y ∗,
the composition of mapping λ ◦ h, will be denoted by λh. Obviously, h is K-convex if and
only if λh is a convex function, for each λ ∈ K∗. Similarly, h is K-concave if and only if λh
is a concave function, for each λ ∈ K∗.

In this paper, we endow X∗ × R with the product topology of w(X∗, X) and the usual
Euclidean topology. Now, we give the following important results which will be used in the
following sections

Lemma 2.1 ( [4]). Let f1, f2 : X → R ∪ {+∞} be proper convex functions such that
domf1 ∩ domf2 ̸= ∅.

(i) If f1 and f2 are lower semicontinuous, then,

epi (f1 + f2)
∗ = cl (epi f∗1 + epi f∗2 ).

(ii) If one of f1 and f2 is continuous at some x̄ ∈ dom f1 ∩ dom f2, then,

epi (f1 + f2)
∗ = epi f∗1 + epi f∗2 .

We conclude this section with a remark that an element p ∈ X∗ can be regarded as a
function on X in such a way that p(x) := ⟨p, x⟩, for any x ∈ X. Thus, for any α ∈ R and
any function f : X → R ∪ {+∞}, we have

(f + p+ α)∗(x∗) = f∗(x∗ − p)− α, for each x∗ ∈ X∗, (2.2)

and

epi (f + p+ α)∗ = epi f∗ + (p,−α). (2.3)

3 Robust Approximate Optimality Conditions

In this section, we will give optimality conditions for robust approximate optimal solutions
of (UP) by examining (RUP). So, we first recall some important concepts which will be
used in this paper.

Definition 3.1. The robust feasible set of (UP) is defined by

F :=
{
x ∈ C : g(x, v) ∈ −K, ∀v ∈ V

}
.

Remark 3.2. In the special case that V is a singleton, the robust feasible set F becomes
the feasible set of (P), that is,

F0 :=
{
x ∈ C : g(x) ∈ −K

}
.
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Definition 3.3. Let ε ≥ 0 and x̄ ∈ F .

(i) We say that x̄ is a robust ε-optimal solution of (UP), iff x̄ is an ε-optimal solution of
(RUP), i.e.,

f(x) ≥ f(x̄)− ε,∀x ∈ F .

(ii) We say that x̄ is a robust optimal solution of (UP), iff x̄ is an optimal solution of
(RUP), i.e.,

f(x) ≥ f(x̄), ∀x ∈ F .

Now, we will obtain a multiplier characterization for robust approximate optimal solu-
tions of (UP). To begin with, we first introduce a robust type closed convex constraint
qualification.

Definition 3.4. We say that robust type closed convex constraint qualification (RCCCQ)
holds, iff ∪

v∈V,λ∈K∗

epi ((λg)(·, v))∗ + epi δ∗C is a weak∗ closed convex set.

Remark 3.5. (i) A special case of (RCCCQ), where C = X, can be found in [29]. In
this case, some completely characterizations of this constraint qualification have been
obtained. For more details, please see [29, Propositions 3.1, 3.2 and 3.3].

(ii) In the special case when V is a singleton, (RCCCQ) becomes the following constraint
qualification

(CCQ)
∪

λ∈K∗

epi (λg0)
∗
+ epi δ∗C is a weak∗ closed set.

It is also important to note that (CCQ) was introduced in [17] to study duality results
and optimality conditions for convex optimization problems. And various sufficient
conditions, including generalized interior-type conditions and metric regularity condi-
tions, for (CCQ) have been obtained (see [4, 7, 8] for details).

Now, following [29], we give some characterizations of
∪

v∈V,λ∈K∗ epi ((λg)(·, v))∗ +
epi δ∗C .

Proposition 3.6. Let g : X×Z → Y be a continuous function such that for any λ ∈ S∗, v ∈
V ⊆ Z, (λ, v) 7→ (λg)(x, v) is a concave function for any x ∈ X and let V be a compact
convex set. Then, ∪

v∈V,λ∈K∗

epi ((λg)(·, v))∗ + epi δ∗C

is a convex set.

Proof. By Proposition 3.2 in [29], we know that
∪

v∈V,λ∈K∗ epi ((λg)(·, v))∗ is a con-
vex set. Moreover, it is easy to see that epi δ∗C = C∗ × R+ is a convex set. Thus,∪

v∈V,λ∈K∗ epi ((λg)(·, v))∗ + epi δ∗C is a convex set and the proof is complete.

By using the similar method of [29, Proposition 3.3], we can easily get the following
result.
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Proposition 3.7. Let g : X × Z → Y be a continuous function such that for any v ∈ Z,
g(·, v) is a K-convex function and let V ⊆ Z be a compact set. Suppose that int S ̸= ∅ and
there exists x0 ∈ X such that g(x0, v) ∈ −int S, for any v ∈ V. Then,∪

v∈V,λ∈K∗

epi ((λg)(·, v))∗ + epi δ∗C

is a weak∗ closed set.

Slightly extending Theorem 3.1 in [29] to a robust convex optimization problem with a
geometric constraint, we can obtain the robust version of Farkas Lemma for convex functions.

Lemma 3.8. Let g : X × Z → Y be a continuous function such that for any v ∈ Z, g(·, v)
is a K-convex function. Then, the following statements are equivalent:

(i)
{
x ∈ C : g(x, v) ∈ −K, v ∈ V

}
⊆ {x ∈ X : f(x) ≥ 0} .

(ii) (0, 0) ∈ epi f∗ + clw
∗
co
(∪

v∈V,λ∈K∗ epi ((λg)(·, v))∗ + epi δ∗C

)
.

We are now in a position to present necessary and sufficient optimality conditions for
robust approximate optimal solutions of (UP) using (RCCCQ).

Theorem 3.9. For the problem (UP), let ε ≥ 0, x̄ ∈ F and let g : X × Z → Y be a
continuous function such that for any v ∈ Z, g(·, v) is a K-convex function. Suppose that
(RCCCQ) holds. Then, x̄ is a robust ε-optimal solution of (UP) if and only if there exist
v̄ ∈ V, λ̄ ∈ K∗, and εi ≥ 0, i = 1, 2, 3, such that

0 ∈ ∂ε1f(x̄) + ∂ε2
((
λ̄g
)
(·, v̄)

)
(x̄) + ∂ε3δC(x̄), (3.1)

and

ε1 + ε2 + ε3 − ε =
(
λ̄g
)
(x̄, v̄). (3.2)

Proof. Let x̄ ∈ F be a robust ε-optimal solution of (UP). Then, for any x ∈ F ,

f(x) ≥ f(x̄)− ε.

For any x ∈ F , set

ϕ(x) := f(x)− f(x̄) + ε.

Then,

g(x, v) ∈ −K, v ∈ V, x ∈ C =⇒ ϕ(x) ≥ 0.

By Lemma 3.8, we get

(0, 0) ∈ epi ϕ∗ + clw
∗
co

 ∪
v∈V,λ∈K∗

epi ((λg)(·, v))∗ + epi δ∗C

 . (3.3)

By (2.3), we know that

epi ϕ∗ = epi f∗ + (0, f(x̄)− ε) . (3.4)
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On the other hand, since (RCCCQ) holds, it follows from (3.3) and (3.4) that

(0, ε− f(x̄)) ∈ epi f∗ +
∪

v∈V,λ∈K∗

epi ((λg)(·, v))∗ + epi δ∗C .

Thus, there exist v̄ ∈ V, and λ̄ ∈ K∗ such that

(0, ε− f(x̄)) ∈ epi f∗ + epi
(
(λ̄g)(·, v̄)

)∗
+ epi δ∗C .

This follows that there exist (u∗, r) ∈ epi f∗, (v∗, s) ∈ epi
(
(λ̄g)(·, v̄)

)∗
, and (w∗, t) ∈

epi δ∗C such that

u∗ + v∗ + w∗ = 0 (3.5)

and

r + s+ t = ε− f(x̄). (3.6)

Moreover, by (2.1), there exist εi ≥ 0, i = 1, 2, 3, such that

u∗ ∈ ∂ε1f(x̄), and r = ⟨u∗, x̄⟩+ ε1 − f(x̄),

v∗ ∈ ∂ε2
((
λ̄g
)
(·, v̄)

)
(x̄), and s = ⟨v∗, x̄⟩+ ε2 −

(
λ̄g
)
(x̄, v̄),

w∗ ∈ ∂ε3δC(x̄), and t = ⟨w∗, x̄⟩+ ε3.

Together with (3.5) and (3.6), we know that

0 ∈ ∂ε1f(x̄) + ∂ε2
((
λ̄g
)
(·, v̄)

)
(x̄) + ∂ε3δC(x̄),

and

ε− f(x̄) = r + s+ t

= ⟨u∗ + v∗ + w∗, x̄⟩+ ε1 + ε2 + ε3 − f(x̄)−
(
λ̄g
)
(x̄, v̄)

= ε1 + ε2 + ε3 − f(x̄)−
(
λ̄g
)
(x̄, v̄).

This follows that

ε1 + ε2 + ε3 −
(
λ̄g
)
(x̄, v̄) = ε.

Thus, (3.1) and (3.2) hold.
Conversely, assume that there exist v̄ ∈ V, λ̄ ∈ K∗, and εi ≥ 0, i = 1, 2, 3, such that

(3.1) and (3.2) hold. By (3.1), there exist u∗ ∈ ∂ε1f(x̄), v
∗ ∈ ∂ε2

((
λ̄g
)
(·, v̄)

)
(x̄), and

w∗ ∈ ∂ε3δC(x̄), such that

u∗ + v∗ + w∗ = 0. (3.7)

Since u∗ ∈ ∂ε1f(x̄), v
∗ ∈ ∂ε2

((
λ̄g
)
(·, v̄)

)
(x̄), and w∗ ∈ ∂ε3δC(x̄), we obtain that, for any

x ∈ F ,
f(x)− f(x̄) ≥ ⟨u∗, x− x̄⟩ − ε1,(

λ̄g
)
(x, v̄)−

(
λ̄g
)
(x̄, v̄) ≥ ⟨v∗, x− x̄⟩ − ε2,

and
δC(x)− δC(x̄) ≥ ⟨w∗, x− x̄⟩ − ε3.
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Then, adding these inequalities yield,

f(x)− f(x̄) +
(
λ̄g
)
(x, v̄)−

(
λ̄g
)
(x̄, v̄)

≥ ⟨u∗ + v∗ + w∗, x− x̄⟩ − ε1 − ε2 − ε3, for any x ∈ F .

Moreover, together with
(
λ̄g
)
(x, v̄) ≤ 0 and (3.7), we get,

f(x)− f(x̄)−
(
λ̄g
)
(x̄, v̄) ≥ −ε1 − ε2 − ε3, for any x ∈ F .

Then, it follows from (3.2) that

f(x) ≥ f(x̄)− ε, for any x ∈ F .

Thus, x̄ is a robust ε-optimal solution of (UP). This completes the proof.

Remark 3.10. Let us mention that the optimality condition given in Theorem 3.9 was es-
tablished in [22] by assuming thatX = Rn, Z = Rq,K = Rm

+ , g(x, v) = (g1(x, v), . . . , gm(x, v)),
and gi is a real valued function, i = 1, ..,m. So, the results obtained in [22] can be regarded
as a special case of Theorem 3.9.

Now, we give an example to explain Theorem 3.9.

Example 3.11. Let X = R2, Y = Z = R, K = R+, C = R2
+ and V = [−1, 1]. Let

f : R2 → R and g : R2 × R → R be defined respectively by

f(x) = 2x1 + x22, g(x, v) = x21 − vx1,

for any x := (x1, x2) ∈ R2 and v ∈ [−1, 1].
Obviously, for the problem (UP), F = {0} × [0,+∞), and we can easily get∪

v∈[−1,1],λ∈R+

epi ((λg)(·, v))∗ + epi δ∗C = R× (−R+)× R+.

So, the conditions of Theorem 3.9 are satisfied. Therefore, we can characterize the robust
ε-optimal solution of (UP).

For example, let x̄ := (0, 0) ∈ F and ε = 1. Obviously, (0, 0) is a robust ε-optimal
solution of (UP). On the other hand, for instance, when ε1 = 1

4 , ε2 = ε3 = 1
2 , v = 1 and

λ = 1
2 , we can easily check that ∂ε1f(x̄) = {2}× [−1, 1], ∂ε2

((
λ̄g
)
(·, v̄)

)
(x̄) =

[
−3

2 ,
1
2

]
×{0},

∂ε3δC(x̄) = −R2
+, and then

∂ε1f(x̄) + ∂ε2
((
λ̄g
)
(·, v̄)

)
(x̄) + ∂ε3δC(x̄) =

(
−∞,

5

2

]
× (−∞, 1].

Thus, (3.1) and (3.2) hold.

In the special case when V is a singleton, we can easily obtain the following result which
has been investigated in [1].

Corollary 3.12. For the problem (P), let ε ≥ 0, x̄ ∈ F0 and let g : X → Y be a continuous
K-convex function. Suppose that (CCQ) holds. Then, x̄ is an ε-optimal solution of (P) if
and only if there exist λ̄ ∈ K∗, and εi ≥ 0, i = 1, 2, 3, such that

0 ∈ ∂ε1f(x̄) + ∂ε2
(
λ̄g
)
(x̄) + ∂ε3δC(x̄),

and

ε1 + ε2 + ε3 − ε =
(
λ̄g
)
(x̄).
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Letting ε = 0 in Theorem 3.9, we can easily get the following necessary and sufficient
optimality conditions for robust optimal solutions of (UP).

Theorem 3.13. For the problem (UP), let g : X × Z → Y be a continuous function such
that for any v ∈ Z, g(·, v) is a K-convex function. Suppose that (RCCCQ) holds and x̄ ∈ F .
Then, x̄ is a robust optimal solution of (UP) if and only if there exist v̄ ∈ V, and λ̄ ∈ K∗,
such that

0 ∈ ∂f(x̄) + ∂
((
λ̄g
)
(·, v̄)

)
(x̄) + ∂δC(x̄),

and (
λ̄g
)
(x̄, v̄) = 0.

Remark 3.14. In [19], the similar result of Theorem 3.13 has been obtained in finite
dimensional spaces by using a Slater type constraint qualification. However, by virtue of a
closed convex constraint qualification and a different proof approach, we investigate (UP) in
locally convex Hausdorff topological vector spaces. Moreover, as was mentioned in [18], the
closed convex constraint qualification is weaker than Slater type constraint qualifications.
So, the result obtained in Theorem 3.13 is different from the result obtained in [19].

In the special case when ε = 0 and V is a singleton, we can easily obtain the following
result. Related results can be found in [1, 4, 8, 17].

Corollary 3.15. For the problem (P), let g : X → Y be a continuous K-convex function.
Suppose that (CCQ) holds and x̄ ∈ F0. Then, x̄ is an optimal solution of (P) if and only if
there exists λ̄ ∈ K∗, such that

0 ∈ ∂f(x̄) + ∂
(
λ̄g
)
(x̄) + ∂δC(x̄),

and (
λ̄g
)
(x̄) = 0.

4 Robust Approximate Duality Theorems

In this section, by virtue of robust optimization approach, we first introduce a Wolfe [32]
type robust dual problem (RDW) and a Mond-Weir [25] type robust dual problem (RDMW),
respectively, for (UP), and then discuss the robust approximate weak and strong duality
properties between the corresponding problems.

Let y ∈ C, ε ≥ 0 and λ ∈ K∗. To (UP), we attach the Wolfe type robust dual problem

(RDW)


max(y,λ,v)

{
f(y) + (λg)(y, v)

}
s.t. 0 ∈ ∂ε1f(y) + ∂ε2 ((λg) (·, v)) (y) + ∂ε3δC(y),

ε1 + ε2 + ε3 ≤ ε,
λ ∈ K∗, y ∈ C, v ∈ V,

and the Mond-Weir type robust dual problem

(RDMW)


max(y,λ,v) f(y)
s.t. 0 ∈ ∂ε1f(y) + ∂ε2 ((λg) (·, v)) (y) + ∂ε3δC(y),

ε1 + ε2 + ε3 − (λg)(y, v) ≤ ε,
λ ∈ K∗, y ∈ C, v ∈ V.
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Remark 4.1. In the special case that ε = 0, and there is no uncertainty in the constraint
function, (UP) becomes (P), (RDW) and (RDMW) collapse to the classical Wolfe type dual
problem

(DW)


max(y,λ)

{
f(y) + (λg)(y)

}
s.t. 0 ∈ ∂f(y) + ∂ (λg) (y) + ∂δC(y),

λ ∈ K∗, y ∈ C,

and the classical Mond-Weir type dual problem

(DMW)


max(y,λ) f(y)
s.t. 0 ∈ ∂f(y) + ∂ (λg) (y) + ∂δC(y),

(λg)(y) ≥ 0,
λ ∈ K∗, y ∈ C,

respectively. For more details on classical Wolfe type and Mond-Weir type dual problems,
please see [5] and the references therein.

Now, we only prove Wolfe type robust ε-weak and ε-strong duality properties, since
Mond-Weir type robust ε-weak and ε-strong duality properties can be proved similarly.

Theorem 4.2 (Wolfe type robust ε-weak duality). Let ε ≥ 0. For any feasible x of (RUP)
and any feasible (y, λ, v) of (RDW), we have

f(x) ≥ f(y) + (λg)(y, v)− ε.

Proof. Let x be a feasible solution of (RUP) and let (y, λ, v) be a feasible solution of (RDW).
Then, y ∈ C, λ ∈ K∗, v ∈ V, and there exist εi ≥ 0, i = 1, 2, 3, such that

0 ∈ ∂ε1f(y) + ∂ε2 ((λg) (·, v)) (y) + ∂ε3δC(y), (4.1)

and

ε1 + ε2 + ε3 ≤ ε. (4.2)

By (4.1), there exist u∗ ∈ ∂ε1f(y), v
∗ ∈ ∂ε2 ((λg) (·, v)) (y), and w∗ ∈ ∂ε3δC(y), such that

u∗ + v∗ + w∗ = 0. (4.3)

By u∗ ∈ ∂ε1f(y),

f(x)− f(y) ≥ ⟨u∗, x− y⟩ − ε1.

Thus, by v∗ ∈ ∂ε2 ((λg) (·, v)) (y), w∗ ∈ ∂ε3δC(y), (4.2) and (4.3), we have

f(x)−
(
f(y) + (λg) (y, v)

)
≥ −⟨v∗ + w∗, x− y⟩ − ε1 − (λg) (y, v)

= −⟨v∗, x− y⟩ − ⟨w∗, x− y⟩ − ε1 − (λg) (y, v)

≥ − (λg) (x, v) + (λg) (y, v)− ε2 − δC(x) + δC(y)− ε3 − ε1 − (λg) (y, v)

= − (λg) (x, v)− ε1 − ε2 − ε3.

≥ − (λg) (x, v)− ε.
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Moreover, since x is a feasible solution of (RUP), we get g(x, v) ∈ −K. Then, from λ ∈ K∗,
we obtain that (λg) (x, v) ≤ 0. Thus,

f(x)−
(
f(y) + (λg) (y, v)

)
≥ −ε.

This completes the proof.

Theorem 4.3 (Wolfe type robust ε-strong duality). Let ε ≥ 0, x̄ ∈ F and let g : X×Z → Y
be a continuous function such that for any v ∈ Z, g(·, v) is a K-convex function. Suppose
that (RCCCQ) holds. If x̄ is a robust ε-optimal solution of (UP), then, there exist v̄ ∈ V,
and λ̄ ∈ K∗, such that

(
x̄, λ̄, v̄

)
is a robust 2ε-optimal solution of (RDW).

Proof. Let x̄ ∈ F be a robust ε-optimal solution of (UP). By Theorem 3.9, there exist
v̄ ∈ V, λ̄ ∈ K∗, and εi ≥ 0, i = 1, 2, 3, such that

0 ∈ ∂ε1f(x̄) + ∂ε2
((
λ̄g
)
(·, v̄)

)
(x̄) + ∂ε3δC(x̄), (4.4)

and

ε1 + ε2 + ε3 − ε =
(
λ̄g
)
(x̄, v̄). (4.5)

Moreover, by (4.5) and
(
λ̄g
)
(x̄, v̄) ≤ 0, we obtain that

ε1 + ε2 + ε3 ≤ ε. (4.6)

So, it follows from (4.4) and (4.6) that
(
x̄, λ̄, v̄

)
is a feasible solution of (RDW). Then, for

any feasible solution (y, λ, v) of (RDW),

f(x̄) +
(
λ̄g
)
(x̄, v̄)−

(
f(y) + (λg) (y, v)

)
= f(x̄)−

(
f(y) + (λg) (y, v)

)
+
(
λ̄g
)
(x̄, v̄)

≥ −ε+
(
λ̄g
)
(x̄, v̄)

= −ε+ ε1 + ε2 + ε3 − ε

≥ −2ε.

where the first inequality is from the Wolfe type robust ε-weak duality. Thus,
(
x̄, λ̄, v̄

)
is a

robust 2ε-optimal solution of (RDW).

In the special case when ε = 0, and V is a singleton, we can obtain the following char-
acterization of classical Wolfe type duality which has been established in [5, 6, 22, 29] under
different kinds of constraint qualifications.

Corollary 4.4. Let g : X → Y be a continuous K-convex function. Suppose that (CCQ)
holds and x̄ ∈ F0. If x̄ is an optimal solution of (P), then, there exists λ̄ ∈ K∗, such that(
x̄, λ̄

)
is an optimal solution of (DW), and the objective values of (P) and (DW) are equal.

Similarly, we can obtain the following Mond-Weir type robust ε-weak and ε-strong duality
properties.

Theorem 4.5 (Mond-Weir type robust ε-weak duality). Let ε ≥ 0. For any feasible x of
(RUP) and any feasible (y, λ, v) of (RDMW), Then,

f(x) ≥ f(y)− ε.
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Theorem 4.6 (Mond-Weir type robust ε-strong duality). Let ε ≥ 0, x̄ ∈ F and let g :
X×Z → Y be a continuous function such that for any v ∈ Z, g(·, v) is a K-convex function.
Suppose that (RCCCQ) holds. If x̄ is a robust ε-optimal solution of (UP), then, there exist
v̄ ∈ V, and λ̄ ∈ K∗, such that

(
x̄, λ̄, v̄

)
is a robust 2ε-optimal solution of (RDMW).

In the special case when ε = 0, and V is a singleton, we can obtain the following charac-
terization for classical Mond-Weir type duality. For related results, please see [5, 6].

Corollary 4.7. Let g : X → Y be a continuous K-convex function. Suppose that (CCQ)
holds and x̄ ∈ F0. If x̄ is an optimal solution of (P), then, there exists λ̄ ∈ K∗, such that(
x̄, λ̄

)
is an optimal solution of (DMW). and the objective values of (P) and (DMW) are

equal.

5 Applications to Multi-Objective Optimization

In this section, as an application of the general results of the previous sections, we examine
a classical multi-objective optimization problem

(MP)


min

(
f1(x), f2(x), . . . , fn(x)

)
s.t. g(x) ∈ −K,

x ∈ C.

where C ⊆ X is a nonempty convex set, fi : X → R is a continuous convex function for any
i = 1, . . . , n. Moreover, the feasible set of (MP) is also defined by

FM
0 :=

{
x ∈ C : g(x) ∈ −K

}
.

This problem (MP) in the face of data uncertainty can be captured by the following multi-
objective optimization problem

(UMP)


min

(
f1(x), f2(x), . . . , fn(x)

)
s.t. g(x, v) ∈ −K,

x ∈ C.

Similarly, we will obtain some completely characterizations of weakly robust approximate
efficient solutions of (UMP) by examining its robust (worst-case) counterpart (RUMP)

(RUMP)


min

(
f1(x), f2(x), . . . , fn(x)

)
s.t. g(x, v) ∈ −K, ∀v ∈ V,

x ∈ C.

The robust feasible set of (UMP) is also defined by

FM :=
{
x ∈ C : g(x, v) ∈ −K, ∀v ∈ V

}
.

In this paper, we only deal with weakly robust approximate efficient solutions for (UMP),
since one can undertake other kinds of robust approximate efficient solutions for (UMP) in
the same manner.

Definition 5.1. Let ε := (ε1, . . . , εn) ∈ Rn
+ and x̄ ∈ FM.
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(i) x̄ is said to be a weakly robust ε-efficient solution of (UMP), iff there does not exist
x ∈ FM, such that

fi(x) < fi(x̄)− εi, for all i = 1, . . . , n.

(ii) x̄ is said to be a weakly robust efficient solution of (UMP), iff there does not exist
x ∈ FM, such that

fi(x) < fi(x̄), for all i = 1, . . . , n.

Remark 5.2. In the case that when V is a singleton, the notions of weakly robust ε-
efficient solution and weakly robust efficient solution stated in Definition 5.1 become the
notions of weakly ε-efficient solution and weakly efficient solution of (MP), respectively.
See [5, 10,12,21] for details.

The following result gives a simple characterization of weakly robust ε-efficient solutions
of (UMP), which plays an important role in the study of this kind of solutions. This result
can be easily obtained using separation theorem, see also [21, Proposition 8.2].

Proposition 5.3. Let x̄ ∈ FM and ε := (ε1, . . . , εn) ∈ Rn
+. Then, x̄ is a weakly robust

ε-efficient solution of (UVP) if and only if there exist µi ≥ 0, i = 1, . . . , n,
∑n

i=1 µi = 1, such
that

n∑
i=1

µifi(x) ≥
n∑

i=1

µifi(x̄)−
n∑

i=1

µiεi, for any x ∈ FM.

Now, by using the similar methods of Section 3, we characterize the corresponding weakly
robust approximate efficient solutions of (UMP).

Theorem 5.4. For the problem (UMP), let x̄ ∈ FM, ε := (ε1, . . . , εn) ∈ Rn
+ and let

g : X × Z → Y be a continuous function such that for any v ∈ Z, g(·, v) is a K-convex
function. Suppose that (RCCCQ) holds. Then, x̄ is a weakly robust ε-efficient solution of
(UMP) if and only if there exist µ̄i ≥ 0, i = 1, . . . , n,

∑n
i=1 µ̄i = 1, λ̄ ∈ K∗, v̄ ∈ V, αi ≥ 0,

i = 1, . . . , n, β ≥ 0, and γ ≥ 0, such that

0 ∈
n∑

i=1

∂αi (µ̄ifi) (x̄) + ∂β
((
λ̄g
)
(·, v̄)

)
(x̄) + ∂γδC(x̄), (5.1)

and

n∑
i=1

αi + β + γ −
(
λ̄g
)
(x̄, v̄) =

n∑
i=1

µ̄iεi. (5.2)

Proof. Let x̄ ∈ F be a weakly robust ε-efficient solution of (UMP). By Proposition 5.3,
there exist µ̄i ≥ 0, i = 1, . . . , n,

∑n
i=1 µ̄i = 1, such that

n∑
i=1

µ̄ifi(x) ≥
n∑

i=1

µ̄ifi(x̄)−
n∑

i=1

µ̄iεi, for any x ∈ FM.

For any x ∈ FM, set

ψ(x) :=

n∑
i=1

µ̄ifi(x)−
n∑

i=1

µ̄ifi(x̄) +

n∑
i=1

µ̄iεi.
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Then,
g(x, v) ∈ −K, v ∈ V, x ∈ C =⇒ ψ(x) ≥ 0.

Moreover, we know that

epi ψ∗ =
n∑

i=1

epi (µ̄ifi)
∗ +

(
0,

n∑
i=1

µ̄ifi(x̄)−
n∑

i=1

µ̄iεi

)
.

So, using the same methods of Theorem 3.9, we can easily get(
0,

n∑
i=1

µ̄iεi −
n∑

i=1

µ̄ifi(x̄)

)
∈

n∑
i=1

epi (µ̄ifi)
∗ +

∪
v∈V,λ∈K∗

epi ((λg)(·, v))∗ + epi δ∗C .

Thus, there exist v̄ ∈ V, and λ̄ ∈ K∗ such that(
0,

n∑
i=1

µ̄iεi −
n∑

i=1

µ̄ifi(x̄)

)
∈

n∑
i=1

epi (µ̄ifi)
∗ + epi

(
(λ̄g)(·, v̄)

)∗
+ epi δ∗C .

This follows that there exist (u∗i , ri) ∈ epi (µ̄ifi)
∗, i = 1, . . . , n, (v∗, s) ∈ epi

(
(λ̄g)(·, v̄)

)∗
,

and (w∗, t) ∈ epi δ∗C , such that

n∑
i=1

u∗i + v∗ + w∗ = 0, (5.3)

and

n∑
i=1

ri + s+ t =

n∑
i=1

µ̄iεi −
n∑

i=1

µ̄ifi(x̄). (5.4)

Moreover, by (2.1), there exist αi ≥ 0, i = 1, . . . , n, β ≥ 0, and γ ≥ 0, such that

u∗i ∈ ∂αi(µ̄ifi)(x̄), and ri = ⟨u∗i , x̄⟩+ αi − µ̄ifi(x̄), i = 1, 2, . . . , n,

v∗ ∈ ∂β
((
λ̄g
)
(·, v̄)

)
(x̄), and s = ⟨v∗, x̄⟩+ β −

(
λ̄g
)
(x̄, v̄),

w∗ ∈ ∂γδC(x̄), and t = ⟨w∗, x̄⟩+ γ.

Together with (5.3) and (5.4), we know that

0 ∈
n∑

i=1

∂αi (µ̄ifi) (x̄) + ∂β
((
λ̄g
)
(·, v̄)

)
(x̄) + ∂γδC(x̄),

and

n∑
i=1

µ̄iεi −
n∑

i=1

µ̄ifi(x̄)

=

n∑
i=1

ri + s+ t

=

⟨
n∑

i=1

u∗i + v∗ + w∗, x̄

⟩
+

n∑
i=1

αi + β + γ −
n∑

i=1

µ̄ifi(x̄)−
(
λ̄g
)
(x̄, v̄)
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=
n∑

i=1

αi + β + γ −
n∑

i=1

µ̄ifi(x̄)−
(
λ̄g
)
(x̄, v̄).

This follows that

n∑
i=1

αi + β + γ −
(
λ̄g
)
(x̄, v̄) =

n∑
i=1

µ̄iεi.

Thus, (5.1) and (5.2) hold.
Conversely, assume that there exist µ̄i ≥ 0, i = 1, . . . , n,

∑n
i=1 µ̄i = 1, λ̄ ∈ K∗, v̄ ∈ V,

αi ≥ 0, i = 1, . . . , n, β ≥ 0, and γ ≥ 0, such that (5.1) and (5.2) hold. By (5.1), there exist
u∗i ∈ ∂αi(µ̄ifi)(x̄), i = 1, . . . , n, v∗ ∈ ∂β

((
λ̄g
)
(·, v̄)

)
(x̄), and w∗ ∈ ∂γδC(x̄), such that

n∑
i=1

u∗i + v∗ + w∗ = 0. (5.5)

Since u∗i ∈ ∂αi(µ̄ifi)(x̄), i = 1, . . . , n, v∗ ∈ ∂β
((
λ̄g
)
(·, v̄)

)
(x̄), and w∗ ∈ ∂γδC(x̄), we obtain

that, for anyx ∈ FM,

µ̄ifi(x)− µ̄ifi(x̄) ≥ ⟨u∗i , x− x̄⟩ − αi,(
λ̄g
)
(x, v̄)−

(
λ̄g
)
(x̄, v̄) ≥ ⟨v∗, x− x̄⟩ − β,

and

δC(x)− δC(x̄) ≥ ⟨w∗, x− x̄⟩ − γ.

Then, adding these inequalities yields, for any x ∈ FM,

n∑
i=1

µ̄ifi(x)−
n∑

i=1

µ̄ifi(x̄) +
(
λ̄g
)
(x, v̄)−

(
λ̄g
)
(x̄, v̄)

≥

⟨
n∑

i=1

u∗i + v∗ + w∗, x− x̄

⟩
−

n∑
i=1

αi − β − γ.

Moreover, together with
(
λ̄g
)
(x, v̄) ≤ 0 and (5.5), we get,

n∑
i=1

µ̄ifi(x)−
n∑

i=1

µ̄ifi(x̄)−
(
λ̄g
)
(x̄, v̄) ≥ −

n∑
i=1

αi − β − γ, for any x ∈ FM.

Then, it follows from (5.2) that

n∑
i=1

µ̄ifi(x) ≥
n∑

i=1

µ̄ifi(x̄)−
n∑

i=1

µ̄iεi, for any x ∈ FM.

Thus, x̄ is a weakly robust ε-efficient solution of (UMP). This completes the proof.

In the special case when V is a singleton, we can easily obtain the following result.

Corollary 5.5. For the problem (MP), let x̄ ∈ FM
0 , ε := (ε1, . . . , εn) ∈ Rn

+ and let g :
X → Y be a continuous K-convex function. Suppose that (CCQ) holds. Then, x̄ is a weakly
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ε-efficient solution of (MP) if and only if there exist µ̄i ≥ 0, i = 1, . . . , n,
∑n

i=1 µ̄i = 1,
λ̄ ∈ K∗, αi ≥ 0, i = 1, . . . , n, β ≥ 0, and γ ≥ 0, such that

0 ∈
n∑

i=1

∂αi (µ̄ifi) (x̄) + ∂β
(
λ̄g
)
(x̄) + ∂γδC(x̄),

and
n∑

i=1

αi + β + γ −
(
λ̄g
)
(x̄) =

n∑
i=1

µ̄iεi.

Similarly, taking εi = 0, i = 1, . . . , n, in Theorem 5.4, we can easily get the following
necessary and sufficient conditions for weakly robust efficient solutions of (UMP).

Theorem 5.6. For the problem (UMP), let g : X × Z → Y be a continuous function
such that for any v ∈ Z, g(·, v) is a K-convex function. Suppose that (RCCCQ) holds and
x̄ ∈ FM. Then, x̄ ∈ FM is a weakly robust efficient solution of (UMP) if and only if there
exist µ̄i ≥ 0, i = 1, . . . , n,

∑n
i=1 µi = 1, λ̄ ∈ K∗, and v̄ ∈ V, such that

0 ∈
n∑

i=1

∂ (µ̄ifi) (x̄) + ∂
((
λ̄g
)
(·, v̄)

)
(x̄) + ∂δC(x̄),

and (
λ̄g
)
(x̄, v̄) = 0.

In the special case when V is a singleton and εi = 0, i = 1, . . . , n,, we can easily obtain
the following result.

Corollary 5.7. For the problem (MP), let g : X → Y be a continuous K-convex function.
Suppose that (CCQ) holds and x̄ ∈ FM

0 . Then, x̄ is a weakly efficient solution of (MP) if
and only if there exist µ̄i ≥ 0, i = 1, . . . , n,

∑n
i=1 µ̄i = 1, and λ̄ ∈ K∗, such that

0 ∈
n∑

i=1

∂ (µ̄ifi) (x̄) + ∂
(
λ̄g
)
(x̄) + ∂δC(x̄),

and (
λ̄g
)
(x̄) = 0.

Finally, in this section, we introduce a Wolfe type (RMDW) and a Mond-Weir type robust
multi-objective dual problem (RMDMW), respectively, for (UMP), and discuss the robust
approximate weak and strong multi-objective duality properties between the corresponding
problems. As was mentioned above, we also only deal with weakly robust ε-efficient solutions
for the corresponding problems.

Now, let y ∈ X, ε := (ε1, . . . , εn) ∈ Rn
+, µ := (µ1, . . . , µn) ∈ Rn

+ with
∑n

i=1 µi = 1,
and λ ∈ K∗. To (UMP), we attach the Wolfe type robust multi-objective dual problem with
respect to weakly efficient solutions

(RMDW)



max(y,µ,λ,v)

(
f1(y) + (λg)(y, v), . . . , fn(y) + (λg)(y, v)

)
s.t. 0 ∈

∑n
i=1 ∂αi (µifi) (y) + ∂β

(
(λg) (·, v)

)
(y) + ∂γδC(y),∑n

i=1 αi + β + γ ≤
∑n

i=1 µiεi,
µi ≥ 0, i = 1, . . . , n,

∑n
i=1 µi = 1,

λ ∈ K∗, y ∈ C, v ∈ V,



ROBUST APPROXIMATE SOLUTION FOR UNCERTAIN OPTIMIZATION 637

and the Mond-Weir type robust multi-objective dual problem with respect to weakly efficient
solutions

(RMDMW)


max(y,µ,λ,v)

(
f1(y), . . . , fn(y)

)
s.t. 0 ∈

∑n
i=1 ∂αi (µifi) (y) + ∂β ((λg) (·, v)) (y) + ∂γδC(y),∑n

i=1 αi + β + γ − (λg)(y, v) ≤
∑n

i=1 µiεi,
µi ≥ 0, i = 1, . . . , n,

∑n
i=1 µi = 1,

λ ∈ K∗, y ∈ C, v ∈ V,

where the maximization is also over all the parameter v ∈ V.
Remark 5.8. In the special case that εi = 0, i = 1, . . . , n and V is a singleton, (UMP)
becomes (MP), (RMDW) and (RMDMW) collapse to the Wolfe type multi-objective dual
problem with respect to weakly efficient solutions

(MDW)


max(y,µ,λ)

(
f1(y) + (λg)(y), . . . , fn(y) + (λg)(y)

)
s.t. 0 ∈

∑n
i=1 ∂ (µifi) (y) + ∂ (λg) (y) + ∂δC(y),

µi ≥ 0, i = 1, . . . , n,
∑n

i=1 µi = 1,
λ ∈ K∗, y ∈ C,

and the Mond-Weir type multi-objective dual problem with respect to weakly efficient solu-
tions

(MDMW)


max(y,µ,λ)

(
f1(y), . . . , fn(y)

)
s.t. 0 ∈

∑n
i=1 ∂ (µifi) (y) + ∂ (λg) (y) + ∂δC(y),

(λg)(y) ≥ 0,
µi ≥ 0, i = 1, . . . , n,

∑n
i=1 µi = 1,

λ ∈ K∗, y ∈ C,

respectively. For more details on Wolfe type and Mond-Weir type multi-objective dual
problems with respect to other kinds of efficient solutions, see also [5,9–12] and the references
therein.

In this section, a weakly robust (approximate) efficient solution and a weakly (approx-
imate) efficient solution of a “max” multi-objective optimization problem like the robust
multi-objective dual problem (RMDW) and (RMDMW) is similarly defined as in Definition
5.1. In what follows, we use the following notation for convenience:

u ≺ v ⇔ v − u ∈ int Rm
+ , u ̸≺ v ⇔ v − u ̸∈ int Rm

+ .

Similarly, we first give the following Wolfe type robust ε-weak and ε-strong multi-
objective duality properties.

Theorem 5.9 (Wolfe type robust ε-weak multi-objective duality). Let ε :=
(ε1, . . . , εn) ∈ Rn

+. For any feasible x of (RUMP) and any feasible (y, µ, λ, v) of (RMDW),
we have(

f1(x), . . . , fn(x)
)
̸≺
(
f1(y) + (λg)(y, v)− ε1, . . . , fn(y) + (λg)(y, v)− εn

)
.

Proof. Let x be a feasible solution of (RUMP) and (y, µ, λ, v) be a feasible solution of
(RMDW). Then, y ∈ C, µi ≥ 0, i = 1, . . . , n,

∑n
i=1 µi = 1, λ ∈ K∗, v ∈ V, and there exist

αi ≥ 0, i = 1, . . . , n, β ≥ 0, and γ ≥ 0, such that

0 ∈
n∑

i=1

∂αi (µifi) (y) + ∂β ((λg) (·, v)) (y) + ∂γδC(y), (5.6)
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and

n∑
i=1

αi + β + γ ≤
n∑

i=1

µiεi.

Assume to the contrary that(
f1(x), . . . , fn(x)

)
≺
(
f1(y) + (λg)(y, v)− ε1, . . . , fn(y) + (λg)(y, v)− εn

)
.

Hence,⟨
µ,
(
f1(x)− f1(y)− (λg)(y, v) + ε1, . . . , fn(x)− fn(y)− (λg)(y, v) + εn

)⟩
< 0,

due to µ ∈ Rn
+. This inequality is equivalent to

n∑
i=1

µifi(x) <
n∑

i=1

µifi(y) + (λg)(y, v)−
n∑

i=1

µiεi. (5.7)

On the other hand, by (5.6), there exist u∗i ∈ ∂αi(µifi)(y), v
∗ ∈ ∂β ((λg) (·, v)) (y), and

w∗ ∈ ∂γδC(y), such that

n∑
i=1

u∗i + v∗ + w∗ = 0.

By u∗i ∈ ∂αi(µifi)(y),

µifi(x)− µifi(y) ≥ ⟨u∗i , x− y⟩ − αi, i = 1, . . . , n.

This follows that

n∑
i=1

µifi(x)−
n∑

i=1

µifi(y) ≥

⟨
n∑

i=1

u∗i , x− y

⟩
−

n∑
i=1

αi.

Then, following the lines in the proof of Theorem 4.2, we can justify that

n∑
i=1

µifi(x)−

(
n∑

i=1

µifi(y) + (λg) (y, v)

)
≥ −

n∑
i=1

µiεi.

This contradicts (5.7), and so the proof is complete.

Theorem 5.10 (Wolfe type robust ε-strong multi-objective duality). Let ε := (ε1, . . . , εn) ∈
Rn

+, x̄ ∈ FM, and let g : X×Z → Y be a continuous function such that for any v ∈ Z, g(·, v)
is a K-convex function. Suppose that (RCCCQ) holds. If x̄ is a weakly robust ε-efficient
solution of (UMP), then, there exist µ̄i ≥ 0, i = 1, . . . , n,

∑n
i=1 µ̄i = 1, v̄ ∈ V, and λ̄ ∈ K∗,

such that
(
x̄, µ̄, λ̄, v̄

)
is a weakly robust 2ε-efficient solution of (RMDW).

Proof. Let x̄ be a weakly robust ε-efficient solution of (UMP). By Theorem 5.4, there exist
µ̄i ≥ 0, i = 1, . . . , n,

∑n
i=1 µ̄i = 1, λ̄ ∈ K∗, v̄ ∈ V, αi ≥ 0, i = 1, . . . , n, β ≥ 0, and γ ≥ 0,

such that

0 ∈
n∑

i=1

∂αi (µ̄ifi) (x̄) + ∂β
((
λ̄g
)
(·, v̄)

)
(x̄) + ∂γδC(x̄),
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and

n∑
i=1

αi + β + γ −
(
λ̄g
)
(x̄, v̄) =

n∑
i=1

µ̄iεi. (5.8)

Moreover, by (5.8) and
(
λ̄g
)
(x̄, v̄) ≤ 0, we obtain that

n∑
i=1

αi + β + γ ≤
n∑

i=1

µ̄iεi.

Then,
(
x̄, µ̄, λ̄, v̄

)
is a feasible solution of (RMDW). Moreover, for any feasible solution

(y, µ, λ, v) of (RMDW) and µ̄i ≥ 0, i = 1, . . . , n,
∑n

i=1 µ̄i = 1. By using the similar methods
of Theorem 4.3, we can easily get

n∑
i=1

µ̄ifi(x̄) +
(
λ̄g
)
(x̄, v̄)−

(
n∑

i=1

µ̄ifi(y) + (λg) (y, v)

)
≥ −2

n∑
i=1

µ̄iεi.

By Proposition 5.3,
(
x̄, µ̄, λ̄, v̄

)
is a weakly robust 2ε-efficient solution of (RMDW).

Similarly, in the special case when ε = 0, and V is a singleton, we obtain the following
Wolfe type multi-objective duality. Related results can be found in [5, 10, 11] under various
conditions imposed on the objective function and the constraint conditions, or under different
kinds of constraint qualifications.

Corollary 5.11. Let g : X → Y be a continuous K-convex function. Suppose that (CCQ)
holds and x̄ ∈ F . If x̄ is a weakly efficient solution of (MP), then, there exist µ̄i ≥ 0,
i = 1, . . . , n,

∑n
i=1 µ̄i = 1, and λ̄ ∈ K∗, such that

(
x̄, µ̄, λ̄

)
is a weakly efficient solution of

(MDW).

Similarly, we obtain the following Mond-Weir type robust ε-weak and ε-strong multi-
objective duality properties.

Theorem 5.12 (Mond-Weir type robust ε-weak multi-objective duality). Let ε :=
(ε1, . . . , εn) ∈ Rn

+. For any feasible x of (RUMP) and any feasible (y, µ, λ, v) of (RMDMW),
we have (

f1(x), . . . , fn(x)
)
̸≺
(
f1(y)− ε1, . . . , fn(y)− εn

)
.

Theorem 5.13 (Mond-Weir type robust ε-strong multi-objective duality). Let ε :=
(ε1, . . . , εn) ∈ Rn

+, x̄ ∈ F , and let g : X ×Z → Y be a continuous function such that for any
v ∈ Z, g(·, v) is a K-convex function. Suppose that (RCCCQ) holds. If x̄ is a weakly robust
ε-efficient solution of (UMP), then, there exist µ̄i ≥ 0, i = 1, . . . , n,

∑n
i=1 µ̄i = 1, v̄ ∈ V,

and λ̄ ∈ K∗, such that
(
x̄, µ̄, λ̄, v̄

)
is a weakly robust 2ε-efficient solution of (RMDMW).

Similarly, in the special case when ε = 0, and V is a singleton, we can obtain the following
Mond-Weir type multi-objective duality. Related results can be found in [4, 10,33].

Corollary 5.14. Let g : X → Y be a continuous K-convex function. Suppose that (CCQ)
holds and x̄ ∈ F . If x̄ is a weakly efficient solution of (MP), then, there exist µ̄i ≥ 0,
i = 1, . . . , n,

∑n
i=1 µ̄i = 1, and λ̄ ∈ K∗, such that

(
x̄, µ̄, λ̄

)
is a weakly efficient solution of

(MDMW).
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6 Conclusions

In this paper, we consider robust approximate optimal solutions for a convex optimization
problem under uncertainty in the constraint function. By using the framework of robust
optimization approach (the worst-case approach), we obtain optimality theorems and duality
theorems for robust approximate optimal solutions of the uncertain convex optimization
problem. We also show that our results encompass as special cases some optimization
problems considered in the recent literature. Moreover, we apply the proposed approach to
investigate weakly robust approximate efficient solutions for a multi-objective optimization
problem in the face of data uncertainty in the constraint function.
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[6] R.I. Boţ and S.M. Grad, Wolfe duality and Mond-Weir duality via perturbations, Non-
linear Anal. 73 (2010), 374–384.

[7] R.I. Bot and G. Wanka, An alternative formulation for a new closed cone constraint
qualification, Nonlinear Anal. 64 (2006) 1367–1381.

[8] R.S. Burachik and V. Jeyakumar, A simple closure condition for the normal cone in-
tersection formula, Proc. Amer. Math. Soc. 133 (2004) 1741–1748.

[9] T. D. Chuong, Optimality and duality for robust multiobjective optimization problems,
Nonlinear Anal. 134 (2016) 127–143.

[10] T.D. Chuong and D.S. Kim, Optimality conditions and duality in nonsmooth multiob-
jective optimization problems, Ann. Oper. Res. 217 (2014) 117–136.



ROBUST APPROXIMATE SOLUTION FOR UNCERTAIN OPTIMIZATION 641

[11] T.D. Chuong and D.S. Kim, D.S.: Nondifferentiable minimax programming problems
with applications, Ann. Oper. Res. 251 (2017) 73–87.

[12] T.D. Chuong and D.S Kim, Approximate solutions of multiobjective optimization prob-
lems, Positivity 20 (2016) 187–207.

[13] J. Dutta, Necessary optimality conditions and saddle points for approximate optimiza-
tion in Banach spaces, TOP 13 (2005) 127–143.

[14] Y. Gao, S.H. Hou and X.M. Yang, Existence and optimality conditions for approximate
solutions to vector optimization problems, J. Optim. Theory Appl. 152 (2012), 97–120.

[15] A. Hamel, An ε-Lagrange multiplier rule for a mathematical programming problem on
Banach spaces, Optimization 49 (2001) 137–149.

[16] V. Jeyakumar, Asymptotic dual conditions characterizing optimality for convex pro-
grams, J. Optim. Theory Appl. 93 (1997) 153–165.

[17] V. Jeyakumar, G.M. Lee and N. Dinh, A closed cone constraint qualification for con-
vex optimization, Applied Mathematics Research Report AMR04/8, University of New
South Wales, Sydney, Australia, 2004.

[18] V. Jeyakumar and G.Y. Li, Strong duality in robust convex programming: complete
characterizations, SIAM J. Optim. 20 (2010) 3384–3407.

[19] V. Jeyakumar, G.M. Lee and G.Y. Li, Characterizing robust solution sets of convex
programs under data uncertainty, J. Optim. Theory Appl. 164 (2015) 407–435.

[20] S.S. Kutateladze, Convex ε-programming, Soviet Math. Doklady 20 (1979) 391–393.

[21] G.M. Lee, G.S. Kim and N. Dinh, Optimality conditions for approximate solutions of
convex semiinfinite vector optimization problems,in: Recent Developments in Vector
Optimization, Vector Optimization, Q.H. Ansar and J.-C. Yao (eds.), vol. 1, Springer,
Berlin, 2012, pp. 275–295.

[22] J.H. Lee and G.M. Lee, On ε-solutions for convex optimization problems with uncer-
tainty data, Positivity 16 (2012) 509–526.

[23] J.C. Liu, ε-Duality theorem of nondifferentiable nonconvex multiobjective program-
ming, J. Optim. Theory Appl. 69 (1991) 153–167.

[24] P. Loridan, Necessary conditions for ε-optimality, Math. Program. 19 (1982) 140–152.

[25] B. Mond and T. Weir, Generalized concavity and duality, in: Generalized Concavity in
Optimization and Economics, S. Schaible, W.T. Ziemba (eds.), Academic Press, New
York, 1981, pp. 263–279.

[26] Q.S. Qiu and X.M. Yang, Some properties of approximate solutions for vector opti-
mization problem with set-valued functions, J. Global Optim. 47 (2010) 1–12.

[27] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[28] J.J. Strodiot, V.H. Nguyen and N. Heukemes, ε-Optimal solutions in nondifferentiable
convex programming and some related questions, Math. Program. 25 (1983) 307–328.



642 X.-K. SUN, X.-B. LI, X.-J. LONG AND Z.-Y. PENG

[29] X.K. Sun and Y. Chai, On robust duality for fractional programming with uncertainty
data, Positivity 18 (2014) 9–28.

[30] X.K. Sun, X.J. Long, H.Y. Fu and X.B. Li, Some characterizations of robust optimal
solutions for uncertain fractional optimization and applications, J. Ind. Manag. Optim.
13 (2017) 803–824.

[31] X.K. Sun, Z.Y. Peng and X.L. Guo, Some characterizations of robust optimal solutions
for uncertain convex optimization problems, Optim. Lett. 10 (2016) 1463–1478.

[32] P. Wolfe, A duality theorem for nonlinear programming, Q. Appl. Math. 19 (1961)
239–244.

[33] X.M. Yang, K.L. Teo and X.Q. Yang, Duality for a class of nondifferentiable multiob-
jective programming problems, J. Math. Anal. Appl. 252 (2000) 999–1005.

[34] K. Yokoyama, ε-Optimality criteria for convex programming problems via exact penalty
functions, Math. Program. 56 (1992) 233–243.

[35] H. Yu and H.M. Liu, Robust multiple objective game theory, J. Optim. Theory Appl.
159 (2013) 272–280.

[36] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, London,
2002.

[37] Z.A. Zhou, X.M. Yang and J.W. Peng, ε-optimality conditions of vector optimization
problems with set-valued maps based on the algebraic interior in real linear spaces,
Optim. Lett. 8 (2014) 1047–1061.

Manuscript received 23 January 2016
revised 10 August 2016

accepted for publication 18 May 2017



ROBUST APPROXIMATE SOLUTION FOR UNCERTAIN OPTIMIZATION 643

Xiang-Kai Sun
College of Mathematics and Statistics
Chongqing Technology and Business University
Chongqing 400067, P. R. China
E-mail address: sxkcqu@163.com

Xiao-Bing Li
College of Mathematics and Statistics
Chongqing JiaoTong University University
Chongqing 400074, China
E-mail address: xiaobinglicq@126.com

Xian-Jun Long
College of Mathematics and Statistics
Chongqing Technology and Business University
Chongqing 400067, P. R. China
E-mail address: xianjunlong@hotmail.com

Zai-Yun Peng
College of Mathematics and Statistics
Chongqing JiaoTong University University
Chongqing 400074, China
E-mail address: pengzaiyun@126.com


