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Tulkens [41] introduced the so called FDH (Free Disposal Hull) method relaxing convexity
and assuming only a strong disposal assumption of the technology.

B-convexity involves a multiplicative structure of the technology and distance functions.
However, there exist many other distance functions based upon translation properties and
additive structures. For example, the Blackorby-Donaldson’s translation function [4] is a
translation homothetic distance function that can be used to measure efficiency. Similar
distance functions were proposed in consumer and production theory by Luenberger [28,29]
and Chambers, Chung and Färe [13]. A recent overview on the axomatic of efficiency mea-
surement can be found in the works by Russell and Schworm [37,38]. The paper proposes a
framework allowing to take into account translation homothetic structures in productivity
measurement. This we do by modelling production technologies with an upper semilat-
tice structure satisfying a translation homothetic property. Hence, the concept of max-plus
convexity making the formal substitution + 7→ max and · 7→ + is considered. In finite
dimensional space, Max-Plus convex and B-convex sets are isomorphic and, consequently, a
proposition that is true in the framework of B-convexity holds, with obvious lexical modifica-
tions, in Max-Plus convexity. A general overview on Max-Plus algebra can be found in [21].
We call technologies combining both an upper semilattice structure and an additivity as-
sumption, Max-Plus production technologies. In the following, tropical technologies will be a
generic term to describe both Max-Plus and B-convex technologies. This terminology comes
from the fact that all this analysis relies on the field of tropical mathematics. In general,
the term “tropical” stands for algebraic structures involving an idempotent semi-ring.

Max-Plus convex sets belong to a special class of path-connected and contractible semi-
lattices defined over the nonnegative Euclidean orthant. An upper (lower) semilattice is
a partially ordered set in which each pair of elements has a least upper (greatest lower)
bound. Max-Plus convexity has two basic implications on the nature of a production tech-
nology and the way outputs are produced from inputs. First, since a Max-Plus convex set
is an upper semilattice, the least upper bound of a pair of input vectors can produce the
upper bound of the outputs they can individually produce. It has been shown in [9] that
these technologies belong to the class of the Kohli input price (KI) nonjoint technologies
(see for instance [27]). Notice that this assumption is no less intuitive than the one of con-
vexity. Namely, convex technologies imply that the convex combination of a pair of input
vectors can produce the convex combination of the output vectors they can individually
produce. The second implication is additivity. Max-Plus convex sets, by virtue of their
nature, have a path-connected structure which results from the fact that inputs and outputs
can be additively contracted. Therefore, a Max-Plus convexity assumption of the technol-
ogy, implicitly, assumes that inputs and output are translatable. The non-convex structure
of tropical production technologies can be related to the presence of indivisibilities in all
multistage production process. Tone and Sahoo [40] analyzed in details the potential for
reorganization of inputs, which can emerge due to indivisibility of specific inputs. They
showed that the presence of indivisibilities makes the technology structure non-convex.

Paralleling Charnes, Cooper and Rhodes, a nonparametric production model can be de-
rived from the weakly monotonic Max-Plus convex hull of a data set. From a computational
standpoint, one can show that the translation distance function can be calculated in closed
form for each unit and requires a smaller number of arithmetic operations than the one
involved by DEA.

The paper unfolds as follows. Section 2 presents the background. In section 3, Max-Plus
convexity is introduced in a production context. Section 5 proposes and develops a Max-
Plus convex DEA model. Dual properties are analyzed in section 4. Finally, it is shown
that the translation distance function can be computed in closed form.
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2 The Production Model

The following subsections are devoted to present basic concepts of production theory as well
as traditional methods for estimating the production frontier in a nonparametric context.

2.1 Definitions and Concepts

Let us define the notation used in the paper. For z, w ∈ Rd we denote z ≤ w ⇐⇒ zi ≤ wi

∀i ∈ {1, ..., d}. Let Rd
+ = {z ∈ Rd : 0 ≤ z} be the non negative Euclidean d-orthant.

Now let m,n ∈ N be two positive natural numbers such that d = m + n. A production
technology transforms inputs x = (x1, ..., xm) into outputs y = (y1, ..., yn). The set T ⊂
Rm+n

+ of all input-output vectors that are feasible is called the production technology and
is defined as follows:

T :=
{
(x, y) ∈ Rm+n

+ : x can produce y
}
. (2.1)

T is also characterized by an input correspondence L : Rn
+ ⇒ Rm

+ and an output correspon-
dence P : Rm

+ ⇒ Rn
+, where:

L(y) :=
{
x ∈ Rm

+ : (x, y) ∈ T
}

(2.2)

is the set of all input vectors that yield at least y and

P (x) :=
{
y ∈ Rn

+ : (x, y) ∈ T
}

(2.3)

is the set of all the output vectors obtainable from x. Observe that T just defines a binary
relation T ⊂ Rm

+ ×Rn
+ and L, P are its “lower” and “upper” level sets. In the remainder of

the paper we denote each input-output vector as

z = (x, y) ∈ T. (2.4)

Now, let
K = Rm

+ × (−Rn
+) (2.5)

denotes the strong disposal cone. There are some assumptions that can be made on the
production technology (see Shephard [39] for a taxonomy):

TC : For any z ∈ T , (z −K) ∩ T is bounded and T is a closed set.
TS : T is strongly disposable, i.e. T = (T +K) ∩ Rd

+.

TC is a standard mathematical requirement. Moreover, it postulates an infinite output
cannot be produced from a finite input. TS defines a technology with strongly dispos-
able inputs and outputs i.e., fewer outputs can always be produced with more inputs, and
inversely. Notice that, actually, we do not assume that 0 ∈ T , i.e., no outputs without
inputs.

In the following, these axioms are restricted to input and output sets. For all y ∈ Rn
+,

we consider the following axioms.

LC : L(y) is a closed set.
LS : L(y) is strongly disposable, i.e. L(y) = L(y) + Rm

+ .

LS imposes that an output can always be produced with more inputs. For all x ∈ Rm
+ ,

one can impose assumptions on the output set.
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PC : P (x) is a closed and bounded set.
PS : P (x) is strongly disposable, i.e. P (x) = (P (x)− Rn

+) ∩ Rn
+.

Notice that PC means that for x ∈ Rm
+ , P (x) is a compact set. This assumption imposes

that an infinite output cannot be produced from a finite input. PS imposes that less output
can always be produced with the same input.

Technical efficiency can be measured by introducing the concept of an input distance
function. One can loosely say that this distance function selects the closest point to any
observed firms on the boundary of the production set. Along this line, the problem of
measuring technical efficiency can be readily solved by linear programming. Let us define
Rx = {µx : µ > 0}. The Farrell input technical efficiency measure introduced by Farrel [18] is
essentially the inverse of the Shephard’s distance function [39]. It is the map Ein : Rm+n

+ −→
R ∪ {+∞} defined as:

Ein(x, y) := inf {λ ≥ 0 : (λx, y) ∈ T} (2.6)

if Rx ∩ L(y) ̸= Ø and takes the value +∞ otherwise.
In the input oriented case, this measure indicates the minimum contraction of an input

vector by a scalar λ still remaining in the technology. Equivalently, it measures the maximal
amount an input vector can be shrunk along a ray until it reaches the isoquant of the input
set L(y).

In the following, we introduce the input Blackorby-Donaldson translation function [4].
Let 11m be them-dimensional vector whose all the components are one. The input Blackorby-
Donaldson translation function is the map

Din : Rm+n
+ × Rm+n

+ −→ R ∪ {−∞,+∞} (2.7)

defined by:

Din(x, y) := sup{δ ∈ R : (x− δ11m, y) ∈ T} (2.8)

if (x−δ11m, y) ∈ T for some δ ∈ R and taking the value −∞ otherwise. One can equivalently
write

Din(x, y) = sup{δ ∈ R : x− δ11m ∈ L(y)}. (2.9)

This definition implies that if (x, y) /∈ T then Din(x, y) = −∞. The vector δ11m determines
the direction in which Din(x, y) is defined. Thus, this function is defined by contracting
inputs in a preassigned direction. This translation function is a special case of the directional
distance function defined by Chambers, Chung and Färe [13] taking the direction g =
(11m, 0). In their paper they prove that for all α ∈ R, if x+α11 ∈ Rm

+ then Din(x+α11, y) =
Din(x, y) + α. In the case where the input set is strongly disposable, the input translation
distance function is weakly monotonic, i.e. u ≥ x =⇒ Din(u, y) ≥ Din(x, y). The translation
distance function can be viewed as a restricted case of the topical functions introduced
in [23] (see [35] for related topics). A function f : Rm −→ R ∪ {−∞,+∞} is called topical
if this function is weakly monotonic with respect to the usual partial order defined over Rm

and satisfies translation homotheticity (f(x+α11) = f(x)+α for all x ∈ Rm and all α ∈ R).
It follows that for all y ∈ Rn

+ the map x 7→ Din(x, y) satisfies the translation property of
topical functions when x + α11m ∈ Rm

+ . The input oriented translation function is also

Symmetrically, one can define an output Farrell measure Eout : Rm+n
+ −→ R ∪ {−∞,∞} defined by:

Eout(x, y) := sup {θ > 0 : (x, θy) ∈ T} if Ry ∩ P (x) ̸= Ø and takes the value −∞ otherwise. This searches
for the maximum expansion of an output vector by a scalar θ to the production frontier. These input and
output distance functions can be interpreted in term of co-gauge and gauge respectively.
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related to the nonlinear scalarization function defined in [22] and [33] (see also [25] and
Definition 1.40, p.13). Making obvious changes of variables, it is also related to the nonlinear
functional introduced in [24] (see Definition 2.23, p.39).

The output-oriented Blackorby-Donaldson Translation function is the map Dout : Rm+n
+ ×

Rm+n
+ −→ R∪{−∞,+∞} defined by: Dout(x, y) := sup{δ : y+δ11n ∈ P (x)}. In such a case

the outputs are expanded in the direction determined by the vector 11n. As in the input
case, this output translation function can be related to topical functions and nonlinear
scalarization functions (see [35], [25], [24]). Finally, one can introduce a graph oriented
translation function D : Rm+n

+ × Rm+n
+ −→ R ∪ {−∞,+∞} defined by

D(x, y) := sup{δ : (x− δ11m, y + δ11n) ∈ T} (2.10)

if (x− δ11m, y+ δ11n) ∈ T for some δ ∈ R and taking the value −∞ otherwise. This function
is defined by simultaneously contracting inputs and expanding outputs.

The following subsection presents a classical approach for estimating a production tech-
nology.
A production technology T satisfies a constant returns to scale assumption if and only if for
all (x, y) ∈ T and all θ ≥ 0, (θx, θy) ∈ T. In such a case we have Ein(x, y) = [Eout(x, y)]

−1.
Following Chambers [14] a technology is graph translation homothetic if and only if for all
(x, y) ∈ T and all δ ∈ R

(x+ δ11m, y + δ11n) ≥ 0 implies (x+ δ11m, y + δ11n) ∈ T. (2.11)

In the remainder, we shall say that a map f : Rd −→ R∪{−∞,∞} is translation homothetic
if and only if for all α ∈ R and all z ∈ Rd we have f(z + α11d) = α+ f(z).

2.2 Nonparametric Technologies

Following Farrell [18], Charnes, Cooper and Rhodes [12] introduced theDEAmodel. In their
approach the technology is derived from the smallest convex cone containing all the observed
firms. This representation involves a constant return to scale assumption of the technology.
Such a production model is said to be nonparametric because it does not require some
functional specification of the production frontier. Suppose that A =

{
z1, ..., zl

}
represents

a set of l observed firms zk = (xk, yk) (k = 1, ..., l) operating in specific sector of the economy.
Under a constant returns to scale assumption, this nonparametric technology is defined by

T+
c :=

{
(x, y) ∈ Rd

+ : x ≥
l∑

k=1

µk x
k, y ≤

l∑
k=1

µk y
k, µ ≥ 0

}
. (2.12)

Equivalently, this subset is the weakly monotonic conical convex hull of A that is T+
c =

(Cc(A)+K)∩Rd
+. The convex hull and the conical convex hull of a finite set A are denoted

Co(A) and Cc(A) respectively. In our notations, the superscript “+” is justified by the fact
that traditional convexity involves additivity.

Following Banker, Charnes, Cooper [2], the production technology can also be defined as
the weakly monotonic convex hull of the observations. The production set is then modelled
adding the constraint

∑l
k=1 µk = 1 in equation (2.12). This specification implies a variable

returns to scale assumption. The production technology is then defined by:

T+
v :=

{
(x, y) ∈ Rd

+ : x ≥
l∑

k=1

µk x
k, y ≤

l∑
k=1

µk y
k, µ ≥ 0,

l∑
k=1

µk = 1
}
. (2.13)
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We have equivalently T+
v = (Co(A) + K) ∩ Rd

+. The above approach summarizes the so
called DEA method (Data Envelopment Analysis) which leads to an operational definition
of the production set. Technical efficiency can then be measured using linear programming.

Notice that there exist some models in which convexity is dropped. A classical example
is the FDH approach introduced and developed in [17,41] (FDH stands for “Free Disposal
Hull”). The technology is then the smallest set containing the data and satisfying a strong
disposal assumption.

More recently B-convex nonparametric models were introduced in [9]. A subset C of Rn
+

is B-convex if and only if for all z, u ∈ C and all t ∈ [0, 1], z ∨ tu ∈ C. The subset of Rm+n
+

defined by

Tmax :=
{
(x, y) ∈ Rm+n

+ : x ≥
l∨

k=1

tkx
k, y ≤

l∨
k=1

tky
k, max

k=1,...,l
tk = 1, t≥0

}
(2.14)

is called a B-convex nonparametric estimation of the production technology.
It has been proved in [9] that Tmax is a closed B-convex set. Consequently, it also has an
upper semilattice structure.

The next section presents Max-Plus convexity and analyzes its connections to the pro-
duction model.

3 Max-Plus Convexity and Tropical Technologies

This section introduces Max-Plus convexity. In finite dimensional space B-convex sets
are homeomorphic to Max-Plus convex sets.

3.1 Max-Plus Background

The so called Max-Plus algebra denoted by Rmax =
(
R ∪

{
−∞

}
,⊕,⊗

)
is the semiring

composed of the set R∪
{
−∞

}
which is defined by the maximization operation as addition:

s⊕t := max (s, t) and the usual addition operation as multiplication: s⊗t := s+t. The Max-
Plus algebra is an example of a Maslov’s semimodule structure. In the following a subset
M of R ∪

{
−∞

}
is Max-Plus-convex if and only if for all z, u ∈ M and all t ∈ [−∞, 0],

z ⊕ tu ∈ M .
We only wish here to point the fact that Max-Plus convex sets are isomorphic to B-convex

sets and consequently, all that has been proved in the framework of B-convexity holds with
obvious lexical modifications, in Max-Plus convexity.
For z and z′ in Rd

max let dM(z, z′) :=|| ez − ez
′ ||∞ where ez := (ez1 , ..., ezd), with the

convention e−∞ = 0, and, for y ∈ Rd
+, || y ||∞= maxi=1,...,d yi. The map z 7→ ez is a

homeomorphism from Rd
max with the metric dM to Rd

+ endowed with the metric induced by
the norm || · ||∞; its inverse is the map ln(y) := (ln(y1), ..., ln(yd)) from Rd

+ to Rd
max, with

the convention ln(0) = −∞.
The following two assertions hold and are equivalent:

A referee asked for the mnemonic value of B in B-convexity. It was mentioned in [7] that the name of
one of the authors originates from Britany.

Where for all z1, z2, ..., zl ∈ Rd

l∨
k=1

zk :=
(
max{z11 , ..., zl1}, . . . ,max{z1d, ..., z

l
d}

)
and

l∧
k=1

zk :=
(
min{z11 , ..., zl1}, . . . ,min{z1d, ..., z

l
d}

)
.
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1. A subset C of Rd
max is Max-Plus convex if and only if the set

{
ex : x ∈ C

}
is a B-convex

subset of Rd
+ .

2. A subset C of Rd
+ is B-convex convex if and only if the set

{
ln(x) : x ∈ C

}
is a Max-

Plus convex subset of Rd
max .

One can loosely say that Max-Plus convexity is obtained from usual convexity making
the formal substitution + 7→ ⊕ and · 7→ ⊗. Semilattices play a key role in such a context
context. From the notation above, it follows that a subset L ⊂ Rd is an upper-semilattice
if and only if ∀z, t ∈ L then z⊕ t ∈ L, and it is a lower-semilattice if and only if ∀z, t ∈ L
then z ⊖ t ∈ L.

Paralleling the usual multiplication of vectors by scalar numbers, for all s ∈ Rmax and
all z ∈ Rd

max the Max-Plus multiplication by a scalar number is defined by:

s⊗ z := (s⊗ z1, ..., s⊗ zd) = (s+ z1, ..., s+ zd) = z + s11d. (3.1)

Clearly, the input translation function can then be defined as

Din(x, y) = sup{δ ∈ R : (−δ)⊗ x ∈ L(y)}. (3.2)

On the output side, we have

Dout(x, y) = sup{δ ∈ R : δ ⊗ y ∈ P (y)}. (3.3)

Graph translation homotheticity can be redefined as

(δ ⊗ x, δ ⊗ y) ∈ T (3.4)

for all δ ∈ R such that (δ ⊗ x, δ ⊗ y) ≥ 0.

3.2 Max-Plus Convex Sets

Definition 3.1. A subset M of Rd
max is Max-Plus convex, if and only if for all z, u ∈ M ,

and all s ∈ [−∞, 0] we have:
z ⊕ (s⊗ u) ∈ M.

Paralleling this definition a set C such that for all z, u ∈ C, and s ∈ Rmax implies z⊕ (s⊗u) ∈
C is called a Max-Plus convex cone. A Max-Plus convex set M satisfies the following
properties:

(i) M is an upper-semilattice;

(ii) M is a path-connected set with respect to the topology induced by the distance dM ;

(iii) If
{
z1, ..., zl

}
⊂ M , with sk ≤ 0 for all k = 1, ..., l and

⊕l
k=1 sk = 0 then we have⊕l

k=1(sk ⊗ zk) ∈ M ;

In the remainder, we denote for all z1, ..., zl ∈ Rd

l⊕
k=1

zk :=
l∨

k=1

zk =
(
max{z11 , ..., zl1}, . . . ,max{z1d, ..., z

l
d}

)
and

l

⊖
k=1

zk :=
l∧

k=1

zk =
(
min{z11 , ..., zl1}, . . . ,min{z1d, ..., z

l
d}

)
.
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(iv) If N ⊂ Rd is Max-Plus convex set, then M ∩N is a Max-Plus convex set.

Remark 3.2. If L is a strongly disposable subset of Rd
max then it is a Max-Plus convex set,

since ∀z, u ∈ L and s ∈ [−∞, 0], we have (s⊗ z)⊕ u ≥ u and L is a strongly disposable set
implies (s⊗ z)⊕ u ∈ L.

One can then introduce the notion of Max-Plus convex hull.

Definition 3.3. Let A =
{
z1, ..., zl

}
be a finite part of Rd

max. The set

M(A) :=
{ l⊕

k=1

(sk ⊗ zk) : s ∈ [−∞, 0]l,

l⊕
k=1

sk = 0
}

is called the Max-Plus convex hull of A.

The geometrical representation of the Max-Plus convex hull of two or several points in each
case is given in the following two figures.

In Figure 3.1, the difference between the convex lines joining two points in B-convexity
and Max-Plus convexity are analyzed.

In Max-Plus algebra, the convex hull of {z1, z2} is the broken line [z1, b, z2]. Notice that
the segment line [z1, a] belongs to the affine line spanned from z1 in the direction of the
vector 112. The B-convex hull (B-C) is the broken line [z1, a, z2] and point a belongs to the ray
spanned from the origin to z1. The convex lines joining z3 and z4 differ more significantly.
The Max-Plus convex hull of {z3, z4} is the broken line [z3, d, z4] and the segment line [z3, zd]
belong to the affine line spanned from z3 in the direction of the vector 112. The B-convex
hull is the broken line [z3, d, z4]. In the last case, z5 and z6 are not ordered and the convex
hull is identical in both cases. Along this line, Figure 3.2 depicts the smallest Max-Plus
convex sets which contains 5 points. These examples show that B-convexity is based upon
a multiplicative structure and Max-Plus convexity upon an additive one. Along this line,
Max-Plus structures of the production technology will be useful to compute translation
distance function.

3.3 Structure of Max-Plus Technologies

In this section the implications of Max-Plus convexity to the technology from an economic
viewpoint are analyzed. Max-Plus convexity means that the technology obeys two basic
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properties. First it is endowed with a upper semilattice structure: the least upper bound
of two input vectors allows to produce the least upper bound of the output vectors they
can individually produce. This upper semilattice structure stands in place of the additive
structure inherited from the traditional convexity assumption. Moreover, Max-Plus convex-
ity implies that the production vectors satisfy a translation homotheticity property as usual
convexity. We have mentioned above that a tropical technology is a path-connected upper
semilattice. From an economical viewpoint, connexity is important because it allows the
possibility of continuously transforming a production technique.

The following result establishes a relationship between graph translation homotheticity
and Max-Plus convexity. We say that a technology T is: (i) lower graph translation homoth-
etic if and only if ∀δ ≤ 0 and all (x, y) ∈ T , such that (δ⊗x, δ⊗y) = (x+ δ11m, y+ δ11n) ≥ 0
we have (δ ⊗ x, δ ⊗ y) ∈ T ; (ii) upper graph translation homothetic if and only if ∀δ ≥ 0
and all (x, y) ∈ T , (δ ⊗ x, δ ⊗ y) ∈ T .

Lemma 3.4. Suppose that T is an upper semilattice.

(a) If 0 ∈ T and T is Max-Plus convex then T satisfies the lower graph translation homo-
thetic assumption.

(b) If T is lower graph translation homothetic then it is Max-Plus convex.

Proof. (a) Suppose that 0 ∈ T and T is Max-Plus convex. Therefore, for all z ∈ T and all
δ ≤ 0, we have 0 ⊕ (δ ⊗ z) ∈ T . Moreover, for all δ ≤ 0 if δ ⊗ z ∈ T , then δ ⊗ z ≥ 0. It
follows that

0⊕ (δ ⊗ z) = (δ ⊗ z) ∈ T,

which proves the first part of the statement. (b) If T is lower graph translation homothetic,
for all δ ≤ 0 and all z ∈ T , if δ ⊗ z ≥ 0 then δ ⊗ z ∈ T . Since T is an upper semilatice for
all z, w ∈ T , w ⊕ (δ ⊗ z) ∈ T . Therefore T is Max-Plus convex, which ends the proof.

This result shows that technologies having an upper semilattice structure and satisfying
lower graph translation homotheticity are Max-Plus convex. Consequently, under reasonable
assumptions, an upper semilattice technology may be Max-Plus convex.

Notice that if a technology is Max-Plus convex then the input and output sets are Max-
Plus convex.

The next statement establishes that, whenever the input set satisfies a strong disposal as-
sumption, it is Max-Plus convex.

Lemma 3.5. For all y ∈ Rn
+, if the input set L(y) satisfies (LS) then it is a Max-Plus

convex set.

Proof. Suppose x ∈ L(y). If the strong disposal assumption holds, then L(y) = L(y) +Rm
+ .

For all u ∈ L(y) and all λ ≤ 0, x ⊕ (λ ⊗ u) ≥ x. Consequently x ⊕ (λ ⊗ u) ∈ x + Rm
+ ⊂

L(y) + Rm
+ = L(y), which ends the proof.

This result shows that there exists a large class of production technologies whose input cor-
respondences satisfy a Max-Plus convexity property. Max-Plus convexity is more restrictive
in an output context. The next statement proves that the output sets have a supremum with
respect to the partial order ≤. One can then prove that, under a strong disposal assumption
(PS), this supremum entirely characterizes the output set.
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Proposition 3.6. Suppose that the output set P (x) satisfies (PC) and is Max-Plus convex.
Then:
(a) There exists a supremum yx ∈ P (x) such that ∀y ∈ P (x), y ≤ yx.
(b) Moreover

P (x) =
{
y ∈ Rn

+ :
n⊕

j=1

yj ⊗ (−yx,j) ≤ 0
}
.

Proof. (a) Since PC holds the result can be deduced from Briec, Horvath and Rubinov
[8] who proved that every compact Max-Plus convex set has a supremum. (b) We have
established above that, if P (x) ̸= 0 is a closed and bounded set satisfying a strong disposal
assumption, then there exists a supremum element yx such that P (x) =

(
yx − Rn

+

)
∩ Rn

+.
Equivalently, one can write

P (x) = {y ∈ Rn : 0 ≤ y ≤ yx}.

Consequently, P (x) = {y ∈ Rn
+ :

⊕n
j=1 yj ⊗ (−yx,j) ≤ 0}.

It was established in [9] that technologies whose output set is a compact upper semilattice
having a maximal element belong to the class of the Kohli technologies. A technology
T ⊂ Rm

+ × Rn
+ is a Kohli input price (KI) nonjoint technology if there exist n single

output technologies T j ⊂ Rm
+ × R+ such that, for all input vectors x ∈ Rm

+ , T (x) =
T 1(x)×· · ·×Tn(x). This is a generalization of the fixed-coefficient Leontief transformation.
More details can be found in [27](see p 215). One can give an immediate characterization
of the technology using the fact that the output set has a maximal element. The next
results ends this section proving that a multi-output Max-Plus convex technology satisfying
a strong disposal assumption has a functional representation.

Proposition 3.7. Suppose that T is Max-Plus convex and satisfies TC. Then there exists
a vector function F : Rm

+ −→ Rn
+ such that

T =
{
(x, y) ∈ Rm+n

+ : y ≤ F (x)
}
.

Proof. The proof is obtained by defining a map F : Rm
+ −→ Rn

+ such that F (x) = ȳx, where
for all x ∈ Rm ȳx is the supremum of P (x).2

Notice that this statement is generally wrong for convex multi-output technologies. This
functional representation comes from the fact that a Max-Plus convex technology satisfying
a strong disposal assumption involves a cubic multi-output technology (see Proposition 3.6.)

Notice that using some functional characterization of half-space in Max-Plus convexity
(see for instance [10,15,26]), on can give the following example of a multi-output production
technology having a functional characterization:

T =

(x, y) ∈ Rm+n
+ :

m⊕
i=1

(ai ⊗ xi)⊕ c ≤
n⊕

j=1

(bj ⊗ yj)⊕ d

 (3.5)

where a ∈ Rm
+ , b ∈ Rn

+ and c, d ≥ 0. If c = d = 0, it is easy to check that the technology is
graph translation homothetic.
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4 Some Duality Results for Max-Plus Convex Technologies

In this section, some aspects of the economic meaning of Max-Plus convexity are analyzed.
Among other things, we focus on the dual characterization of input and output sets for tech-
nologies satisfying a Max-Plus convexity assumption. The key discrepancy, by comparison
with vector spaces, is that one needs to characterize the half-spaces in Max-Plus convexity
(see for instance [10,26,42]). To develop a dual framework based upon gauge functions one
uses specific functional forms to separate a point from a subspace, or more generally, from
a convex set. It follows that a large class of input and output sets can be expressed as the
intersection of a collection of suitable half-spaces.

4.1 Duality and Input Translation Distance Function

Let Cmax : Rm
+ × Rn

+ −→ R+ ∪ {+∞} be the function defined by:

Cmax(w, y) := inf
x∈L(y)

max
i=1,...,m

wixi. (4.1)

This function maps each input price w ∈ Rm
+ and each output vector y ∈ Rn

+ to the minimum
of the maximal individual cost of each input. Thus, it is called the max-cost function.
Basically, this function has some formal analogy with the cost function making the formal
substitution + → max. By the way, Cmax(w, y) can be seen as some kind of a max-plus
support function. Not surprisingly, its economic interpretations is different. For example, let
us consider a firm that selects some input by minimizing this max-cost function. The map
x 7→ maxi=1,...,m wixi can be interpreted as the maximum of the individual costs of each
factor. By definition, Cmax(w, y) gives the minimum amount of the maximal cost required
to produce a production vector y. It has been established in [9, 11] that Farrell technical
efficiency measure is interpretable as a maximum ratio between the max-cost function and
the max-cost of the observed input vector.

This duality property only requires a strong disposal assumption. However, it has been
shown in [9] that B-convexity is sufficient. Under strong disposal assumption of input sets
(in such a case they are Max-Plus convex), the following result establishes a dual character-
ization of the input sets involving the function Cmax(w, y).

Proposition 4.1. Let y ∈ Rn
+ and suppose that L(y) satisfies (LC) and (LS). Then, we

have:
L(y) =

{
x ∈ Rm

+ : max
i=1,...,m

wixi ≥ Cmax(w, y), ∀w ≥ 0
}
.

This property was established in [9]. It can also be deduced, for example, from [15, 26].
Using equivalent notations we have:

L(y) =
{
x ∈ Rm

+ :
m⊕
i=1

wixi ≥ Cmax(w, y), ∀w ≥ 0
}
. (4.2)

Notice that this duality result cannot be obtained making the formal substitution + 7→ ⊕
and deriving a duality result from [9,11]. Indeed it combines both the multiplicative structure
of the max-cost function and the additive nature of the translation function. For all w ∈ Rm

+ ,
let I(w) := {i ∈ {1, ...,m} : wi > 0}, be the support of w.

Proposition 4.2. If L(y) satisfies (LC) and (LS), then for all input vectors x:

Din(x, y) = inf
w≥0

max
i∈I(w)

{
xi −

Cmax(w, y)

wi

}
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= inf
w≥0

⊕
i∈I(w)

{
xi ⊗ (−Cmax(w, y)

wi
)
}

and

Cmax(w, y) = inf
x≥0

{
max

i=1,...,m

{
wi(xi − Din(x, y))

}}
= inf

x≥0

{ m⊕
i=1

wi(xi − Din(x, y))
}
.

Proof. First, one equivalently has

Din(x, y) = inf{δ ∈ R : x− δ11m /∈ L(y)}.

Since L(y) =
∩

w∈Rm
+
{x ∈ Rm

+ : maxi∈I(w) wixi ≥ Cmax(w, y)}, it follows that

Rm
+\L(y) =

∪
w∈Rm

+

Rm
+\{x ∈ Rm

+ : max
i∈I(w)

wixi ≥ Cmax(w, y)}

=
∪

w∈Rm
+

{x ∈ Rm
+ : min

i∈I(w)
wixi < Cmax(w, y)}.

Consequently,

Din(x, y) = inf{δ ∈ R : x− δ11m ∈
∪

w∈Rm
+

{x ∈ Rm
+ : max

i∈I(w)
wixi < Cmax(w, y)}}

= inf
w∈Rm

+

inf{δ ∈ R : x− δ11m ∈ {x ∈ Rm
+ : max

i∈I(w)
wixi < Cmax(w, y)}}

= inf
w∈Rm

+

inf{δ ∈ R : max
i∈I(w)

wi(xi − δ) < Cmax(w, y)}

= inf
w≥0

max
i∈I(w)

{
xi −

Cmax(w, y)

wi

}
.

To prove the second part of the statement, we note that the map x 7→ maxi=1,...,m wixi is
nondecreasing over Rm

+ . Hence, Cmax(w, y) = inf{maxi=1,...,m wixi : x ∈ L(x)} and

max
i∈I(w)

wi

(
x− Din(x, y)11m

)
i
≤ max

i∈I(w)
wixi.

Moreover, for all x ∈ Rm
+ , x− Din(x, y)11m ∈ L(y). It follows that

Cmax(w, y) ≤ max
i=1,...,m

{
wi(x− Din(x, y)11m)i

}
≤ max

i=1,...,m
{wiyi},

which ends the proof. 2

4.2 Output Translation Distance Function and Duality

Following the same logic as in the case of the inputs sets, one could define some min-
revenue function in the case of output sets. However, in max-Plus convex structures, the
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output set has but a very simple dual characterization. Therefore, we just give a simple
formulation based upon the maximal element of the output set. To do that an assumption
of translation maximality is introduced. Let M be a closed Max-Plus convex set. We
say that M is translation maximal, if and only if for all x, y ∈ M such that x ≤ y and t ≥ 0
then tx ⊖ y ∈ M . For all y ∈ Rn, let ∆(y) := {y + δ11n : δ ∈ R} be the affine line spanned
from y in the direction of the vector of the ones.

Proposition 4.3. Let x ∈ Rm
+ . Suppose that P (x) satisfies (PC) and is translation maximal

and Max-Plus convex. Let yx be the supremum of P (x). Suppose moreover that ∆(y) ∩
P (x) ̸= ∅. We have:

Dout(x, y) =
n⊕

j=1

(
yx,j ⊗ (−yj)

)
.

Proof. By definition y + Dout(x, y)11n ∈ P (x). Therefore,

n⊕
j=1

(yj + Dout(x, y))⊗ (−yx,j) ≤ 0

and Dout(x, y) ≤
⊕n

j=1 ȳj ⊗ (−yj). Suppose that Dout(x, y) < (
⊕n

j=1 yx,j) ⊗ (−yj). This

implies that y + Dout(x, y)11n < ȳ. Therefore, one can find some δ̄ > Dout(x, y) such that
y + δ̄11n ≤ yx. However, by definition y + δ̄11n /∈ P (x). Since

y + δ̄11n = y + Dout(x, y)11n + (δ̄ − Dout(x, y))11n,

this contradicts translation maximality. 2

This result has an immediate corollary in the case where the output set satisfies a strong
disposal assumption.

Corollary 4.4. Let x ∈ Rm
+ . Suppose that P (x) is a Max-Plus convex set satisfying (PC)

and (PS). Let yx be the supremum of P (x). Suppose moreover that ∆(y) ∩ P (x) ̸= ∅. We
have:

Dout(x, y) =

n⊕
j=1

(
yx,j ⊗ (−yj)

)
.

5 Tropical Nonparametric Technologies

In line with the convex production models proposed in equations (2.12) and (2.13) it is
quite natural to propose a class of Max-Plus convex nonparametric models. Specifically, this
section focusses on two models postulating variable and constant returns to scale respectively.

5.1 Max-Plus Nonparametric Production Technologies

We propose a Max-Plus convex nonparametric model for estimating a technology given
an observed data set A. Let A =

{
(xk, yk) : k = 1, ..., l

}
⊂ Rm+n

+ be a set of l observed

production vectors. The subset of Rm+n
+ defined by

T⊕
v :=

{
(x, y) ∈ Rd

+ : x ≥
l⊕

k=1

(sk ⊗ xk), y ≤
l⊕

k=1

(sk ⊗ yk), max
k=1,...,l

sk = 0, s ∈ Rl
}
, (5.1)
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is called a Max-Plus nonparametric estimation of the production technology. One can
equivalently write T⊕

v = (M(A) +K) ∩ Rm+n
+ , where K = Rm

+ × (−Rn
+) and M(A) is the

Max-Plus convex hull of A defined in Definition 3.3. The following result establishes the
basic properties of these technologies.

Proposition 5.1. For all subsets A =
{
(xk, yk) : k = 1, ..., l

}
⊂ Rm+n

+ of l observed pro-

duction vectors, the nonparametric technology T⊕
v is a Max-Plus convex subset of Rm+n

+ and
satisfies TC and TS.

Proof. We first prove that T⊕
v is a Max-Plus convex set. Assume that z, z′ ∈ T⊕

v . In

this case, there exists s1, ..., sl ≤ 0, with
⊕l

k=1 sk = 0, such that x ≥
⊕l

k=1 sk ⊗ xk and

y ≤
⊕l

k=1 sk ⊗ yk.

Moreover, there exists s′1, ..., s
′
l ≤ 0 with

⊕l
k=1 s

′
k = 0 such that we have x′ ≥

⊕l
k=1 s

′
k⊗

xk and y′ ≤
⊕l

k=1 s
′
k ⊗ yk.

Now, let t, t′ ≤ 0 such that t⊕ t′ = 0. We have

(t⊗ x)⊕ (t′ ⊗ x′) ≥
(
t

l⊕
k=1

(sk ⊗ xk)
)
⊕
(
t′

l⊕
k=1

(t′k ⊗ xk)
)
.

Then, we deduce that

(
t

l⊕
k=1

(sk ⊗ xk)
)
⊕
(
t′

l⊕
k=1

(s′k ⊗ xk)
)
=

l⊕
k=1

(
(t⊗ sk)⊕ (t′ ⊗ s′k)

)
⊗ xk.

Similarly one has (t⊗ y)⊕ (t′ ⊗ y′) ≤
⊕l

k=1

(
(t⊗ sk)⊕ (t′ ⊗ s′k)

)
⊗ yk. Since we have

l⊕
k=1

(
(t⊗ sk)⊕ (t′ ⊗ s′k)

)
= 0

we deduce that (t⊗ z)⊕ (t′ ⊗ z′) ∈ T⊕
v and consequently T⊕

v is a Max-Plus convex set.
TS is immediate from the construction of T⊕

v . Let us prove TC. Since T(A) is a closed
set T⊕

v . For all z ∈ T , since T⊕
v = (M(A) + K) ∩ Rm+n

+ , for all (u, v) ∈ T⊕
v we have

v ≤
⊕l

k=1 y
k. Consequently, for all (u, v) ∈ (z − K) ∩ T⊕

v we have v ≤
⊕l

k=1 y
k. Hence

(z −K) ∩ T⊕
v is a subset of the box

[
0, (x,

⊕l
k=1 y

k)
]
which is bounded and this ends the

proof. 2

To make a comparison, we depict the convex and Max-Plus convex cases respectively re-
spectively in Figures 5.1 and 5.2.
In Figure 2.1, the technology is the weakly monotonic convex hull of the data set. The
addition of the cone is necessary for the definition of strong disposal hull of the data sample.
A similar procedure is applied to the Max-Plus convex hull of A to construct the production
set Tmax (see Figure 2.2). Given a set of input-output vectors, the respective production
frontiers are different. Remark that the slope of the frontier is locally nonincreasing between
points z1 and z2 and is locally nondecreasing between points z2 and z4. This makes a sig-
nificant difference with the convex model where the slope of the frontier is nonincreasing. In
line with Proposition 3.4, one can see that the technology is not lower translation homothetic
in Figure 5.1 because 0 /∈ T⊕

v .
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Figure 1: DEA nonparametric estimation

Figure 2: Max-Plus estimation

Paralleling the standard DEA model, it is quite natural to define a graph translation
homothetic Max-Plus nonparametric model of the technology. This we do by dropping the
last constraint in equation (5.1). The following technology is Max-Plus convex and satisfies
a constant return to scale assumption.

T⊕
c :=

{
(x, y) ∈ Rd

+ : x ≥
l⊕

k=1

sk ⊗ xk, y ≤
l⊕

k=1

sk ⊗ yk, s ∈ Rl
}
. (5.2)

Proposition 5.2. For all subsets A =
{
z1, ..., zl

}
⊂ Rd

+ of l observed production vectors,
the nonparametric technology T⊕

c is a Max-Plus convex subset of Rd
+ and satisfies TC and

TS. Moreover, it is graph translation homothetic.

5.2 Computing Distance Functions and Max-Plus Convex Nonparametric Tech-
nologies

In this section we provide a method for calculating the translation distance function. A
system of Max-Plus linear inequalities is a set of linear inequalities in the same variables
defined with respect to the Max-Plus algebra. The next result provides necessary and
sufficient conditions for the existence of some solution. In the following, we denote ϕ−1 the
map which associates to any positive vector the vector of the inverse components. Such a
system has an equivalent one replacing the usual addition with the scalar multiplication. To
do that, one can state the following result in Max-Plus that can be derived from [11]. Let
us consider the maximum-inequations systems:

∨l
k=1 a

k
i xk ≤ bi, i = 1, ...,m∨l

k=1 c
k
jxk ≥ dj , j = 1, ..., n

(5.3)
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where for k = 1, ..., l, ak ∈ Rm
++ and b ∈ Rm

++, c
k ∈ Rn

++ and d ∈ Rn
++. Let S be the solution

set of this systems. It was established in [11] that

S ≠ ∅ ⇐⇒
m∧
i=1

biϕ−1(ai) ∈ S.

In the following, an equivalent form is provided in Max-Plus convexity. The proof is
straightforward from [11].

Proposition 5.3. Let us consider the two systems of Max-Plus linear inequalities:
⊕l

k=1 a
k
i ⊗ xk ≤ bi, i = 1, ...,m⊕l

k=1 c
k
j ⊗ xk ≥ dj , j = 1, ..., n

(5.4)

where for k = 1, ..., l, ak ∈ Rm, b ∈ Rm, ck ∈ Rn and d ∈ Rn. Then, this system has some
solution if and only if ⊖i=1,...,m bi ⊗ (−ai) is solution.

We first recall some results obtained in the context of B-convexity in [9] and [11] where it
has been shown that Farrell input and output efficiency measure can be calculated in closed
form. For all A =

{
(xk, yk) : k = 1, ..., l

}
⊂ Rm+n

++ , let us denote

αk̄,k = min
i=1,...,m

xk̄
i

xk
i

.

Suppose moreover that T = Tmax. In [9] and [11] it has been established that for each k̄ ∈ [l],
the input Farrell technical efficiency measure is:

Ein(x
k̄, yk̄) = max

{
max

j=1,...,n
min
k

yk̄
j ≤yk

j

{ yk̄j
ykkαk̄,k

}
,min

k

1

α
k̄,k

}
. (5.5)

Moreover the Farrell output measure is:

Eout(x
k̄, yk̄) = min

j=1,...,n
max

k

{ykj min{α
k̄,k

, 1}

yk̄j

}
. (5.6)

Using some transformations similar to that one used to prove Proposition 5.3, it is easy
to establish a closed formula for input and output translation distance functions.

Proposition 5.4. Let A =
{
(xk, yk) : k = 1, ..., l

}
⊂ Rd

+. If T = T⊕
v then for all k̄ ∈

{1, ..., l} the input translation distance function is:

Din(x
k̄, yk̄) = min

{
min

j=1,...,n
max

k=1,...,l

yk̄
j ≤yk

j

{
− yk̄j + ykj + βk̄,k

}
, max
k=1,...,l

βk̄,k

}

where
βk̄,k = min

i=1,...,m
{xk̄

i − xk
i }.

Moreover, the output distance function is:

Dout(x
k̄, yk̄) = min

j=1,...,n
max

k=1,...,l

{
ykj − yk̄j +min

{
βk̄,k, 0

}}
.
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Proof. We compute the translation distance function which is obtained by computing the
Debreu-Farrell input measure of technical efficiency that is the inverse of the Shephard
distance function. This measure is defined as:

Sin(x, y) = sup{µ > 0 : µ−1x ∈ L(y)}.

Fix (xk̄, yk̄) ∈ Rd
+. The program to solve is :

max δ

l⊕
k=1

sk ⊗ xk ≤ (−δ)⊗ xk̄ (5.7)

l⊕
k=1

sk ⊗ yk ≥ yk̄

max
k=1,...,l

sk = 0, s ∈ Rl

To make the analogy with the B-convexity, at this stage, we consider an exponential trans-
formation of the data. The map z 7→ ez is an homeomorphism from the set (R ∪ {−∞})d
to Rd

+. Taking the exponential function on both side and replacing the symbol ⊕ with ∨
yields:

max δ

l∨
k=1

eskex
k

≤ e−δex
k̄

(5.8)

l∨
k=1

eskey
k

≥ ey
k̄

max
k=1,...,l

esk = 1, es ≥ 0

Setting tk = esk , x̃k = ex
k

, ỹk = ey
k

and µ = eδ, we obtain the program

max lnµ

l∨
k=1

tkx̃
k ≤ µ−1x̃k̄ (5.9)

l∨
k=1

tkỹ
k ≥ ỹk̄

max
k=1,...,l

tk = 1, t ≥ 0

The optimal value µ⋆ of this program is the Shephard distance function computed for the
technology

T̃max =
{
(x, y) ∈ Rm+n

+ : x ≥
l∨

k=1

tkx̃k, y ≤
l∨

k=1

tkỹk, max
k=1,...,l

tk = 1, t≥0
}
. (5.10)
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It follows that if λ⋆ is the Farrell Technical efficiency measure, we have the equality
Din(x

k̄, yk̄) = − lnλ⋆.
For all A =

{
(x̃k, ỹk) : k = 1, ..., l

}
⊂ Rm+n

++ , let us denote

α̃k̄,k = min
i=1,...,m

(
x̃i

k̄

x̃i
k

)
.

Using equation (5.5), the input Farrell technical efficiency measure can be computed from
the technology T̃max, we obtain

Ẽin(x̃
k̄, ỹk̄) = max

{
max

j=1,...,n
min
k

ỹk̄,j≤ỹk,j

{ ỹk̄,j
ỹk,jα̃k̄,k

}
,min

k

1

α̃k̄,k

}
.

Using the fact that Din(x
k̄, yk̄) = − lnλ⋆, we obtain the result. The proof of the output

case is very similar using equation (5.6). 2

In the next statement, we establish a formula for a graph translation function.

Proposition 5.5. Let A =
{
(xk, yk) : k = 1, ..., l

}
⊂ Rd

+. (a) If T = T⊕
v then for all

k̄ ∈ {1, ..., l} the graph translation distance function is:

D(xk̄, yk̄) = min

{[
min

j=1,...,n
max

{1

2
max

k=1,...,l

yk̄
j ≤yk

j −β
k̄,k

{
− yk̄

j + yk
j + βk̄,k

}
, γk̄,j

}]
, max
k=1,...,l

βk̄,k

}
.

where
βk̄,k = min

i=1,...,m
{xk̄

i − xk
i } and γk̄,j = max

k=1,...,l

yk̄
j ≥yk

j −β
k̄,k

{
− yk̄j + ykj

}
.

(b) If T = T⊕
c then for all k̄ ∈ [l] the graph distance function is:

D(xk̄, yk̄) =
1

2
Din(x

k̄, yk̄) =
1

2
Dout(x

k̄, yk̄) =
1

2
min

j=1,...,n
max

k=1,...,l

{
− yk̄

j + yk
j + βk̄,k

}
.

Proof. (a) Fix (xk̄, yk̄) ∈ Rd
+. The program to solve is :

max
{
δ :

l⊕
k=1

sk ⊗ xk ≤ (−δ)⊗ xk̄,
l⊕

k=1

sk ⊗ yk ≥ δ ⊗ yk̄, max
k=1,...,l

sk = 0
}

(5.11)

We have the equivalence of inequation systems:
⊕l

k=1 sk ⊗ xk ≤ (−δ)⊗ xk̄⊕l
k=1 sk ⊗ yk ≥ δ ⊗ yk̄⊕l

k=1 sk = 0, s ∈ R

and 
⊗l

k=1 sk ⊗ xj ≤ (−δ)⊗ xk̄⊕l
k=1 sk ≤ 0 (S⋆)⊕l

k=1 sk ⊗ yk ≥ δ ⊗ yk̄⊕l
k=1 sk ≥ 0. s ∈ R



TROPICAL PRODUCTION TECHNOLOGIES 701

Now, from Proposition 5.3 the set of solutions S⋆ is non empty if and only if ⊖m
i=1[−(δ)⊗

xk̄
i ⊗ (−xi)]⊖ 0 is solution, where the xi’s denote the vectors (x1

i , ..., x
l
i).

We need to solve the maximization program:

sup δ

st. max
k=1,...,l

{
xk
i +min

{
min

i=1,...,m
{xk̄

i − xj
i}, δ

}}
≤ xk̄

i i = 1, ...,m

max
k=1,...,l

{
ykj +min

{
− 2δ + min

i=1,...,m
{xk̄

i − xk
i },−δ

}}
≥ yk̄j j = 1...n

max
k=1,...,l

{
min

{
− δ + min

i=1,...,m
{xk̄

i − xk
i }, 0

}}
= 0.

Set

βk̄,k = min
i=1,...,m

{xk̄
i − xk

i }.

From the notations above, this problem can be rewritten with a slight rearrangement

sup δ

st. max
k=1,...,l

{
min

{
xk
i + βk̄,k, δ + xk

i

}}
≤ xk̄

i i = 1, ...,m

max
k=1,...,l

{
min

{
− 2δ + ykj + βk̄,k,−δ + ykj

}}
≥ yk̄j j = 1, ...,m

max
k=1,...,l

{
min

{
− δ + βk̄,k, 0

}}
= 0

For µ1, µ2, b > 0, we have:

(i) sup
{
δ ∈ R : min

{
µ1, µ2 + δ

}
≤ b

}
=

{
+∞ b ≥ µ1

b− µ2 b < µ1

(ii) sup
{
δ ∈ R : min

{
µ1 − 2δ, µ2 − δ

}
≥ b

}
=

{
µ2 − b if b ≥ 2µ2 − µ1

(µ1 − b)/2 if b ≤ 2µ2 − µ1

(iii) sup
{
δ ∈ R : min {µ1 − δ, µ2} = b

}
=

{
−∞ if b > µ2

µ1 − b if b ≤ µ2

Since, by definition xk̄
i ≥ βk̄,j + xk

i , it follows that only the constraints j = 1, ..., n and

the last constraints are active. Moreover, from condition (ii), yk̄j ≤ ykj − β
k̄,k

implies that

sup
{
δ ∈ R : min

{
− 2δ + ykj + βk̄,k,−δ + ykj

}
≥ yk̄j

}
= 1

2 max k=1,...,l

yk̄
j ≤yk

j −β
k̄,k

{
− yk̄j + ykj + βk̄,j

}
∀k, j. Conversely, yk̄j ≥ ykj − β

k̄,k
implies that

sup
{
δ ∈ R : min

{
− 2δ + ykj + βk̄,k,−δ + ykj

}
≥ yk̄j

}
= max

k=1,...,l

yk̄
j ≥yk

j −β
k̄,k

βk̄,k.

Moreover sup
{
δ ∈ R : min

{
− δ + βk̄,k, 0

}
= 0

}
= β

k̄,k
, which yields the result. (b) The

computation of Din(x
k̄, yk̄) is immediate by dropping the constraint maxk sk ≤ 0. Since T⊕

c

is graph translaton homothetic, the other identities follow from [6]. 2
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5.3 Numerical Example

The following data sample can be found in Färe, Grosskopf and Lovell [20].

Table 1. Data Sample
Firms Input Output 1 Output 2

1 2 3/2 1
2 2 2 1
3 4 3 2
4 6 6 6
5 7 6 6
6 8 7 4
7 9 7 4

The values of the efficiency measures for Max-Plus and B-convex technologies are listed
in Table 2 and 3. They are also compared to the efficiency scores computed using the
traditional DEA model.

Table 2. Efficiency scores under a VRS assumption.
Firms DEA In-

put Farrell
VRS

B-Convex
Input
Farrell
VRS

Max-Plus
Input
Translation
VRS

DEA Out-
put Farrel
VRS

B-Convex
Output
Farrel
VRS

Max-Plus
Output
Translation
VRS

Max-Plus
Graph
Translation
VRS

1 1 1 0 1 0.75 0.5 0
2 1 1 0 1 1 0 0
3 0.75 0.75 1 1.333 0.75 1 0.5
4 1 1 0 1 0 0 0
5 0.857 0.857 1 1 1 0 0
6 1 1 0 1 1 0 0
7 0.888 0.888 1 1 1 0 0

Table 3. Efficiency scores under CRS and GTH assumptions.
Firms DEA In-

put Farrell
CRS

DEA Out-
put Farrell
CRS

B-convex
Input
Farrell
CRS

B-convex
Output
Farrell
CRS

DEA Graph
Translation
CRS

Max-Plus
Graph Trans-
lation GTH

1 0.75 1.333 0.75 1.333 0.25 0.25
2 1 1 1 1 0 0
3 0.75 1.333 0.75 1.33 0.5 0.5
4 1 1 1 1 0 0
5 0.857 1.666 0.857 1.166 0.5 0.5
6 0.875 1.142 0.875 1.142 0.495 0.5
7 0.778 1.285 0.888 1.125 1 1

In Table 2, we assume that the technologies satisfy a variable returns to scale assumption
(VRS). One can see that all the efficient points in the Max-Plus production set are efficient in
the B-convex one and conversely. Moreover, the input scores computed using the DEA and
B-convex models are identical. In general, however, this is not true. These results come from
the configuration of the data set and the fact that the input dimension is 1. For example,
if the efficiency measures are output oriented, then firm 1 is efficient in the DEA case and
inefficient under either a Max-Plus or a B-convex assumption. Remark that both in the
Max-Plus and B-convex cases, firms may be efficient (resp. inefficient) and inefficient (resp.
efficient) respectively in the input and output dimension. This is the case for firms 1, 5 and
7. Notice that only firm 3 is inefficient in the graph oriented case. Table 3 reports the cases
of constant returns to scale (CRS) and graph translation nomothetic assumptions (GTH).
One can see, not surprisingly, that there are more inefficient firms since the production sets
are larger than in the VRS case. The results are identical in the DEA and B-convex cases
excepted for firm 7. Moreover, computing the graph translation distance function in the
DEA case, one can see that the results are identical to those obtained in the tropical case,
excepted for firm 6.
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Conclusion

In this paper, a framework to analyze Max-Plus production technologies was proposed. In
a nonparametric context, it was established that input, output and graph distance func-
tions can be calculated in closed form (this is not the case for DEA models). A duality
result was established in the paper that holds for a large class of non-convex technologies.
Deeper investigations should be done concerning the aggregation of Max-Plus technologies
in view of the additive nature of the translation distance function. Along this line, there
are some potential empirical applications of these models to many fields of economics and
management.
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ordered spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC,
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