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ADJOINT BROYDEN METHODS FOR SYMMETRIC
NONLINEAR EQUATIONS*
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Abstract: In this paper, we adopt a technique similar to the derivation of Powell’s Symmetric Broyden
(PSB) method to obtain a new class of quasi-Newton methods which we call symmetric adjoint Broyden
methods. The symmetric adjoint method shares some nice properties as its non-symmetric version. By
the use of a nonmonotone line search, we show that the symmetric adjoint Broyden method with adjoint
Broyden tangent update is globally and superlinearly convergent when applied to solve symmetric nonlinear
equations. We also do some preliminary numerical experiments to test the performance of the proposed
method. The numerical results indicate that the proposed method is effective and competitive.
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vergence, automatic differentiation
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Introduction

The general nonlinear equations can be stated as
F(z) =0, (1.1)

where function F(x) = (fi(z),..., fo(2))T with elements fi(z) : R* — R, i = 1,...,n
continuously differentiable. We will pay attention to the symmetric nonlinear equations in
the sense that F'(x) = F'(z)”, Yo € R", where F’(x) denotes the Jacobian of F at z. So,
without specification, throughout the paper, we always suppose that the Jacobian matrix
F’(x) is symmetric for any © € R™.

There has been some progress in the study of the numerical methods for solving sym-
metric nonlinear equations. Li and Fukushima [5] proposed a globally and superlinearly
convergent Gauss-Newton-based BFGS method for solving symmetric nonlinear equations.
Gu et al. [3] developed a norm descent BFGS method on the basis of the Gauss-Newton-
based BFGS method. The authors in [6,16] also studied quasi-Newton methods for solving
symmetric nonlinear equations. Conjugate gradient type methods have also been applied to
solve symmetric nonlinear equations. For examples, Li and Wang [8] extended the modified
Fletcher-Reeves (FR) nonlinear conjugate gradient method proposed by Zhang et al. [17] to
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solve symmetric equations. Recently, Zhou and Shen [18] proposed a derivative-free Polak-
Ribiére-Polyak (PRP) method for solving symmetric nonlinear equations without computing
exact gradient and Jacobian. The method is a generalization of the classical PRP method
for unconstrained optimization problems [18].

In this paper, we will develop a new class of quasi-Newton methods for solving symmetric
nonlinear equations. They are based on the recently developed adjoint Broyden methods for
solving nonlinear equations [12-14]. Like general quasi-Newton method, the adjoint Broyden
method generates a sequence of iterates {zx} recurrently by

Tpp1 = 2 +apdy, k£=0,1,2,...,

where oy, is the step length determined by some line search and the quasi-Newton direction
d € R™ is the solution of the linear equations

Byd+ F(x) = 0.

The quasi-Newton matrix By, is updated by the so-called adjoint Broyden formula [12]

ngg

Byi1 = By + —(F'(xk+1) — Br), (1.2)
OOk

where o, € R™. Typical choices of o, include [12]

(A) o = (F'(zk+1) — Br)sk (adjoint Broyden tangent update),
(B) or = (F(zk+1) — F(xg))/ar — Brsk (adjoint Broyden secant update) and
(C) o = F(xps1) (adjoint Broyden residual update).
Case (B) is an approximation to (A) of order o(||aysg||) and case (C) is identical to (B) in
the full step quasi-Newton method, namely a; = 1. Our major concern in the paper is the
adjoint Broyden tangent update, namely the case (A).
Unlike existing quasi-Newton methods where the quasi-Newton matrix satisfies the secant

condition Byi18r = yr with s = xx41 — 2% and yr = F(xkr1) — F(xg), the quasi-Newton
matrix in the adjoint Broyden method satisfies the adjoint tangent condition

0% Byy1 = 08 F'(xp41). (1.3)

The adjoint Broyden update 1.2 maintains some nice properties of Broyden’s update. In
particular, it possesses the least change property in the sense that the inequality

1Bt — Billp < |

T
oo
#—=|lp-|B = Billr = ||B— Bl r
O'kO'k

is satisfied for all symmetric matrices B satisfying o} B = o} F'(xx41). In addition, it enjoys
some other nice properties as follows [12].

(i) Adjoint Broyden updates (A), (B) and (C) are invariant with respect to regular linear
transformation of the state space of x, while Broyden’s update is only invariant with
respect to regular linear transformation of the range of F(x).
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(ii) The adjoint tangent Broyden update can be regarded as a particular two sided rank
one (TR1) update [2] which can maintain the validity of previous tangent conditions.
However, the heredity property [12] is not shared by Broyden’s update.

(iii) The quasi-Newton direction generated by the adjoint Broyden update (C) is a de-
scent direction of the residual function f(z) = 3F(z)T F(x). Specifically, we have for

F(ar1) #0

Vi(zre1) dirr = F(opr1) T F (wg41)drsa
= F(ers1)" Beradiyr = —F(zpp)" F(ag) <0,

where the second equality follows from the adjoint Broyden residual update.

Both theoretical analysis and numerical experiments have verified that the adjoint Broy-
den method is a kind of promising quasi-Newton method, though the computation of the
adjoint Broyden method is slightly more expensive than that of Broyden’s method [12]. Tt
has been proved to be locally linearly and g-superlinearly convergent [12]. If some line search
is used, the method can be globally and superlinearly convergent [14] under the same re-
quirements on F(z) as those for Newton’s method. A range of test results in [12] have shown
that the adjoint Broyden method usually outperforms Newton’s and Broyden’s methods in
terms of CPU time as well as the number of iterations.

The nice properties and excellent numerical performance of the adjoint Broyden method
encourage us to study its symmetric version for solving symmetric nonlinear equations. In
this paper, in a way similar to the derivation of the PSB update, we will derive a symmetric
adjoint Broyden update that takes the form

orof (F'(xk41) = Bi) + (F'(xx41) — Br)owof

T
O Ok

Byi1 = Bp+

_a,{(F'(mkH) — Bi)ow koL

T T :
O’ka'k O'kO'k

Details will be given in the next section. We will pay particular attention to the adjoint
Broyden tangent update. By the use of a nonmonotone line search in [7], we will establish
the global and superlinear convergence of the method. We will also present some numerical
results to verify the efficiency of the method.

The remainder of the paper is organized as follows. In Section 2, we derive a sym-
metric adjoint Broyden update and show that it can preserve some nice properties of its
non-symmetric version. In Section 3, we will prove that the symmetric adjoint Broyden
tangent method with a nonmonotone line search is globally and superlinearly convergent
when applied to solve a system of symmetric nonlinear equations. In Section 4, we list some
preliminary numerical results to illustrate the efficiency of the method. Finally, we give
some remarks.

Symmetric Adjoint Broyden Update

In this section, similar to the derivation of the PSB update [10], we will derive a symmetric
adjoint Broyden update. For a given symmetric matrix B € R™*™, we let B be determined
by the adjoint Broyden update formula

T

B:B—km(F’@)—B),
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where o € R™ with o # 0. .
We are going to generate a sequence of matrices {Cf}, whose limit B is symmetric and
satisfies the adjoint tangent condition

oTF'(z) = o7 B.

The idea of proof comes from [1,15].
We let Cy = B and C; = B determined by the adjoint Broyden update. Generally, Cy
is not symmetric. So, we can construct a symmetric matrix

701+01T

Cs 2

We repeat the above procedure and generate a sequence of matrices {Cy} by

ool
Copt1 = Cop + m(F (Z) — Cax),
- k=0,1,.... (2.1)
Cop1 + Cyp g
Cokt2 —_—
2
By the construction of Cj, it is not difficult to see that for each k, matrix Cory1 is the
closest matrix in the sense of || - ||[r to Cai, in the set where all the matrices satisfying the

adjoint tangent condition (1.3)
Q0. F'(z)) = {A € R™"oTA = oTF/(2)},
and matrix Coiyo is the closest matrix to Cyx41 in the set
S 2 {Ae R|AT = A).
The proposition below will show that the limit of sequence {Cj} is

B—B4 ool (F'(z) — B) + (F'(z) — B)oo T 3 oT(F'(z) — B)o . g;T.

(2.2)

oTo oTo oTo

Proposition 2.1. For any given B € S and o € R" with o # 0, the sequence of matrices
{C} generated by (2.1) with Cy = B converges to B defined by (2.2). Moreover, we have
Be SNQ(o, F'(z)). (2.3)

Proof. First, the relation (2.3) can be verified by the definition of B directly. We are going
to show that B is the limit of {C}}. By the construction of {Cy}, we can see that if {Cyy}
converges to B, then the direct calculation shows that {Cai41} also converges to B. So it
suffices to prove that limy_, Cor = B. Let Gy = Cai,. We can get from (2.1)

EO'O'T(F/(if) — Gy) + (F'(Z) — Gp)ooT

Gy = Gt 2 ocTo
1low, +wleT
— Gt - ka : (2.4)
2 clo

where wy, = o7 (F'(Z) — Gy). By the definition of wy,, one has

_ _ 1 owy, +wio?
wert = 0T (F/(2) = Gra) = o7 (F'(2) = Gr = 5 k)
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10T owy, + UkaTUT 1 oo
= - = == I— —) = wi P,
Wk Ty olo 2wk( oTo Wh
where
:lc_ﬂi)
2 oTo

Notice that the matrix P has one zero eigenvalue and n — 1 eigenvalues equal to 1/2. By
using the Sherman-Morrison theorem, we can obtain

Y w = o"(F'(z)-B)Y_ P*
k=0 k=0

= oT(F(@) - B)I-P)!

= 2@ -B(1- 57
T
— 257 (F’(;E) —B)— o' (F'(z) - B) Z;—U

This together with (2.4) implies

> 1 & owy, +wloT
Gry1— Gp) = = = Tk

2= =5 2 s

1 T 1oo?(F'(z) — B)oo™
I (UU (F'(z) - B) - 2 oTo
1o0T(F'(z) — B)ooT
F/ 7) — B T _ = )
+(F'(z) Yoo g

o o
Consequently, we get
khj& Gp,=DB+ kz_:O(GkJrl — Gk)
ool (F'(z) — B) + (F'(z) — B)ooT o7 (F'(z) — B)o oo™
= B+ T - T " T
olo olo olo
= B.
The proof is complete. O

We call the update (2.2) symmetric adjoint Broyden update. The recurrent form of the
symmetric adjoint Broyden update formula is given by

orof (F'(zk41) = Bi) + (F'(xx41) — Br)owof

T
OOk

Byi1 = Bp+

_U,{(F'(mk+1) — Bi)ow KoL

. 2.5

O'I?O'k U%Uk ( )

In what follows, we will show that the symmetric adjoint Broyden update can maintain

some nice properties as the adjoint Broyden update. First, the following lemma gives the
least change property of the symmetric adjoint Broyden update.
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Lemma 2.2 (Least tangent change). Given By € S and o € R"™ with o # 0. Let
My, € R™™ be a symmetric and nonsingular matriz satisfying Myoy = Mk_lak. Then the
matriz Byy1 defined by (2.5) is the unique solution of the following minimization problem

min{||B — By|la,.r : B € SNQ(ok, F'(x151))}, (2.6)
where || B||a,.p = [|MgBMy||p and Q(ok, F'(zp11)) = {A € R "ol A = ol F'(xs41)}.
Proof. For any B € SN Q(oy, F'(x341))}, we obviously have

(F'(2341) — Br)ow = (B — By)or, and o} (F'(zxq1) — Bi) = o} (B — By).

Denote R = MkO'k = Mk_lak, Ek = Mk(Bka)Mk and Ek = Mk(BkJrl*Bk)Mk. Multiply
(2.5) from right and left hand sizes by M}, respectively, we obtain

T T T
B 225, B + Egziz;, 2y Epze 1
=

= - ZEZy. -
2Lz, (2 21)? k

It is clear that ||Exzi|l2 = ||Erzk|l2. And if v is orthogonal to zj, then ||Eyv|l2 < ||Exv|2.
So one has || Ex||r < || Ex||r. On the other hand, function ||B — By||as, . F is strictly convex
on the convex set {B € R™"|B € SN Q(oy, F'(xx41))}. Consequently, the matrix By
defined by (2.5) is the unique solution of (2.6). O

Lemma 2.3 (Heredity). In the case that F(x) is affine, the symmetric adjoint tangent
update (2.5) maintains the validity of tangent conditions along the adjoint direction o; =
(F'(z*) — Bj)sj, i.e.

o] (By — F'(2*)) =0, Vj<k. (2.7)

Proof. We verify (2.7) by induction.
First, it is easy to get that

ol By = ol F'(21) = ol F' ().

This shows (2.7) with k = 1.
Consider the case k = 2. We also get from the adjoint tangent condition that

0T By = 0l F'(23) = o7 F'(z*).
According to ol By = ol F'(z*), we obtain

ol (F'(z*) = By)sy =0l o1 =0

and
oTBy = of Bl+010?(F’($2)—Bl)+(F'($2)—Bl)010’1T
0 0 0_?0_1
7UT(F/({E2) — Bl)O'l ) 0'10,{)
0{0'1 0’{(71
B og o101 (F'(z2) = B1) + g (F'(¢*) — B1)oio]
= 1
70 * O’{Jl
_UlT(F’(a:Q) — Bi)oi ol ool
T T

0101 g1 01
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= ol By = ol F'(z").

This shows that the equality (2.7) is satisfied for k = 2.
Suppose that (2.7) holds for some k > 1, i.e.,

0] By =0, F'(z*), Vj <k.

We are going to show that (2.7) holds for k + 1. It is clear that (2.7) is satisfied with j = k.
For any 5 =0,1,...,k — 1, we have

ool (F'(x — By) + (F'(z — By)ogol
T By = U}"(Bk_i_ kO (F' (Th11) k)T (F'(x1+1) — Br)okoy
OO0k
_o’kT(F'(x;H_l) — Bi)ow o’kakT)
UZ:O'k Jng
_ TR (T]TO'kO'g(F/(xk+1) — Bg) + JJT(F/(QC*) — By)oyol
= 0Bkt T
OOk

ol (F'(wk41) — Be)ox o] okoi
O'gO'k Uga'k

= o) By, =0, F'(z").

The proof is complete. O

A Symmetric Adjoint Broyden Algorithm and Its Convergence

In this section, we propose an approximately norm descent quasi-Newton method for solving
symmetric nonlinear equation (1.1) in which symmetric adjoint Broyden update is used.
Under appropriate conditions, we establish its global and superlinear convergence.

First, we notice that the matrix By determined by (2.5) may be singular even if By, is
nonsingular. To overcome this drawback, we can use a nonsingular version of the symmetric
adjoint Broyden update similar to Moré and Trangenstein’s nonsingular Broyden’s update
[9]. The nonsingular update formula is given by

orof (F'(xk41) = Bi) + (F'(xx41) — Br)owoy

Bri1 = B+ g
LYk

02 of (F'(xr41) — B)oy oro)
Y

T T

, (3.1)
OOk OOk

where the parameter 0 can be chosen to satisfy | 0 — 1 |< 0 < 1 with some constant
6 e (0,1) so that when By, is nonsingular, By is nonsingular too. It is easy to see that the
symmetric adjoint Broyden update formula (2.5) corresponds to the case 6 = 1.

To globalize the method, we adopt a nonmonotone line search introduced by Li and
Fukushima [7]. The nonmonotone line search can be stated as follows. Given constants
p, A €(0,1) and pg > 0. Find the smallest nonnegative integer ¢ such that

|F(zk + p'di) || < [|1F (@)l — pallp’dell® + mill F(ze) |, (3.2)

where {n;} is a positive sequence satisfying

Sk <n< oo (3.3)
k=0
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with some constant n > 0. Let the step length oy, = p’*, where iy, is the smallest nonnegative
integer satisfies (3.2).
We propose a symmetric adjoint Broyden algorithm for solving (1.1) as follows.

Algorithm 3.1. Symmetric Adjoint Broyden Method
Step 0. Given constants p, \,0 € (0,1), py,po > 0, initial point o € R™ and initial
symmetric and nonsingular matrix By € R™"*". Let k := 0.

Step 1. Stop if F(zr) = 0. Otherwise, solve the system of linear equations
Bkd+F(xk) =0 (34)

to get dj.

Step 2. If
1F (2 + di) | < A (zw)l| = pezldill?, (3.5)

then we let ay := 1 and go to Step 4. Else, go to Step 3.

Step 3. Let ay be determined by the nonmonotone line search (3.2) and zgy1 :=
T + apdy.

Step 4. Update By by the nonsingular symmetric adjoint Broyden update formula
(3.1), where sy = xx11 — x% and o = (F'(xk+1) — By)sg. The parameter 6 is chosen
so that |6, — 1| < 0 and By is nonsingular.

Step 5. Let k:=k+ 1. Go to Step 1.

The remainder of this section is devoted to the global and superlinear convergence of
Algorithm 3.1. Without specification, we always assume that oy in Algorithm 3.1 is specified
by

g = (F/(l‘kJrl) — Bk)Sk.

The following two lemmas are obvious according to [7].
Lemma 3.2. The sequence {xy} generated by Algorithm 3.1 is contained in the level set
Q=A{z e R"|[|[F(z)| < e"[[F(zo)l},

where 1 is defined by (3.3). Moreover, it holds that

o0
Z sk |* < oc.
k=0

Lemma 3.3. Let {x} be generated by Algorithm 3.1. Then the sequence of function eval-
uations {||F(xg)||} is convergent.

In order to establish the global convergence of Algorithm 3.1, we make the following
assumption.

Assumption 3.1. (i) The level set
Q= Az [[|F(2)]] < e[|F(zo)ll}

is bounded, where 7 is defined as in (3.3).
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(ii) Function F' is continuously differentiable and F” is Lipschitz continuous in €, i.e.
there exists a constant L > 0, such that

[1F(z) = F'()ll < Lllz —yll, Va,yeQ. (3.6)

(iii) The Jacobian F'(z) is symmetric and nonsingular for any z € Q.

For the sake of convenience, we introduce some notations. We denote

£ = ok (F'(wk41) = Br)ll2
ok 2

)

and )
|(Br — F'(zx+1))sk|l2

[kl
By the definition of o, = (F'(xk+1) — Bk)sk, we immediately have
okl o4 (F'(xp41) — Br)sk

= = < &. (3.7)
skl - llow]] skl - llow]]

O =

The following lemma is slightly an extension of Lemma 2.6 in [7].

Lemma 3.4. Let the sequence {x} be generated by Algorithm 3.1. Suppose that the condi-
tions in Assumption 3.1 hold. If

(o)

Z llskll* < oc.

k=0

then we have

In particular, there is a subsequence of {&x} tending to zero. If we further assume

oo
D llskll < oo,
k=0

then we have
(oo}
Zfi < 00.
k=0
In particular, the whole sequence {&} converges to zero.

Proof. By the adjoint tangent condition (1.3), we have o F'(zx+1) = 0} Br4+1. We also
have from the Lipschitz continuality of F”(x)

IF (k1) = F' (@) | 7 < L skl

Let
ar = || By — F'(xg) || and by = | F'(xg41) — F' (24| F-

Then by (3.1), we can deduce

O'kO'g(F/(xk_;,_l) — Bk) + (J%(F'(I’]H_l) — Bk)TJg
T
0L Ok

Bit1 — F'(xp41) = Bip— F'(xp41) + 0k
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_G%UE(F/(%H) — Bk)Uk; . (Tk(fg

U%Uk O'ZO']C
T T
oo el
= (I — ) (By — F'(2p41)) (I — O ).
0}, Ok 010k
This implies
T T
Ok0 oo
Ghpr = NI = O—72) (B = F'(wr1))I = O —72) |7
0. 0k 0L 0k
T
00
< T = =) (Br = F' (@) |5
Oy Ok

lokoi (By — F'(zk11)) |3

= ||Br— F'(zp41) |7 — 06(2 -0
|| k ( k+1>||F k( k) ||0k||2

)

Taking into account 0y, satisfying (2 — ;) > (1 — éQ), we get
(1= 6)& < 1B = F'(zgn)|[3 — afp1 < (ak +bk)* — afyy = af — ajyy + 2aby + by,
which implies
2 2 42 2
g1 < (ag +bg)” — (1 - 0%)&;.
The desired results then follow from Lemma 2.5 of [7]. d

As a corollary of Lemma 3.4 and inequality (3.7), we immediately have the following
lemma.

Lemma 3.5. Let the conditions in Assumption 3.1 hold and {x1} be generated by Algorithm
3.1. Then we have

=
lim — 2 —0.
Jim 7 2,0 =0
k=0
In particular, there is an infinite index set K such that the subsequence {0}k converges to
Z€ero.
The following theorem establishes the global convergence of Algorithm 3.1.

Theorem 3.6. Let the conditions in Assumption 3.1 hold. Then the sequence {x} gener-
ated by Algorithm 3.1 converges to the unique solution of (1.1).

Proof. By Lemma 3.3, the sequence {||F(xy)||} converges. It then suffices to verify

liminf || F(z)]| = 0. (3.8)
k—o0

If there are infinitely many k for which oy is determined by (3.5), then the inequality
|1 F(zk+1)]l < A||F(zk)| holds for infinitely many k. Let I be the index set for which (3.5)
holds and i be the number of index j satisfying j < k and j € I. It is clear that i, — oo,
as k — oco. For any j ¢ I, we have |[F(zj41)| < (1+n;)||F(x;)||. Therefore, we have for all
k sufficiently large

k

1E (i) || < N+ TTA A+ m) [ F (o)l < X+e?|[ (o),
=0
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where A € (0,1). The last inequality yields (3.8).

Consider the case that there are only finitely many indices k for which ay, is determined
by (3.5). According to Lemma 3.5, there is an infinite set K such that {0p}x — 0. It is
then not difficult to show by (3.4) that the sequence {||di||}x is bounded. Without loss
of generality, we assume that {dy}x — d, which implies Bydy — F'(Z)d as k — oo with
k € K. Taking limit in (3.4) as k — oo with k € K, we obtain

F'(z)d+ F(z) = 0. (3.9)

Denote & = limsupyc g 500 k- It is clear that @ > 0. If & > 0, then d = 0 and hence
F(z) = 0. Suppose a@ = 0, or equivalently limye g ko0 @ = 0. By the line search rule,
when k € K is sufficiently large,

IF(x + p tard)|| = |1 F(x) || > =l andy ]|,
Multiplying both sides of the last inequality by
(I (@, + p~andi)ll + | F (@) ) /o~ e
and then taking limits as k — oo with k € K yields
F@)TF'(z)d > 0.
This together with (3.9) implies F(Z) = 0. The proof is complete. O
To get the superlinear convergence of Algorithm 3.1, we first show the following lemma.

Theorem 3.7. Let the conditions in in Assumption 3.1 hold and the sequence {xj} be
generated by Algorithm 3.1. Then there exist a constant 6 > 0 and an index k such that the
inequality

1F (zx + di) | < MF (i)l = pzlldel® < A F ()|

holds for all k >k and 6, < 8. In particular, oy, = 1 whenever 8, < 6 and k > k.

Proof. Since by Theorem 3.6, {z} converge to the unique solution of (1.1), say z*, there
exists a constant C' > 0 such that || F'(xx)~!|| < C for all k sufficiently large. Similar to the
proof of Theorem 3.6, it is not difficult to show that there are constants ¢ and M > 0 such
that the following inequality holds for all k satisfying 6, < &

I di |1< M| F ().

We also have from (3.4)

F/<:L‘k)($(:k +dj, — 1‘*) = F’(Ik)<.7;k — .7;*) + (F/<$k) — Bk)dk — (F(a:k) — F(l’*))
= (Fan) — F@") ok — 2°) + (F'(ay) — Bi)d
—F(xg) + F(a*) + F'(a*) (21, — 2).

This implies

ok +de — 2| < [[F (@r) " HUF (2x) = F' (@) e — 2| + | (F' (2x) — Br)dil|
+[|F(zy) — F(2*) — F'(2") (z), — 2")|))
< Clo(flzr — =) + dklldel)
< Clo(|lzy — =™|)) + o M| F(zy) — F(z")|)
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< Clo(llzx — ™)) + ox MM |2y — =), (3.10)

where M is an upper bound of F'(x) in Q. Also we have

1 (r + dy) | | F'(xr + di) — F(x)||
Mka +dj, — x*||

CM(o(||zk — *||) + oM M||z) — ).

<

<

On the other hand, by the nonsingularity of F'(z*) and the fact {zx} — x*, there is a
constant m > 0 such that the inequality

1F (i)l = | F(xr) — F (") = mlzp — 2| = mlze — 27| (3.11)

holds for all & sufficiently large. It is not difficult to see from (3.10) and (3.11) that there is
a constant ¢’ < ¢ such that when k is sufficiently large and §, < ¢’, the inequality

1F (2 + di) | = MIF ()| + przldi ]|

< CN(o(la, — 2*[) + 6 MM o — 2* )
Ny — 2| + pp M| F ()|
= —(Mmn = CMMby)|lxr —z*|| + o([|lzx — 2™[])
is satisfied for all k sufficiently large and §;, < ¢’. The proof is complete. O

The following theorem establishes the superlinear convergence of Algorithm 3.1.

Theorem 3.8. Let the conditions in Assumption 3.1 hold. Then the sequence {xy} gener-
ated by Algorithm 3.1 converges to the unique solution x* of (1.1) superlinearly.

Proof. Tt follows from Theorem 3.7 and (3.10) that we only need to show {0} — 0 as
k — oo.

Let 0 and k be as specified by Theorem 3.7. It follows from Lemma 3.5 that there is an
index k such that the following inequality hold for all £ > k

E
—

2 2
6% < =482

x| =
I
(=)
N | =

J

This shows that for any k > k, there are at least fﬁ many indices j < k such that §; < 4.

Let k' = max{l?:,ff}. By Theorem 3.7, for any k > 2k, there are at least [%] — k' many
indices j < k such that a; =1 and

[E i)l = 1 (5 + di) | < AF ()] (3.12)

Let Ji be the set of indices for which (3.12) holds and jj be the number of elements in Jj.
Then ji > g — k — 1. On the other hand, for each j & Ji, we have

[E (@)l < (14 ne) [ F ()] (3.13)

Multiplying inequalities (3.12) with j € Ji and (3.13) with j & Jg, we can get for any
k> 2k )
. 1p_ L —
IF eIl < NP (@I (1 + )] < 1P (g )| 1o,
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or equivalently
k_p'_q1 n
1E (1) | < 1F Gy )25 et

So, we obtain
D IF ()| < oo
k=0

This together with (3.11) implies
o0
> skl < oo
k=0

It then follows from Lemma 3.4 and (3.7) that {6y} — 0 as k& — oo. Then the superlinear
convergence follows from (3.10). O

Numerical Experiments

In this section, we will test the performance of the Symmetric Adjoint Broyden method
(SAB) and compare it with PSB, BFGS methods and the Broyden-like method in [7] with
the same line search. For all methods, we use the following condition as the termination
criterion:

|F(zk)]2 < 107°.

We also stop the iterative process if the total number of iterations has reached to 1500 while
the last inequality is not satisfied. In that case, the method fails to find a solution of (1.1).
The parameters in the line search are specified as follows

A= 0.9, H1 = U2 = 0.001, ﬂ = 0.457 Nk = m
The initial matrix By was set to be the identity matrix.

The computation of the adjoint Broyden update formula is based on the terms F'(x)s
and o7 F'(z), which can be obtanied by the AD tool TOMLAB/MAD v7.3. The numerical
experiments were done by using MATLAB v7.10 on Core (TM) 2 PC with WinXP. The
details of the problems are given as follows, where zy denotes the initial point.

Problem 1.

fi(x) = 921 — 29+ h?coswy,
fz(JC) = Qxi—xi_l—xi+1—|—h2cosxi,i:2,3,...,71—1,
folz) = 9z, —x, 1 — h*cosx,,
1
h = i
n+1

We will test the methods on this problem with different initial points.
Problem 2.

fi(@) oy (af + 23) — 1,
filz) = xi(xil—l—x?—i—xfﬂ)—L 1=2,3,...,n—1,
fu(z) = wa(@l_y +a}).

o = (1,1,...,1)7T.
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Problem 3. Trigonometric function [4]

filx) = Q(n +i(1 —cosz;) —sinx; — Zcosxj)@sin:z:i —cosx;), i =1,2,...
j=1
S ( 101 101 101 )T
o = \100n’100n" """ 100n

Problem 4. Logarithmic function [4]

T

file) = In(z;+1)——, i=1,2,...,n.
n
zo = (1,1,...,1)T.
Problem 5. Trigexp function [4]

filz) = 3234229 — 5+ sin(z — ) sin(xy + 3),
fz(l') = —Ti_1 exp(xi,l — .’L‘l) =+ Qii(4 + 33?12) + 237i+1

+sin(z; — x41) sin(x; + xi41) — 8, 1 =2,3,...,n— 1,
folx) = —zp_1explep—1 — ) + 4a, — 3.

zo = (0,0,...,0)T.

Problem 6. Extended Freudenstein and Roth function (n is even) [4]

Jaic1 = w1+ ((5— w24)wai — 2) w2 — 13,
f27; = T2;—1 =+ ((1 + le’)in — 14):1721 — 29, 7= 1, 2, e ,77,/2
rg = (6,3,6,3,...,6,3)T.

Problem 7. Discrete boundary value problem [4]

filz) = 2z +0.5h(z1 + h)® — 1y,
filz) = 2x;4+0.5h%(z; + hi)® — 2 1+ 21, i=2,3,...,n—1,
fo(z) = 2z, +0.5h%*x, +hn)® -z, 1,
[
n+1
zg = (h(h—1),h(2h—1),...,h(nh—1))T.

Problem 8. Troesch problem [11]

filz) = 2z + ph?sinh px; — @2,
filz) = 2x;+ ph?sinhpr; —x; 1 — 201,15 =2,3,...,n—1,
fo(z) = 2z, + ph*sinhpr, —x, 1 — 1,
1
= 10, h=
P ) nrl
ro = (1,1,...,1)%.

Problem 9. The discretized Chandrasehar’s H-equation [4]

0.9 <~ piz; \~!
file) = xi—(l—— Hi; ) i=1,2,....m,
anzl/ii-l-,uj



ADJOINT BROYDEN METHODS FOR SYMMETRIC NONLINEAR EQUATIONS 659

wi = (1—05)/n,1<i<n.
ro = (1,1,...,1)7T.

Problem 10. [18]

fi(z) = 2x — 29 +sinz; — 1,
filr) = 2x;—ax0q +sinx; —1,i=2,3,...,n—1,
fulx) = 2z, +sinz, — 1.
ro = (0.1,0.1,...,0.1)T.
Problem 11. [7]
fi(z) = 2z — a4+ h%(arctanz; — 1),
file) = 2z —xi-1 — X441 + hQ(arctanxi -1),i=2,3,...,n—1,
fo(z) = 9z, — 2, 1 — h*(arctanz, — 1),
1
h = )
n+1

We will test the methods on the problem with different initial points.
The following three tables report the numerical results, where each column of the tables
has the following meaning:

Init: initial point;
n: the dimension of the problem;
Tter the total numbers of iterations;
|F'(xk)||: the norm of the residual at the stopping point;
P: the problem;

“ method failed to find the solution of the problem.
We first compared the proposed method SAB with the PSB and BFGS methods on Prob-

lem 1 with different initial points. Those initial points are set to zo = (0,0,...,0)7, z; =
(1,1,..., )T, 2y = (10,10,...,10)T, 25 = (100, 100, ...,100)", 4 = (1000, 1000, ..., 1000)7,
vs = (1,2,...,n)7, 26 = (n,n —1,..., )T, 27 = —x1, 283 = —12, 19 = —23, T190 = —24,
r11 = —xs, ¥12 = —xg, respectively. Table 1 lists numerical results. It indicates that the

proposed method performs well for Problem 1. Moreover, the initial points seems not to
affect the numbers of iteration very much.

We then compared the SAB, PSB, BFGS methods on Problems 2-10 with different
dimensions. Table 2 lists the numerical results. The results show that SAB performed much
better than PSB in the number of iterations. Compared with BFGS method, SAB also has
better performance for some problems.

Following an anonymous referee’s suggestion, we compared the performance of the pro-
posed method SAB with that of the Broyden-like method in [7]. We tested both methods
on Problem 11 with the same initial points given in Table 1. The results were listed in
Table 3. The results in the table show that the proposed method performed better than
the Broyden-like method did in the number of iterations, which verified that the SAB has
better performance for symmetric nonlinear equations.

Final Remarks

We have derived a class of symmetric adjoint Broyden methods. They share some nice
properties with its non-symmetric version and the well-known PSB method. By the use of
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Table 1: Results for Problem 1

Init n SAB method PSB method BFGS method
Ttor TEGT Ttor TEGT Tier — [F(al
zQ 50 8 1.0031e-006 9 1.8136e-006 6 1.7050e-006
100 5 9.8282e-006 5 2.4834e-006 5 1.1173e-006
200 1 3.6917e-006 1 3.6917e-006 1 3.6917e-006
500 1 8.9086e-006 1 8.9086e-006 1 8.9086e-006
xq 50 20 2.1078e-006 31 1.2766e-006 21 1.7145e-006
100 20 2.1067e-006 35 2.1423e-006 21 1.9059e-006
200 20 2.1065e-006 36 3.3080e-006 22 2.0895e-006
500 21 2.0378e-006 33 2.9456e-006 23 2.3547e-006
To 50 23 2.0158e-006 33 1.7489e-006 25 1.2106e-006
100 23 2.0139e-006 42 2.1751e-006 24 1.3407e-006
200 23 2.0134e-006 42 3.3109e-006 24 1.4515e-006
500 23 1.5288e-006 40 2.6379e-006 25 1.5854e-006
x3 50 26 1.8505e-006 36 1.7085e-006 27 1.5942e-006
100 26 1.8498e-006 49 2.1925e-006 27 1.7725e-006
200 26 1.8496e-006 50 2.3374e-006 27 1.9448e-006
500 27 2.2348e-006 46 3.7093e-006 27 2.1409e-006
Ty 50 29 2.8375e-006 36 1.8177e-006 30 1.3.67e-006
100 29 2.8368e-006 55 2.9192e-006 30 2.3297e-006
200 26 1.2756e-006 56 3.4038e-006 30 2.5585e-006
500 26 1.2756e-006 54 2.3772e-006 31 1.3902e-006
5 50 26 6.6734e-006 43 1.4629e-006 26 1.9809e-006
100 26 1.3211e-006 47 1.7986e-006 27 1.1891e-006
200 27 1.8280e-006 51 1.9210e-006 28 1.3128e-006
500 26 1.3033e-006 55 2.3954e-006 30 9.6988e-006
Tg 50 26 6.6734e-006 43 1.4629e-006 26 1.9809e-006
100 26 1.3211e-006 47 1.7986e-006 27 1.1891e-006
200 27 1.8280e-006 51 1.9210e-006 28 1.3128e-006
500 26 1.3033e-006 55 2.3954e-006 30 9.6988e-006
z7 50 20 2.1078e-006 31 1.2766e-006 21 1.7145e-006
100 20 2.1068e-006 35 2.1426e-006 21 1.9060e-006
200 20 2.1065e-006 36 3.3081e-006 22 2.0895e-006
500 21 2.0378e-006 33 2.9456e-006 23 2.3547e-006
g 50 23 2.0158e-006 33 1.7488e-006 25 1.2106e-006
100 23 2.0139e-006 42 2.1752e-006 24 1.3407e-006
200 23 2.0134e-006 42 3.3109e-006 24 1.4515e-006
500 23 1.5288e-006 40 2.6379e-006 25 1.5854e-006
Tg 50 26 1.8505e-006 36 1.7085e-006 27 1.5942e-006
100 26 1.8498e-006 49 2.1925e-006 27 1.7725e-006
200 26 1.8496e-006 50 2.3374e-006 27 1.9448e-006
500 27 2.2348e-006 46 3.7093e-006 27 2.1409e-006
T10 50 29 2.8375e-006 36 1.8177e-006 30 1.3.67e-006
100 29 2.8368e-006 55 2.9192e-006 30 2.3297e-006
200 26 1.2756e-006 56 3.4038e-006 30 2.5585e-006
500 26 1.2756e-006 54 2.3772e-006 31 1.3902e-006
EZEY 50 26 6.6734e-006 43 1.4629e-006 26 1.9809e-006
100 26 1.3211e-006 47 1.7986e-006 27 1.1891e-006
200 27 1.8280e-006 51 1.9210e-006 28 1.3128e-006
500 26 1.3033e-006 55 2.3954e-006 30 9.6988e-006
T 50 26 6.6734e-006 43 1.4629e-006 26 1.9809e-006
100 26 1.3211e-006 47 1.7986e-006 27 1.1891e-006
200 27 1.8280e-006 51 1.9210e-006 28 1.3128e-006
500 26 1.3033e-006 55 2.3954e-006 30 9.6988e-006
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Table 2: Results for Problems 2-10

SAB method

PSB method

BFGS method

P n TTer  Fapl  Ter  [[Fleg)[  Ter — [F(ap)]
2 10 20 7.2821e-006 14 3.4576e-006 13 1.0168e-006
50 24 2.1956e-006 18 1.6677e-006 14 1.3093e-006
100 24 5.2156e-006 19 1.3138e-006 14 2.0005e-006
200 22 2.5359e-006 19 1.6524e-006 15 1.2079e-006
500 20 1.4271e-006 21 1.3632e-006 16 9.9629e-006
3 10 15 1.9674e-006 26 8.4612e-06 15 5.4518e-006
50 9 8.6762e-006 - 11 8.5619e-006
100 10 4.1627e-006 - - 10 2.9304e-006
200 10 3.0298e-006 - 10 6.6604e-006
500 10 8.4306e-006 - - 10 5.6241e-006
4 10 8 1.7963e-006 6 1.1667e-006 6 1.1667e-006
50 11 9.8867e-006 5 6.8193e-006 5 6.8193e-006
100 10 6.1476e-006 5 8.1998e-006 5 8.1998e-006
200 8 5.9290e-006 5 1.0671e-006 5 1.0671e-006
500 8 8.3964e-007 5 1.6041e-006 5 1.6041e-006
5 10 23 1.1951e-006 24 5.1698e-006 21 1.2487e-006
50 25 1.2672e-006 T4 8.5351e-006 55 2.1606e-006
100 25 1.2672e-006 133 8.2265e-006 71 1.8686e-006
200 25 1.2672e-006 247 2.6519e-006 62 2.0457e-006
500 25 1.2672e-006 768 5.6172e-006 63 2.5031e-006
6 10 73 2.6993e-006 12 7.6348e-007 76 2.1456e-006
50 73 6.0359e-006 15 1.0587e-006 71 1.2235e-006
100 73 8.5360e-006 20 1.2388e-006 73 6.5660e-006
200 73 1.2072e-006 14 1.4580e-006 e 1.3194e-006
500 73 1.9087e-007 17 4.6552e-006 76 2.3098e-006
7 10 38 1.5645e-006 28 1.3713e-006 68 1.4533e-006
50 30 1.4713e-006 63 1.1735e-006 130 1.3065e-006
100 27 1.5720e-006 72 2.8461e-006 158 1.8402e-006
200 27 1.2690e-006 52 3.1887e-006 145 2.0925e-006
500 27 1.4797e-007 42 3.5336e-006 83 2.0047e-006
8 10 27 1.7294e-006 254 9.8492e-006 53 3.8359e-006
50 54 6.1756e-006 310 9.8170e-006 57 9.4744e-006
100 84 2.5792e-006 296 9.9157e-006 156 8.2504e-006
200 166 4.4425e-006 473 9.9803e-006 183 5.0366e-006
500 419 5.7041e-006 689 9.5861e-006 465 8.1274e-006
9 10 2 7.2341e-006 2 6.6658e-007 2 6.6667e-007
50 2 1.3121e-007 2 1.4100e-008 2 1.4101e-008
100 1 1.4018e-006 1 1.4018e-006 1 1.4018e-006
200 1 4.9502e-006 1 4.9502e-006 1 4.9502e-006
500 1 1.2514e-006 1 1.2514e-006 1 1.2514e-006
10 10 19 1.3284e-006 18 8.5437e-007 18 2.7926e-006
50 19 1.3285e-006 29 1.9860e-006 22 1.6419e-006
100 19 1.3285e-006 29 1.8687e-006 22 1.4387e-006
200 19 1.3285e-006 29 1.8150e-006 22 1.3489e-006
500 19 1.3285e-006 29 1.8311e-006 22 1.4541e-006
Table 3: Results for Problem 11
Init Broyden-like method SAB method
n =9 n = 49 n = 99 n=9 n = 49 = 99
Ty 14 61 127 6 26 75
xq 13 66 122 9 40 99
xo 16 69 124 9 43 97
x3 16 66 127 9 54 171
x g 19 70 186 9 51 101
z5 14 66 123 8 39 74
zg 15 68 124 9 37 100
xy 16 67 127 10 53 169
zg 19 T4 187 10 53 99
xg 15 61 116 12 52 117
x10 15 61 116 13 52 123
ESEY 15 61 116 12 52 117
) 15 61 116 13 52 123
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a nonmonotone line search, we proposed a symmetric adjoint Broyden algorithm for solving
symmetric nonlinear equations and established its global and superlinear convergence. Our
limited numerical experiments verified the efficiency of the proposed method.
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