
2017

666 Z. JIA AND X. CAI

are many such procedures [9], which can be summarized into four principal classes: forward-
backward [10, 19], double-backward [15, 19], Peaceman-Rachford [16] and Douglas-Rachford
[16]. The forward-backward method is a useful method, and there are many applications
such as [14, 13]. In this paper we pay our attention on the first class, the forward-backward
splitting method.

Suppose that

T = A+B,

where A is a maximal monotone mapping and B is a single-valued function. Recall that
the forward-backward method proposed by Lions and Mercier [16], generates the iterative
sequence {xk} via the following recursion

xk+1 = (I + ckA)
−1((I − ckB)(xk)). (1.2)

Note that 0 ∈ T (x) if and only if

−cB(x) ∈ cA(x) ⇐⇒ (I − cB)(x) ∈ (I + cA)(x) ⇐⇒ x = (I + cA)−1((I − cB)(x)).

Thus (1.2) is simply a fixed-point iteration of the latter equation with a varying multiplier ck
at each iteration. There are many other studies on this method [1, 3, 4, 5, 6, 8, 12, 21, 11, 7].
Based on the classical forward-backward splitting method for the subgradients in Hilbert
space, Bredies [3] proposed a general method which involves the iterative solution of sim-
pler subproblems to find a minimizer of the sum of a smooth and a non-smooth convex
function, and then applied it to the minimization of Tikhonov-functionals associated with
linear inverse problems and semi-norm penalization in Banach spaces; Combettes [5] pro-
posed a variable metric forward-backward splitting algorithm and proved its convergence
in real Hilbert spaces, and then applied this framework to derive primal-dual splitting al-
gorithms for solving various classes of monotone inclusions in duality; He [12] studied the
relationship between the forward-backward splitting method and the extra-gradient method
for monotone variational inequalities, and gave some modifications for the two methods;
Tseng [21] made a modification of the forward-backward method which entails an addi-
tional forward step and a projection step at each iteration; David and Yin [7] show that
the forward-backward operator is averaged and under the regular step size, the convergence
rate is o(1t).

Forward-backward method can cover some useful methods, such as gradient projection
method, in the case of A = NC and B = F , where C is a nonempty closed convex set and F
is the gradient of a differentiable convex function. This method was analyzed by Mercier [18]
and Gabay [10] and they showed that if B is co-coercive, then the iterates xk converge to a
solution if 0 < m ≤ ck ≤ M < 2σ, where σ > 0 is the co-coercive modulus of B and m, M
are two constants which make ck be bounded away from 0 and 2σ. Note that the parameter
ck plays the role of step-size, and from the numerical point of view, a larger ck may usually
lead to higher efficiency than a smaller one. Thus, in this paper, we propose a relaxation
version of forward-backward algorithm and show that with a simple relaxation step, the
convergence range for the parameter ck involved in the forward-backward algorithm can be
enlarged doubly, i.e., from 0 < m ≤ ck ≤ M < 2σ to 0 < m ≤ ck ≤ M < 4σ. The iteration
of the forward-backward splitting method with a relaxation step is as follows:

x̄k+1 = (I + ckA)
−1((I − ckB)(xk)), (1.3)

xk+1 = xk − αk(x
k − x̄k+1), (1.4)

A RELAXATION OF THE PARAMETER IN FBSM 667

where αk is a relaxation factor satisfied 0 < m′ ≤ αk ≤ 2(1 − ck
M) < 2(1 − ck

4σ), here αk

be bounded away from 0 and 2(1 − ck
4σ). Note that comparing with the step (1.3), the

computational load of (1.4) is ignorable, i.e., we achieve the goal with nearly no cost.
This paper is organized as follows. In Section 2, we summarize some necessary prelimi-

naries. In Section 3, we present the main results, which fully demonstrates the convergence
range for the parameter involved in the algorithm can be enlarged doubly and under some
further conditions on the mapping of T , i.e., either A or B is strongly monotone, we give a
R-linear convergence rate. In order to illustrate the efficiency introduced by the new param-
eter strategy of enlarging its range and the relaxation step. In Section 4, we report some
numerical results on two examples, where we compare the new method with the modified
forward-backward method in [8]. In Section 5, we give a short conclusion.

2 Preliminaries

In this section, we summarize some basic concepts and necessary results that will be useful
for further discussion.

Let Φ : Rn → [−∞,∞] be a mapping, the effective domain of Φ is defined as

domΦ = {x ∈ Rn | Φ(x) < +∞},

and the graph of Φ is defined as

gphΦ := {(x, u) | x ∈ domΦ, u ∈ Φ(x)}.

A mapping Φ : Rn → Rn is monotone if

(x− y)T (u− v) ≥ 0, ∀x, y ∈ domΦ, ∀u ∈ Φ(x), ∀v ∈ Φ(y).

A mapping Φ : Rn → Rn is strongly monotone if there exists a constant c > 0 such that

(x− y)T (u− v) ≥ c∥x− y∥2, ∀x, y ∈ domΦ, ∀u ∈ Φ(x), ∀v ∈ Φ(y).

A monotone mapping Φ is maximal monotone if the graph of Φ is not properly contained
in the graph of any other monotone operator Ψ.

If we identify the map Φ with its graph, maximal monotone maps are monotone maps
that are maximal with respect to set inclusion.

Definition 2.1. Let T be a mapping from a set Ω ⊂ Rn → Rn, then

(1) T is said to be co-coercive on Ω with modulus σ > 0, if

(u− v)T (T (u)− T (v)) ≥ σ∥T (u)− T (v)∥2, ∀u, v ∈ Ω.

(2) T is said to be nonexpansive on Ω, if

∥T (x)− T (y)∥ ≤ ∥x− y∥, ∀x, y ∈ Ω.

(3) T is said to be firmly nonexpansive on Ω, if

∥T (x)− T (y)∥2 ≤ (x− y)T (T (x)− T (y)), ∀x, y ∈ Ω.

Obviously, if T is firmly nonexpansive, then T is nonexpansive. The converse is not
true in general.

The following lemma will be used to prove the main theorem in this paper.

Lemma 2.2 ([2]). Suppose that the mapping A : Rn → Rn is maximal monotone, then the
resolvent JcA = (I + cA)−1 is firmly nonexpansive and dom(I + cA)−1 = Rn , where c is a
positive scalar.

668 Z. JIA AND X. CAI

3 Convergence

This section presents the main result of this paper, which fully demonstrates the conver-
gence range for the parameter involved in the algorithm can be enlarged doubly even with
approximate evaluation of the resolvent. Furthermore, by adding some conditions on the
mapping, we can get the linear rate of convergence.

Lemma 3.1. Suppose that the mapping A is maximal monotone and B is co-coercive with
modulus σ. If

x̄ = JcA(I − cB)(x),

with
0 < m ≤ c ≤ M < 4σ,

then −(x − x̄) is a descent direction of the merit function 1
2∥x − x∗∥2 at x, where x∗ ∈ Ω∗

and Ω∗ := {x | 0 ∈ A(x) +B(x)} is the solution set of (1.1) with T = A+B.

Proof. Since the mapping A is maximal monotone, it follows from Lemma 2.2 that the
resolvent of A is firmly nonexpansive, i.e.,

(JcA(u)− JcA(v))
T (u− v) ≥ ∥JcA(u)− JcA(v)∥2, ∀u, v ∈ Rn.

Equivalently,

((u− JcA(u))− (v − JcA(v)))
T (JcA(u)− JcA(v)) ≥ 0, ∀u, v ∈ Rn. (3.1)

Setting u := x− cB(x) and v := x∗ − cB(x∗) in (3.1), we have

((x− cB(x)− JcA(I − cB)(x))− (x∗ − cB(x∗)− JcA(x
∗ − cB(x∗))))T

(JcA(I − cB)(x)− JcA(x
∗ − cB(x∗))) ≥ 0.

Using the identities

x∗ = JcA(x
∗ − cB(x∗)) and x̄ = JcA(I − cB)(x),

we obtain
((x− x̄)− c(B(x)−B(x∗)))T (x̄− x∗) ≥ 0.

Then,

(x̄− x∗)T (x− x̄) ≥ c(x− x∗)T (B(x)−B(x∗))− c(x− x̄)T (B(x)−B(x∗)). (3.2)

Rearranging terms, from (3.2) we have

(x− x∗)T (x− x̄)

= ∥x− x̄∥2 + (x̄− x∗)T (x− x̄)

≥ ∥x− x̄∥2 + c(x− x∗)T (B(x)−B(x∗))− c(x− x̄)T (B(x)−B(x∗))

≥ ∥x− x̄∥2 + cσ∥B(x)−B(x∗)∥2 − c(x− x̄)T (B(x)−B(x∗)), (3.3)

where the second inequality is due to the co-coercivity of B. Using Young’s inequality

ab ≤ ap

p
+

bq

q
, (3.4)

A RELAXATION OF THE PARAMETER IN FBSM 669

where p > 1, 1
p + 1

q = 1, and by setting a := σ
1
2 (B(x) − B(x∗)), b := 1

2σ
− 1

2 (x − x̄) and
p = q = 2, we have:

(B(x)−B(x∗))T (x− x̄) ≤ σ∥B(x)−B(x∗)∥2 + 1

4σ
∥x− x̄∥2. (3.5)

Thus, it follows from (3.3) and (3.5) that

(x− x∗)T (x− x̄) ≥
(
1− c

4σ

)
∥x− x̄∥2 > 0, (3.6)

whenever x is not a solution, which means that −(x− x̄) is a descent direction for 1
2∥x−x∗∥2

at x. This completes the proof.

The next theorem gives the convergence result of the iteration (1.3) and (1.4). We allow
the possibility of inaccurate evaluation of the resolvent of A (but assume exact evaluation
of B).

Theorem 3.2. Let T be a set-valued map with a nonempty, closed convex domain and
at least one zero. Assume that T = A + B, where A is maximal monotone and B is a
single-valued function. Let {xk} be a sequence such that

(a) ∥x̃k+1 − JckA(I − ckB)(xk)∥ ≤ εk,

(b) xk+1 = xk − αk(x
k − x̃k+1); and suppose that

∑∞
k=0 εk < ∞. If B is co-coercive with

modulus σ, and

0 < m ≤ ck ≤ M < 4σ, 0 < m′ ≤ αk ≤ 2(1− ck
M

) < 2(1− ck
4σ

), ∀k.

Then {xk} converges to a point x∗ such that 0 ∈ T (x∗).

Proof. We prove first for the case of exact evaluation of the resolvent of A, that is εk = 0
for all k. In this case xk+1 is given by (1.3) and (1.4). Then we have

∥xk+1 − x∗∥2 = ∥xk − αk(x
k − x̄k+1)− x∗∥2

= ∥xk − x∗∥2 + α2
k∥xk − x̄k+1∥2 − 2αk(x

k − x∗)T (xk − x̄k+1)

≤ ∥xk − x∗∥2 + α2
k∥xk − x̄k+1∥2 − 2αk(1−

ck
4σ

)∥xk − x̄k+1∥2

= ∥xk − x∗∥2 +
[
α2
k − 2αk

(
1− ck

4σ

)]
∥xk − x̄k+1∥2, (3.7)

where the inequality follows from (3.6). Since the relaxation factor αk satisfied the inequality
0 < m′ ≤ αk ≤ 2(1− ck

M) < 2(1 − ck
4σ), we have that α2

k − 2αk(1 − ck
4σ) < 0 for all k, and

α2
k − 2αk(1− ck

4σ) is bounded away from zero. This shows that {xk} is bounded, and

lim
k→∞

∥xk − x̄k+1∥ = 0. (3.8)

Using x̄k+1 = JckA((I − ckB)(xk)) by (1.3), we get

lim
k→∞

∥xk − JckA((I − ckB)(xk))∥ = 0. (3.9)

Since {xk} is bounded, it has at least one cluster point. Supposing that x∞ is one of the
cluster points, there is an index set κ, such that {xk : k ∈ κ} converges to x∞. Since {ck}

670 Z. JIA AND X. CAI

is also bounded, it has at least a cluster point c̄ > 0. Without loss of generality, we assume
that {ck : k ∈ κ} converges to c̄. Taking limit in (3.9), we have x∞ = Jc̄A((I − c̄B)(x∞)),
which means that x∞ is a solution of the inclusion 0 ∈ T (x). It remains to show that x∞

is the only limit point of the sequence xk. By (3.7), with x∗ = x∞, we see that the entire
sequence {∥xk − x∞∥} is nonincreasing and bounded, therefore it is convergent. Since the
subsequence {xk : k ∈ κ} converges to x∞, {∥xk − x∞∥ : k ∈ κ} → 0. It follows that
{∥xk − x∞∥} → 0, i.e., the entire sequence {xk} converges to x∞(= x∗).

We next consider the case of inaccurate evaluation of the resolvent. For convenience, we
denote x̄k+1 = JckA((I − ckB)(xk)) and zk+1 = xk − αk(x

k − x̄k+1). From (3.7), we get

∥zk+1 − x∗∥2 ≤ ∥xk − x∗∥2 +
[
α2
k − 2αk

(
1− ck

4σ

)]
∥xk − x̄k+1∥2, (3.10)

and it follows that

∥zk+1 − x∗∥2 ≤ ∥xk − x∗∥2, ∀αk ∈ [m′, 2
(
1− ck

M

)
] ⊂ (0, 2

(
1− ck

4σ

)
). (3.11)

Since
∥xk+1 − zk+1∥ = αk∥x̃k+1 − x̄k+1∥,

and ∥x̃k+1 − x̄k+1∥ ≤ εk, we get

∥xk+1 − zk+1∥ ≤ αkεk. (3.12)

Using the following inequality that for any two vectors on the same space

∥a+ b∥2 ≤ (1 + τ)∥a∥2 +
(
1 +

1

τ

)
∥b∥2, ∀τ > 0,

we have (setting a := zk+1 − x∗, b := xk+1 − x∗, and τ := εk)

∥xk+1 − x∗∥2

= ∥zk+1 − x∗ + (xk+1 − zk+1)∥2

≤ (1 + εk)∥zk+1 − x∗∥2 + (1 +
1

εk
)∥xk+1 − zk+1∥2

≤ (1 + εk)(∥xk − x∗∥2 + [α2
k − 2αk(1−

ck
4σ

)]∥xk − x̄k+1∥2) + 4(1 + εk)εk

≤

[
k∏

i=0

(1 + εi)

]
∥x0 − x∗∥2 +

k∑
t=0

[
k∏

i=t+1

(1 + εi)

] [
α2
t − 2αt(1−

ct
4σ

)
]
∥xt − x̄t+1∥2

+4
k∑

t=0

[
k∏

i=t+1

(1 + εi)

]
(1 + εt)εt, (3.13)

where the second inequality follows from (3.10) and (3.12) and the fact that αk < 2 for all

k. From the assumption that
∑∞

k=0 εk < ∞, we have
∏k

i=0(1 + εi) < ∞ and

k∑
t=0

[
k∏

i=t+1

(1 + εi)

]
(1 + εt)εt ≤

k∏
i=0

(1 + εi)
k∑

t=0

εt < ∞,

which together with the fact that α2
k − 2αk(1− ck

4σ) < 0 and (3.13), imply that

∥xk+1 − x∗∥2 < +∞,

A RELAXATION OF THE PARAMETER IN FBSM 671

and as a consequence, {xk} is bounded. The coefficient α2
t − 2αt(1− ct

4σ) < 0, which is due

to 0 < m′ ≤ αt ≤ 2(1− ck
M) < 2(1− ck

4σ). For 1 <
∏k

i=0(1 + εi), rearranging terms in (3.13)
yields

−
k∑

t=0

[
α2
t − 2αt

(
1− ct

4σ

)]
∥xt − x̄t+1∥2

≤

[
k∏

i=0

(1 + εi)

]
∥x0 − x∗∥2 + 4

k∑
t=0

[
k∏

i=t+1

(1 + εi)

]
(1 + εt)εt − ∥xk+1 − x∗∥2

≤

[
k∏

i=0

(1 + εi)

]
∥x0 − x∗∥2 + 4

k∑
t=0

[
k∏

i=t+1

(1 + εi)

]
(1 + εt)εt,

which implies that

−
k∑

t=0

[
α2
t − 2αt

(
1− ct

4σ

)]
∥xt − x̄t+1∥2 < +∞.

Then we have lim
k→∞

∥xk− x̄k+1∥ = 0, a similar result as (3.8). The rest of the proof is similar

to the case of exactly evaluating the resolvent, and we omit it here.

If B is strongly monotone, we can establish a R-linear convergence rate for the sequence
{xk} produced by (1.3) and (1.4). This result asserts that {xk} converges to x∗ at least R-
linearly, that is, there exists positive constants c and η with η < 1 such that ∥xk+1−x∗∥ ≤ cηk

for all k sufficiently large.

Corollary 3.3. Assume the same setting of Theorem 3.2. If in addition B is strongly
monotone, the sequence {xk} converges at least R-linearly.

Proof. Let x∗ be the unique solution of 0 ∈ T (x) and let ηB > 0 be the modular of strong
monotonicity of B. Using the same notation as in the proof of Theorem 3.2, we have

(B(xk)−B(x∗))T (xk − x∗) ≥ ηB∥xk − x∗∥2,

so that
∥B(xk)−B(x∗)∥ ≥ ηB∥xk − x∗∥.

Using Young’s inequality (3.4), and by setting p = q = 2,

a :=

(
M

4

) 1
2 (

B(xk)−B(x∗)
)
, b :=

1

2

(
M

4

)− 1
2

(xk − x̄k+1),

we have

(B(xk)−B(x∗))T (xk − x̄k+1) ≤ M

4
∥B(xk)−B(x∗)∥2 + 1

M
∥xk − x̄k+1∥2. (3.14)

Together with (3.3), we have

(xk − x∗)T (xk − x̄k+1) ≥
(
1− ck

M

)
∥xk − x̄k+1∥2 + ck

(
σ − M

4

)
∥B(xk)−B(x∗)∥2

≥
(
1− ck

M

)
∥xk − x̄k+1∥2 + ckη

2
B

(
σ − M

4

)
∥xk − x∗∥2. (3.15)

672 Z. JIA AND X. CAI

The second inequality is due to strongly monotonicity of B. Referring to (3.7), we deduce

∥xk+1 − x∗∥2 = ∥xk − αk(x
k − x̄k+1)− x∗∥2

= ∥xk − x∗∥2 + α2
k∥xk − x̄k+1∥2 − 2αk(x

k − x∗)T (xk − x̄k+1)

≤ ∥xk − x∗∥2 + α2
k∥xk − x̄k+1∥2

−2αk

[(
1− ck

M

)
∥xk − x̄k+1∥2 + ckη

2
B

(
σ − M

4

)
∥xk − x∗∥2

]
= ∥xk − x∗∥2 − 2αkckη

2
B

(
σ − M

4

)
∥xk − x∗∥2

+
[
α2
k − 2αk

(
1− ck

M

)]
∥xk − x̄k+1∥2. (3.16)

Due to

0 < m ≤ ck ≤ M < 4σ, 0 < m′ ≤ αk ≤ 2(1− ck
M

) < 2
(
1− ck

4σ

)
, ∀k,

we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2αkckη
2
B

(
σ − M

4

)
∥xk − x∗∥2

≤
[
1− 2m′mη2B

(
σ − M

4

)]
∥xk − x∗∥2. (3.17)

Since ηB is positive, this complete the proof.

If A is strongly monotone, we also can establish a R-linear convergence rate for the
sequence {xk} produced by (1.3) and (1.4).

Corollary 3.4. Assume the same setting of Theorem 3.2. If in addition A is strongly
monotone, the sequence {xk} converges at least R-linearly.

Proof. Let x∗ be the unique solution of 0 ∈ T (x) and let ηA be the modular of strong
monotonicity of A. Note that ηA is positive. Using the same notation as in the proof of
Theorem 3.2, we have

(A(xk+1)−A(x∗))T (xk+1 − x∗) ≥ ηA∥xk+1 − x∗∥2,

so that
∥A(xk+1)−A(x∗)∥ ≥ ηA∥xk+1 − x∗∥,

(JckA(u)− JckA(v))
T (u− v) ≥ (1 + ckηA)∥JckA(u)− JckA(v)∥2, ∀u, v ∈ Rn.

Equivalently, for all u, v ∈ Rn

((u− JckA(u))− (v − JckA(v)))
T (JckA(u)− JckA(v)) ≥ ckηA∥JckA(u)− JckA(v)∥2. (3.18)

Setting u := xk − ckB(xk) and v := x∗ − ckB(x∗) in (3.18), and using the identities

x∗ = JckA(x
∗ − ckB(x∗)) and x̄ = JckA(I − ckB)(xk),

we have

((xk − x̄k+1)− ck(B(xk)−B(x∗)))T (x̄k+1 − x∗) ≥ ckηA∥x̄k+1 − x∗∥2.

A RELAXATION OF THE PARAMETER IN FBSM 673

Then

(x̄k+1 − x∗)T (xk − x̄k+1) ≥ ck(x
k − x∗)T (B(xk)−B(x∗))

− ck(x
k − x̄k+1)T (B(xk)−B(x∗))

+ ckηA∥x̄k+1 − x∗∥2.
(3.19)

Similar to the proof of Corollary 3.3, we have

(xk − x∗)T (xk − x̄k+1) ≥
(
1− ck

4σ

)
∥xk − x̄k+1∥2 + ckηA∥x̄k+1 − x∗∥2 > 0. (3.20)

Referring to (3.7), we deduce

∥xk+1 − x∗∥2 = ∥xk − αk(x
k − x̄k+1)− x∗∥2

= ∥xk − x∗∥2 + α2
k∥xk − x̄k+1∥2 − 2αk(x

k − x∗)T (xk − x̄k+1)

≤ ∥xk − x∗∥2 +
[
α2
k − 2αk

(
1− ck

4σ

)]
∥xk − x̄k+1∥2

−2αkckηA∥x̄k+1 − x∗∥2.
(3.21)

Set A = min{A1, A2}, where A1 = −α2
k + 2αk

(
1− ck

4σ

)
, A2 = 2αkckηA. So we obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −A1∥xk − x̄k+1∥2 −A2∥x̄k+1 − x∗∥2

≤
(
1− A

2

)
∥xk − x∗∥2. (3.22)

With the inequality 0 < A < 1, we complete the proof.

4 Nuemerical experiments

In this section, we test the performance of the relaxed forward-backword method, denot-
ing it RFB for short. We consider the following two cases to be tested, complementarity
problems and generalized Nash equilibrium problems. In addition, we compare RFB with
the algorithm in [8], which is denoted MFB for short (we will describe the algorithm simply
later), and the original forward-backward method (FB for short). All codes were written
in Matlab 2008b and run on an HP personal computer with Pentium Dual-Core processor
2.66 GHz and 2 GB memory. To demonstrate the efficiency of RFB, we report the numer-
ical results in terms of the number of iterations (“Iter.”) and computing time in seconds
(“Time”).

674 Z. JIA AND X. CAI

4.1 Complementarity problem

We now consider a special case of the problem (1.1), that is the complementarity problem,
which is to find a vector x ∈ Rn such that

x ≥ 0, F (x) ≥ 0 and xTF (x) = 0. (4.1)

Below, we describe the details of the underlying mapping F (x).
The underlying mapping F consists of a linear part and a nonlinear part. Concretely,

F (x) = Mx+D(x) + q,

where Mx+ q is the linear part and D(x) is the nonlinear part. We form the linear part as
described in [8], i.e., M = ATA+B, where A is an n×n matrix whose entries are randomly
generated in the interval (−5, 5) and the skew-symmetric matrix B is generated in the same
way; the vector q is generated randomly in the interval (−500, 0). For the nonlinear part
D(x), each component is Dj(x) = aj · arctan(xj) (j = 1, 2, · · · , n), where aj is a uniformly
random variable in (0, 1).

In the experiment, we set the stopping criterion as ∥x − P+(x − F (x))∥ ≤ 10−7. The
elements of the initial point x0 is randomly distributed on (0, 10). We choose the parameter
ck to be 0.3·alf in our algorithm, and 0.15·alf in the FB method, where alf is a constant we
deduce from the same armijo rule, which ensure the parameter ck to satisfy the inequalities
0 < m ≤ ck ≤ M < 4σ and 0 < m ≤ ck ≤ M < 2σrespectively, and we choose the relaxation
factor αk = 1.35.

In Table 1, we give the number of iterations and the CPU time of the three algorithms,
when they reach the same stopping rule. And we illustrate and compare the three algorithms
in Figure 1 by plotting the residual as function of the number of iterations in different
dimensions, which shows the convergent ratio between the three algorithms as the increase
of number of iterations.

From Table1 and Figure 1, it is easy to see that for all cases, our algorithm(RFB) needs
less number of iterations and less CPU time to achieve the same stopping rule than the
other two algorithms, which needs only half iterations of the FB algorithm. The parameter
ck in RFB is larger than that in FB method. Just like our analysis mentioned before, the
parameter ck plays the role of step-size, and from the numerical point of view, a larger ck

A RELAXATION OF THE PARAMETER IN FBSM 675

Table 1: The comparison of the iteration number and time among the three algorithms
Dimension Method Iter. Time

n=100
MFB 357 0.3940
FB 515 0.3798
RFB 269 0.2325

n=300
MFB 537 1.6029
FB 632 1.4347
RFB 384 0.9184

n=400
MFB 444 1.9861
FB 634 2.0903
RFB 318 1.1195

n=600
MFB 488 6.8107
FB 542 5.7401
RFB 344 3.8860

may usually lead to higher efficiency than a smaller one. So the simple relaxation step at
each iteration is worthy.

4.2 Transportation equilibrium problem

In this example, we consider a transportation equilibrium problem. There are N nodes, and
L directed links in the network [N,L]. Assuming that a, b stand for the links, p, q stand for
paths, w means the pair of OD, Pw means the set of all paths which link w. ∆ and Γ mean
the correlation matrix of path-link and path-OD respectively, which are determined by the
network.

We use xp to denote the flow on the path p, and fa the flow on the link a, so we have
the equality:

f = ∆Tx.

We denote the demand of each pair of OD as dw, and it meets the flow equilibrium:

dw =
∑
p∈Pw

xp.

So we have the equality:
d = ΓTx.

Assuming that t(f) = ta, a ∈ l is the cost function on the link. We set θp as the cost function
on path p. Given the cost function t, we can deduce the cost function θp on path p:

θ = ∆t(f) and θ(x) = ∆t(∆Tx).

For each OD pair w, we have a disutility function λw(d). The utility function and the
disutility function are all the function of x. The transportation equilibrium is to find the
flow x∗ ∈ S, which satisfys:

(y − x∗)TF (x∗) ≥ 0, ∀y ∈ K. (4.2)

Since
Fp(x) = θpx− λw(d(x)), ∀w, p ∈ Pw,

676 Z. JIA AND X. CAI

Figure 1: The number of iterations for problem (4.1), for dimension of the problem: (a)
n = 100; (b) n = 300; (c) n = 400; (d) n = 600.

so we have

F (x) = ∆t(∆Tx)− Γλ(ΓTx).

In our experiment, we specify this transportation equilibrium problem by a given network
[N,L] and demand quantities of each pair of OD. In the network [N,L], we assume there
are 25 nodes, 37 directed links and 6 pairs of OD, we depict the network in Figure 2, there
are 55 paths, so the dimension of variable x is 55, and the dimension of ∆ and Γ are 55× 37
and 55×6 respectively. The cost of the users are given in Table 2 and the disutility function
is given as follows:

λw(d) = −mwdw + qw,

where the parameters mw and qw are given in Table 3.
In this specific example, we consider fixed demand quantities:

{x ∈ Rn | BTx = d, x ≥ 0},

where the demand quantity d = (10, 25, 10, 60, 100, 20) is a given vector.
In this experiment, we also choose the MFB algorithm in [8] and the FB method as the

comparing algorithms, with different error bounds eps.. All the elements of the initial point
x0 is one, We choose the parameter ck to be 0.12 · alf in our algorithm, and 0.06 · alf in the
FB method, where alf is a constant deduced from the same armijo rule. And we choose the
relaxation factor αk = 1.7.

In Table 4, we give the iterative numbers and the CPU time of the three algorithms,
with the same accuracy. And we illustrate and compare the three algorithms in Figure 3
by plotting the residual of problem (4.2) as function of the number of iterations in different

A RELAXATION OF THE PARAMETER IN FBSM 677

1 2 3 4 5 6 7 8 109

11 12 13 14 15 16 17 18 2019

21 22 23 24 25

1 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17 18 1910

21 22 23 24 25 26 27 2820

31 32 333029

34 35 36 37

Figure 2: The transportation network

Table 2: The cost function on each link in the transportation network
t1(f) = 5 · 10−6f4

1 + 0.5f1 + 0.2f2 + 50 t2(f) = 3 · 10−6f4
2 + 0.4f2 + 0.4f1 + 20

t3(f) = 5 · 10−6f4
3 + 0.3f3 + 0.1f4 + 35 t4(f) = 3 · 10−6f4

4 + 0.6f4 + 0.3f5 + 40
t5(f) = 6 · 10−6f4

5 + 0.6f5 + 0.4f6 + 60 t6(f) = 0.7f6 + 0.3f7 + 50
t7(f) = 8 · 10−6f4

7 + 0.8f7 + 0.2f8 + 40 t8(f) = 4 · 10−6f4
8 + 0.5f8 + 0.2f9 + 65

t9(f) = 10−6f4
9 + 0.6f9 + 0.2f10 + 70 t10(f) = 0.4f10 + 0.1f12 + 80

t11(f) = 7 · 10−6f4
11 + 0.7f11 + 0.4f12 + 65 t12(f) = 0.8f12 + 0.2f13 + 70

t13(f) = 10−6f4
13 + 0.7f13 + 0.3f18 + 60 t14(f) = 0.8f14 + 0.3f15 + 50

t15(f) = 3 · 10−6f4
15 + 0.9f15 + 0.2f14 + 20 t16(f) = 0.8f16 + 0.5f12 + 30

t17(f) = 3 · 10−6f4
17 + 0.7f17 + 0.2f15 + 45 t18(f) = 0.5f18 + 0.1f16 + 30

t19(f) = 0.8f19 + 0.3f17 + 60 t20(f) = 3 · 10−6f4
20 + 0.6f20 + 0.1f21 + 30

t21(f) = 4 · 10−6f4
21 + 0.4f21 + 0.1f22 + 40 t22(f) = 2 · 10−6f4

22 + 0.6f22 + 0.1f23 + 50
t23(f) = 3 · 10−6f4

23 + 0.9f23 + 0.2f24 + 35 t24(f) = 2 · 10−6f4
24 + 0.8f24 + 0.1f25 + 40

t25(f) = 3 · 10−6f4
25 + 0.9f25 + 0.3f26 + 45 t26(f) = 6 · 10−6f4

26 + 0.7f26 + 0.8f27 + 30
t27(f) = 3 · 10−6f4

27 + 0.8f27 + 0.3f28 + 50 t28(f) = 3 · 10−6f4
28 + 0.7f28 + 65

t29(f) = 3 · 10−6f4
29 + 0.3f29 + 0.1f30 + 45 t30(f) = 4 · 10−6f4

30 + 0.7f30 + 0.2f31 + 60
t31(f) = 3 · 10−6f4

31 + 0.8f31 + 0.1f32 + 75 t32(f) = 6 · 10−6f4
32 + 0.8f32 + 0.3f31 + 60

t33(f) = 4 · 10−6f4
33 + 0.9f33 + 0.2f31 + 75 t34(f) = 6 · 10−6f4

34 + 0.7f34 + 0.3f30 + 55
t35(f) = 3 · 10−6f4

35 + 0.8f35 + 0.3f32 + 60 t36(f) = 2 · 10−6f4
36 + 0.8f36 + 0.4f31 + 75

t37(f) = 6 · 10−6f4
37 + 0.5f37 + 0.1f36 + 35

Table 3: The parameters in the disutility function
the pair of OD (1,20) (1,25) (2,25) (3,25) (1,24) (11,25)

mw 1 6 10 5 7 9
qw 100 80 200 600 800 700

678 Z. JIA AND X. CAI

Table 4: The comparison of the iteration number and time among the three algorithms
Error bound Method Iter. Time

eps.=10−1
MFB 1219 1.0646
FB 2365 1.3118
RFB 997 0.5321

eps.=10−2
MFB 1527 1.3030
FB 3143 1.6810
RFB 1502 0.8031

eps.=10−3
MFB 1903 1.6063
FB 4194 2.1519
RFB 2355 1.1968

eps.=10−4
MFB 2493 2.1366
FB 5324 2.5963
RFB 3176 1.9812

error bounds, which shows the convergent ratio between the three algorithms as the increase
of iteration number.

Figure 3: The iterative number of problem (4.2) among the three algorithms, in case of the
error bound of the problem is setting: (a) eps.=10−1; (b) eps.=10−2; (c) eps.=10−3; (d)
eps.=10−4.

A RELAXATION OF THE PARAMETER IN FBSM 679

From Table 4 and Figure 3, it is easy to see that for all cases, our algorithm(RFB) needs
less number of iterations to achieve the same accuracy than the FB algorithm, actually we
only needs almost half iterations of the FB algorithm. And the CPU time of RFB is less
than the other two algorithms. The parameter ck of RFB is larger than the ck in the FB
method, which plays the role of step-size. As our analysis, a larger ck may usually lead
to higher efficiency than a smaller one, which is verified by this experiment again. So the
simple relaxation step at each iteration is worthy. We also find that, when the value of eps.
becomes small, the iteration number of our algorithm is becoming larger than the iteration
number of MFB, although still smaller than the FB method. While we find that we use less
CPU time than MFB, which means the calculative cost of each iteration in RFB is smaller
than MFB.

5 Conclusion

In this paper, we successfully enlarged the convergence range of the famous forward-backward
splitting method from 0 < m ≤ ck ≤ M < 2σ to 0 < m ≤ ck ≤ M < 4σ, with a slight
cost of combining the iterative point generated by the classical forward-backward splitting
method and the current iterative point. Under the same conditions as those in the classical
forward-backward splitting method, we prove the global convergence of the new algorithm.
We also consider the possibility of inaccurate evaluation of the resolvent of A, which is
important from the numerical point of view. Under further conditions on the mappings A
and/or B, we prove the R-linear rate of convergence of the new algorithm. The numerical
results show that the new algorithm is competing to the same class of algorithms.

References

[1] H. Attouch, L.M. Briceño-Arias and P.L. Combettes, A parallel splitting method for
coupled monotone inclusions, SIAM J. Control Optim. 48 (2010) 3246–3270.

[2] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, Springer, New York, 2011.

[3] K. Bredies, A forward-backward splitting algorithm for the minimization of non-smooth
convex functionals in Banach space, Inverse Problems 25 (2008): 015005.

[4] P.L. Combettes, Solving monotone inclusions via compositions of nonexpansive aver-
aged, Optimization 53 (2004) 475–504.

[5] P.L. Combettes and B.C. Vũ, Variable metric forward-backward splitting with appli-
cations to monotone inclusions in duality, Optimization 63 (2014) 1289–1318.

[6] H.G. Chen, Forward-Backward Splitting Techniques: Theory and Applications, Ph.D.
Thesis, Department of Applied Mathematics, University of Washington, Seattle, WA,
1994.

[7] D. David and W.T. Yin, Convergence rate analysis of several splitting schemes, in
Splitting Methods in Communication, Imaging, Science, and Engineering, Springer In-
ternational Publishing, 2016, pp. 115–163.

[8] X. Ding and D. R. Han, A modification of the forward-backward splitting method for
maximal monotone mappings, Numerical Algebra Control and Optimization 3 (2013)
295–307.

680 Z. JIA AND X. CAI

[9] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems, Springer-Verlag, New York, 2003.

[10] D. Gabay, Applications of the method of multipliers to variational inequalities, in Aug-
mented Lagrangian Methods: Applications to the Solution of Boundary Value Problems,
M. Fortin R. Glowinski (eds.), Elsevier, Amsterdam, 1983, pp. 299–331.

[11] E.G. Golshtein and N.V. Tretyakov, Modified Lagrangians in convex programming and
their generalizations, in Point-to-Set Maps and Mathematical Programming, P. Huard
and A. Auslender (eds.), Springer Berlin Heidelberg, North Holland, 1979, pp. 86–97.

[12] B.S. He, X.M. Yuan and J. Zhang, Comparison of two kinds of prediction-correction
methods for monotone variational inequalities, Comput. Optim. Appl. 27 (2004) 247–
267.

[13] K.N. Kumar, B. Sivaneasan, P.H. Cheah, P.L. So and D.Z.W. Wang, V2G capacity
estimation using dynamic ev scheduling, IEEE Trans. on Smart Grid 5 (2014) 1051–
1060.

[14] H.X. Liu and D.Z.W. Wang, Global optimization method for network design problem
with stochastic user equilibrium, Transport. Res. B-meth. 72 (2015) 20–39.

[15] P.L. Lions, Une méthode itérative de resolution d’une inéquation variationnelle, Israel
J. Math. 31 (1978) 204–208.

[16] P.L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal. 16 (1979) 964–979.

[17] B. Martinet, Régularisation d’inéquations variationelles par approximations successives,
Rev. Francaise Inf. Rech, Oper. 4 (1970) 154–158.

[18] B. Mercier, Inéquations Variationnelles de la Mécanique, No. 80.01 in Publications
Mathématiques d’Orsay, France Orsay, 1980.

[19] G.B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert
space, J. Math. Anal. Appl. 72 (1979) 383–390.

[20] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Con-
trol Optim. 14 (1976) 877–898.

[21] P. Tseng, A modified forward-backward splitting method for maximal monotone map-
pings, SIAM J. Control Optim. 38 (2000) 431–446.

Manuscript received 29 April 2015
revised 23 December 2015

accepted for publication 22 February 2016

A RELAXATION OF THE PARAMETER IN FBSM 681

Zehui Jia
School of Mathematics and Statistics
Nanjing University of Information Science and Technology
Nanjing 210044, China

School of Mathematical Sciences
Key Laboratory for NSLSCS of Jiangsu Province Nanjing Normal University
Nanjing 210023, China
E-mail address: jiazehui90@126.com

Xingju Cai
School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province
Nanjing Normal University, Nanjing 210023, China
E-mail address: caixingju@njnu.edu.cn

