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DECOMPOSITION-BASED APPROACHES FOR
MULTIOBJECTIVE COMPOSITE SYSTEMS∗
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Abstract: Decision making in a composite system usually involves considering all of the components from
which it is formed. In some cases, these components or subsystems may determine a part of the feasible
set or they may impact the objectives of the whole system. This paper studies the relationship between
the efficient set of the multiobjective problem associated with the composite system and the efficient sets
of the multiobjective problems corresponding to the subsystems. In addition to simple examples appearing
through this paper, the redundancy allocation problem is considered to illustrate the applicability of the
results obtained.
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1 Introduction

Decision-making processes in public and private organizations often require the explicit
consideration of different components which have some decision capabilities, and that are
affected by the problem under study. In this context, we use the term “composite system”
to refer to a system consisting of several quasi autonomous components. These units can be
independent or can interact with each other.

When the decision-making process is modeled as an optimization problem, different
elements (decision variables, goals, constraints, etc.) appear to come from the different units
implied in that process. There are usually multiple conflicting objectives and consequently,
the optimization problem has to be treated in a multiobjective programming framework.

The underlying optimization problem (overall problem) is often complex to solve, and
an effective strategy is to reduce such complexity by applying decomposition techniques.
The idea is to split the overall system according to the nature of the problem so that the
generated subproblems are easier to solve. In some cases, those subproblems have to be
coordinated in order to obtain a solution for the original problem ( [20,30]).

Different decomposition approaches can be found in the literature. Some of them divide
the global problem by leaning on the hierarchy that underlies many of the real organizations
( [8,12,19,24]). In such cases, the decomposition is carried out through the introduction of a
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set of auxiliary parameters (coordination variables) which allows that the subproblems (lower
level) are solved separately, but coordinated by a master problem (top level). An overview of
these schemes can be found in [9,15,17] and [3], among others. Other approaches, principally
in the engineering field, divide the global problem according to the different disciplines or
knowledge areas involved in it. Different methods in Multidisciplinary Design Optimization
(MDO), such as Concurrent Subspace Optimization (CSSO), Collaborative Optimization
(CO), Bilevel Integrated System Synthesis (BLISS), among others, have proved to be useful
tools for engineering design problems ( [7, 21, 26]). Basically, these schemes differ in how
the solution of the decoupled optimization problems are coordinated and how consistency
between subsystems is managed. See [1, 27] and [18] for details of these methods.

In a multiobjective context, some applied decomposition approaches are heuristic, with-
out rigorous mathematical validation or use some specific resolution technique (weighting
method, epsilon-restriction method) that requires certain assumptions in the problem such
as differentiability, convexity, etc. ( [7, 20] ).

We analyze multiobjective optimization problems where various multiobjective optimiza-
tion subproblems appear and we offer the theorist framework which allows replacing the res-
olution of the original problem by the resolution of one or more optimization subproblems.
This could provide a saving in the computational effort. In this paper, we follow a previous
work ( [6]), but consider new situations which may arise in the natural structure of the over-
all problem, for example, decision variables which can be expressed as linear combinations
of a finite number of variables, objective functions which depend on decision variables and
intermediate functions, and complex systems that extend the previous cases with local and
global variables.

As pointed out previously, the overall problem is considered as a system with multiple
components, and its general formulation can be stated as:

min f(x) subject to x ∈ X ⊆ Rn, (1.1)

where X ⊆ Rn, X ̸= ∅ is the feasible set, x = (x1, x2, . . . , xn) ∈ X is a vector of the
decision variables; the objective function vector to be minimized f is defined in a subset of
Rn containing X and it takes values in a subset of Rp. Here Rn (resp. Rp) is n-dimensional
(resp. p-dimensional) Euclidean space.

Generally, in multiobjective problems (MOPs), a unique optimal solution does not exist,
due to the conflicting objectives; however a set of solutions which are called efficient solutions
is produced. The set of efficient solutions for the overall problem is denoted by E(X, f,Rp

=),

where Rp
= is the domination cone given by Rp

= = {u ∈ Rp : ui = 0 for i = 1, 2, . . . , p},
i.e. the non-negative orthant of Rp. In the literature, this domination cone is known as the
Pareto cone. As in [22, p. 28] we consider the set E(X, f,Rp

=) defined in the following way.

E(X, f,Rp
=) = {x ∈ X : there is no x̄ ∈ X such that f (x̄) ≤ f (x)}. (1.2)

where f (x̄) ≤ f (x) denotes fi (x̄) ≤ fi (x) for i = 1, 2, . . . , p and fj (x̄) < fj (x) for some
j ∈ {1, 2, . . . , p}.

A feasible solution is efficient if there is no other feasible solution that can improve
any one objective without degrading at least one other (see [23]). If x is efficient, the
outcome f(x) is called a non-dominated point. The set of all efficient solutions is called the
Pareto set, E(X, f,Rp

=), and the set of all non-dominated points is called the Pareto front

E(f(X),Rp
=) = f(E(X, f,Rp

=)). Throughout this work we will suppose that all the efficient



DECOMPOSITIONS FOR MULTIOBJECTIVE COMPOSITE SYSTEMS 709

sets are non-empty, which can be guaranteed under relatively weak assumptions on X and
f (see [22, p. 49-51] for details of these assumptions).

The objective of the present paper is to study the relationship between the efficient set
of the overall problem and the efficient sets of the subproblems, considering a variety of
configurations based on the functional dependencies between decision variables and objec-
tive functions included in the problem. Special emphasis is put here on the way that the
efficient sets of the subproblems partially or completely determine the efficient set of the
overall problem, without additional consideration on the later problem of choosing one of the
elements of this set as the final solution for the multiobjective composite system. Extensive
literature is devoted to the study of this topic. An overview of those using decomposition and
coordination methods is given in [3]. Furthermore, two different interactive decision-making
procedures were introduced in [4].

The remainder of this paper is organized as follow: basic composite systems are presented
in Section 2. The goal of this section is to reduce the multiobjective problem to a finite set
of subproblems that are more easily treated due to the simplicity of the corresponding
feasible sets and / or their objective functions. Furthermore, we analyze the relationships of
efficiencies between the original problem and the subproblems considered. In Subsection 2.1,
we consider that the feasible set can be given as a sum, a homothety or a linear combination
of other sets. In subsection 2.2 the problem is linked to another problem, generally easier
that the given, where the feasible sets of both are the same, but the objective functions are
related by some given function. Section 3 extends some previous results and presents some
new results for the composite systems that are combinations of two or more basic cases. Here,
we study systems that are composed of N subsystems and depend on two types of vector
variables; one of them (local variables) captures information from the subsystems, while
the other (global variables) gathers global aspects of the system. We consider two different
cases according to whether the subsystems depend on the global variable (Subsection 3.1
and 3.2) or not. Furthermore, through out this paper the theoretical results are illustrated
with simple examples in order to be clearer. In Section 4, we illustrate the way some
of the methods and results of the previous sections shed new light on the solution of the
multiobjective redundancy allocation problem. Finally, a summary of conclusions is given
in Section 5.

2 Basic Composite Systems

We start our presentation with systems which are call basic composite systems. We can use
these systems as building blocks to develop various complex composite systems. For each
type of system we formulate the specific global problem for that system i.e. feasible set,
and the objective function. We then build the pertinent efficient sets (1.2) and present any
necessary auxiliary concepts. Finally, we state and prove at least one proposition defining a
relationship between the efficient sets of the subproblems and the efficient set of the system.

2.1 Algebraic Operations on Feasible Set

We start by studying the case of one system with one decision variable, which is the result
of some basic algebraic operations, i.e., addition, multiplication or linear combination.

2.1.1 The Minkowski Sum

The first system we consider is the general MOP (1.1) but where the feasible decision x
is equal to the sum of two decision variables. More explicitly, we consider that the global
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feasible set is the Minkowski sum (also called the sumset) of two subsets, X1 and X2, of
the set Rn. Minkowski sums are used in many applications, for example, in economics to
optimize the production potential of a group of companies.

The global formulation for this specific case is written as

min f (x) subject to x ∈ X = X1 +X2. (2.1)

Due to the structure of the feasible set, the subsystems for this case are given by

min f (xi) subject to xi ∈ Xi, i = 1, 2. (2.2)

It is interesting to regard the efficient set of this global problem in terms of E(Xi, f,Rp
=)

for i = 1, 2. For this the objective function f is required to show good behavior relative to
the Minkowski sum. So if X,X1, X2 ⊆ A and f : A ⊆ Rn → B ⊆ Rp then f is said to be
an additive function with respect to the decomposition X = X1 +X2 if, whenever x1 ∈ X1

and x2 ∈ X2, then f(x1) + f(x2) ∈ B and f(x1 + x2) = f(x1) + f(x2).
A relationship between the non-dominated points for Problem (2.1) and Problems (2.2)

was first obtained by Sawaragi et al. [22, p. 35]. In the subsequent proposition we reformulate
this connection in a similar context for the efficient points.

Proposition 2.1. If f is an additive function with respect to decomposition X = X1 +X2,
then

E(X, f,Rp
=) ⊆ E(X1, f,Rp

=) + E(X2, f,Rp
=).

In general converse inclusion of Proposition 2.1 is false, as we show in the following
example.

Example 2.2. Let f : R2 −→ R2 where f (x, y) = [x− y,−x] and

X1 = {(x1, y1) : 0 5 x1 5 1, 0 5 y1 5 2− 2x1} ⊆ R2,

X2 = {(x2, y2) : 0 5 x2 5 1, 2x2 − 2 5 y2 5 0} ⊆ R2.

Figure 1(a) shows the feasible sets of the subproblems, and Figure 1(b) shows the feasible
set of the global problem. Then (1, 0) ∈ E(X1, f,R2

=) and (0, 0) ∈ E(X2, f,R2
=). However,

(1, 0) is not efficient in X for f (for example,(1, 2) ∈ X1 +X2 = X and f(1, 2) < f(1, 0)).

In Proposition 2.5 we improve the assertion of Proposition 2.1 in the case that X1

and X2 are compact sets and f is a continuous map, which is additive with respect to
decompositionX = X1+X2. We previously prove two lemmas. The first gives an elementary
property, which will also be used in several sections of this paper and can be proved by
direct verification. The second is a well known result, called domination property. It can be
obtained as an immediate consequence of Theorem 4.1 of Hartley [10].

Lemma 2.3. If E(X, f,Rp
=) ⊆ Y ⊆ X, then E(X, f,Rp

=) ⊆ E(Y, f,Rp
=).

Lemma 2.4. Let X be a compact subset of Rn, f a continuous function on X and x a non
efficient point in X for f . Then there exists x̂ ∈ E(X, f,Rp

=) such that f(x̂) ≤ f(x).

Proposition 2.5. Let f be a continuous map, which is an additive function with respect to
the decomposition X = X1 +X2, where X1 and X2 are compact subsets of Rn. Then

E(X, f,Rp
=) = E

(
E(X1, f,Rp

=) + E(X2, f,Rp
=), f,R

p
=

)
.
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Figure 1: Feasible Sets. Example 2.2.

Proof. The inclusion E(X, f,Rp
=) ⊆ E

(
E(X1, f,Rp

=) + E(X2, f,Rp
=), f,R

p
=

)
, is an immedi-

ate consequence of Lemma 2.3 and Proposition 2.1.

Let x ∈ E
(
E(X1, f,Rp

=) + E(X2, f,Rp
=), f,R

p
=

)
, and by contradiction, suppose that x is

non efficient in X for f . Then there exists x̂ = x̂1 + x̂2, for some x̂1 ∈ X1 and x̂2 ∈ X2 such
that f(x̂) ≤ f(x). We observe that the relations x̂1 ∈ E(X1, f,Rp

=) and x̂2 ∈ E(X2, f,Rp
=)

cannot occur simultaneously. Indeed, the inequality f(x̂) ≤ f(x) contradicts that x ∈
E
(
E(X1, f,Rp

=) + E(X2, f,Rp
=), f,R

p
=

)
. So some x̂i, for example, x̂2 is not efficient in X2

for f . By Lemma 2.4, there exists x̆2 efficient in X2 for f such that f(x̆2) ≤ f(x̂2). For x̂1

two possibilities exist: either x̂1 ∈ E(X1, f,Rp
=) or x̂1 /∈ E(X1, f,Rp

=). If x̂1 ∈ E(X1, f,Rp
=)

we make x̆1 = x̂1. If x̂1 /∈ E(X1, f,Rp
=) we choose x̆1 efficient in X1 for f such that

f(x̆1) ≤ f(x̂1), which can be guaranteed by Lemma 2.4. Consider x̆ = x̆1 + x̆2, x̆ ∈
E(X1, f,Rp

=) + E(X2, f,Rp
=) and f(x̆) = f(x̆1) + f(x̆2) ≤ f(x̂1) + f(x̂2) = f(x̂). Since

f(x̂) ≤ f(x), we have f(x̆) ≤ f(x), which contradicts the assumption that x is efficient in
E(X1, f,Rp

=) + E(X2, f,Rp
=) for f and completes the proof.

According to this proposition, the overall problem can be solved by a two step-procedure.
In the initial step, the efficient set of each subproblem (2.2) is obtained. Then, in a second
step, the efficient set for f in the efficient sumset, E(X1, f,Rp

=) + E(X2, f,Rp
=), is achieved.

In order to generalize the arguments in the proofs of Proposition 2.1 and Proposition 2.5
to the case in which the feasible set can be decomposed as a finite sum of N = 3 compact
subsets X1, X2, . . . , XN of Rn, we require that X1, X2, . . . , XN , X ⊆ A and the continuous
function f to be an additive function with respect to the decomposition X =

∑N
i=1 Xi.

Under the above assumptions we obtain

E

(
N∑
i=1

Xi, f,Rp
=

)
= E

(
N∑
i=1

E(Xi, f,Rp
=), f,R

p
=

)
.

Example 2.6. Let us consider the data from Example 2.2. Figure 1(a) shows the feasible
sets of the subproblems, and Figure 1(b) shows the feasible set of the global problem.
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Solving the subproblems yields E(X1, f,R2
=) = {(1 − λ, 2λ) : λ ∈ [0, 1]} = AB, i.e. the

segment AB, and E(X2, f,R2
=) = {(µ, 0) : µ ∈ [0, 1]} = BC. (See Figure 1(a)). Then

E(X1, f,R2
=) + E(X2, f,R2

=) = AB + BC = {(x, y) : 2 5 2x+ y 5 4, 0 5 y 5 2}, i.e. the

parallelogram abcf (see Figure 1(b)).

By Proposition 2.5, E(X, f,R2
=) = E

(
E(X1, f,R2

=) + E(X2, f,R2
=), f,R

2
=

)
= {(2 −

α, 2α) : α ∈ [0, 1]} ∪ {(β, 2) : β ∈ [0, 1]} = ab ∪ bc, (see Figure 1(b)).

2.1.2 Homothety

We now proceed by examining a case where the decision variable is multiplied by a strictly
positive real number λ. The new feasible set λX is obtained fromX by applying a homothety
of ratio λ. This system yields the following global problem

min f(y) subject to y ∈ λX. (2.3)

The efficient solutions of this problem can be related to the efficient solutions of the gen-
eral problem MOP (1.1) by assuming the objective function to be positively homogeneous
of degree one. In a more explicit way we require that if λ ∈ R> and x ∈ X then λx ∈ A,
λf(x) ∈ B and f(λx) = λf(x). Here the function f : A ⊆ Rn → B ⊆ Rp is said to be
positively homogeneous of degree one on X. One of the most important positively homoge-
neous functions are the norms. This class of function are used extensively in Mathematical
Economics ( [5, 11,28]).

Under this assumption the following proposition is readily obtained which is illustrated
with the example below.

Proposition 2.7. If f is a positively homogeneous function of degree one on X, then

E(λX, f,Rp
=) = λE(X, f,Rp

=) for all λ ∈ R>.

Example 2.8. Let X = { (x1, x2) : x
2
1 + x2

2 5 1, x1 5 0, x2 5 0} ⊆ R2, and f : R2 −→ R2

where f(x) = [x1, x2−x1]. By Proposition 2.7, E(2X, f,R2
=) = 2{(x1, x2) : x

2
1+x2

2 = 1, x1 5
0, x2 5 0} = {(x1, x2) : x

2
1 + x2

2 = 4, x1 5 0, x2 5 0}.

Note that, under the assumption that f is a positively homogeneous function of degree
one, all homothety ( dilation, if λ > 1, or contraction, if λ < 1) in the feasible set yields the
same homothety (same ratio) in the corresponding efficient set.

2.1.3 Linear Combination

The system considered in this subsection arises from the last two in a natural way. Here
the global variable is a positive linear combination of N given previously. Now the global
formulation for this specific case is written as

min f(x) subject to x ∈ X =
N∑
i=1

λi Xi, (2.4)

where λi ∈ R> ; i = 1, 2, ..., N. Now the following corollary follows from the multiplicative
and the additive case results.
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Corollary 2.9. If f : Rn → Rp is a linear map, then

E

(
N∑
i=1

λi Xi, f,Rp
=

)
⊆

N∑
i=1

λi E(Xi, f,Rp
=), (2.5)

If, in addition, every Xi is a compact subset of Rn then

E

(
N∑
i=1

λi Xi, f,Rp
=

)
= E

(
N∑
i=1

λi E(Xi, f,Rp
=), f,R

p
=

)
. (2.6)

Note that if we consider that
∑N

i=1 λi = 1, then λi can be interpreted as the relative
importance that is given to the part Xi within the overall set X.

2.2 Objective Functions Depending on Intermediate Functions

We proceed in this section by including systems that are formed by two sequentially con-
nected problems and a single set of decision variables.

2.2.1 Composite Function

We begin by studying the case where the overall objective function depends on the objective
function of the first problem.

Let r : A ⊆ Rn −→ B ⊆ Rq, f : B ⊆ Rq −→ C ⊆ Rp and X ⊆ A. We consider the
composite function F (x) = (f ◦ r)(x) = f (r(x)). One simply takes the output of the first
function and uses it as the input of the second function. We refer to function F as the
overall objective function and to the function r as the intermediate function.

This system yields the following global problem

minF (x) = f (r(x)) subject to x ∈ X. (2.7)

In the following proposition we developed the first relationship for the system.

Proposition 2.10. If F = f ◦ r, then

E(X,F,Rp
=) = {x : r(x) ∈ E(r(X), f,Rp

=)}.

Proof. Let x be efficient in X for F . On the contrary, suppose that r(x) is not efficient in
r(X) for f . Then there exists r(x̂) ∈ r(X), such that F (x̂) = f (r(x̂)) ≤ f (r(x)) = F (x),
contrary to the assumption that x is efficient in X for F .

Let x ∈ X such that r(x) is efficient in r(X) for f . Suppose that x is not efficient in X
for F . Then there exists x̂ ∈ X such that F (x̂) ≤ F (x). Thus, f (r(x̂)) = F (x̂) ≤ F (x) =
f (r(x)) which contradicts the supposition that r(x) is efficient in r(X) for f .

Example 2.11. Let r : R2 −→ R2 where r(x1, x2) = [x1,−x1 + x2], f : R2 −→ R2 where
f(y1, y2) = [y21 + y22 , y2], and X = {(x1, x2) : x

2
1 + x2

2 5 1, x1 5 0, x2 5 0} ⊆ R2. See Figure
2(a).

First we calculate the image of X under r: r(X) = { (y1, y2) : 2y21 + y22 +2y1y2 5 1, y1 5
0, y1 + y2 5 0 }. See Figure 2(b). Now, we compute E(r(X), f,R2

=) = { (y1, y2) : y1 =

0, −1 5 y2 5 0 }.
By Proposition 2.10, E(X,F,R2

=), where F = (f ◦ r), can be determined using

E(r(X), f,R2
=). Therefore E(X,F,R2

=) = { (x1, x2) : x1 = 0,−1 5 x2 5 0 }.
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Figure 2: Example 2.11.

In the next proposition, we give conditions to reduce the overall problem to the following
subproblem

min r(x) subject to x ∈ X. (2.8)

In order to develop the next relationship a strongly increasing objective function f is
required. So f : B ⊆ Rq → C ⊆ Rp is said to be a strongly increasing function if for all
y1, y2 ∈ B such that y1 ≤ y2 then f(y1) ≤ f(y2). We consider that f is a strongly increasing
function on B̃ ⊆ B if its restriction to B̃ is so.

Proposition 2.12. Let F = f ◦ r. If f is a strongly increasing function on r(X), then the
following assertions hold:

(a) E(X,F,Rp
=) ⊆ E

(
E(X, r,Rq

=), F,R
p
=

)
.

(b) If, furthermore, X is a compact subset of Rn and r is a continuous function on X,
then

E(X,F,Rp
=) = E

(
E(X, r,Rq

=), F,R
p
=

)
.

Proof. (a) It is an immediate consecuence of Lemma 2.3 taking Y = E(X, r,Rq
=).

(b) Let x be efficient in E(X, r,Rq
=) for F , and suppose that x is not efficient in X for F .

Then there exists x̂ ∈ X such that F (x̂) = f (r(x̂)) ≤ f (r(x)) = F (x). We now consider
two cases, either x̂ ∈ X\E(X, r,Rq

=) or x̂ ∈ E(X, r,Rq
=).

The second case can be ruled out, because it contradicts the assumption that x is efficient
in E(X, r,Rq

=) for F .

Suppose x̂ ∈ X\E(X, r,Rq
=), i.e. x̂ /∈ E(X, r,Rq

=). By Lemma 2.4, there exists x̆ ∈
E(X, r,Rq

=) such that r(x̆) ≤ r (x̂). Since f is strongly increasing on r(X), F (x̆) =

f (r(x̆)) ≤ f (r(x̂)) ≤ f (r(x)) = F (x), which contradicts the assumption that x is efficient
in E(X, r,Rq

=) for F and completes the proof.

It should be noted that the previous proposition offers the possibility to find the efficient
points of the composite function in the efficient set of the given subproblem. We also observe
that the strongly increasing character of the function f is a relatively weak assumption in
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Proposition 2.12. Examples of functions of this kind are those in which the component
functions fi are given as in the cases (a) and (b) below.

(a) fi(x) =
∑q

j=1 aijrj(x) with aij > 0 ; i = 1, 2, ..., p.

(b) fi(x) = r1(x)r2(x)...rq(x) with rj(x) > 0 ∀x ∈ X ; i = 1, 2, ..., p.

The following proposition focuses on the efficient points in X for r, but this requires
stronger assumptions on the objective function. We will say that the function f is a strongly
order reflecting function if for all y1, y2 ∈ B such that f(y1) ≤ f(y2) implies y1 ≤ y2. We
consider that f is a strongly order reflecting function on B̃ ⊆ B if its restriction to B̃ is so.

Proposition 2.13. Let F = f ◦r. If f is a strongly increasing and a strongly order reflecting
function on r(X), then

E(X,F,Rp
=) = E(X, r,Rq

=).

Proof. It is an immediate consequence of Proposition 2.12 (a) and the strongly order reflect-
ing character of f .

2.2.2 Objective Function Depending on the Input and an Intermediate Output

We continue by studying the case where the overall objective or end function directly depends
on the decision variables (input) and also indirectly depends on these variables through an
intermediate function.

Let r : A ⊆ Rn −→ B ⊆ Rq and f : C ⊆ Rn+q −→ D ⊆ Rp with A × r(A) ⊆ C and let
X ⊆ A. We now consider the function F : A −→ D given by F (x) = f(x, r(x)), which is a
function of the input and the corresponding output of an intermediate function of the same
input. This system yields the following global problem,

minF (x) = f (x, r(x)) subject to x ∈ X. (2.9)

The dependence of the final function leads us to the following subproblem.

min r (x) subject to x ∈ X. (2.10)

The relationship or connection between the efficient points for Problem (2.9) and Problem
(2.10) requires some assumptions over the objective functions.

Proposition 2.14. Let F (x) = f (x, r(x)). If f is a strongly increasing function on
{(x, r(x)) : x ∈ X} and r is a strongly order reflecting function on X, then

E(X,F,Rp
=) ⊆ E(X, r,Rq

=).

Proof. Let x be efficient in X for F , and suppose x is not efficient in X for r. Then
there exists x̂ ∈ X such that r(x̂) ≤ r(x). Since r is a strongly order reflecting function
on X, then x̂ ≤ x. Consequently (x̂, r(x̂)) ≤ (x, r(x)). Since f is strongly increasing on
{(x, r(x)) : x ∈ X}, we have F (x̂) = f (x̂, r(x̂)) ≤ f (x, r(x)) = F (x), which contradicts the
assumption that x is efficient in X for F .

For the reverse inclusion, we must modify the assumptions on the functions involved in
the problem.
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Proposition 2.15. Let F (x) = f (x, r(x)). If r is an injective function on X and f is a
strongly order reflecting function on {(x, r(x)) : x ∈ X}, then

E(X, r,Rq
=) ⊆ E(X,F,Rp

=).

Proof. Let x be efficient in X for r, and suppose x is not efficient in X for F . Then there
exists x̂ ∈ X such that F (x̂) ≤ F (x). Equivalently, f (x̂, r(x̂)) ≤ f (x, r(x)). Since f is
a strongly order reflecting function on {(x, r(x)) : x ∈ X}, we have (x̂, r(x̂)) ≤ (x, r(x)).
The injectivity of r on X and the inequality (x̂, r(x̂)) ≤ (x, r(x)) give r(x̂) ≤ r(x), which
contradicts the efficient character of x in X for r.

From Propositions 2.14 and 2.15, we have the following.

Corollary 2.16. Let F (x) = f (x, r(x)). If f is a strongly increasing and a strongly order
reflecting function on {(x, r(x)) : x ∈ X} and r is an injective strongly order reflecting
function on X, then

E(X,F,Rp
=) = E(X, r,Rq

=).

Example 2.17. Let X = { (x1, x2) : x1 + x2 = 1, 0 5 x1 5 1, x2 5 1} ⊂ R2 (see Figure
3). Let r : R2 −→ R2 where r (x1, x2) = [x1,

1
2x1 + x2] and f : R4 −→ R2 × R2

> where
f (y1, y2, y3, y4) = [ 2y1 + 3, y2

4 , y3
2, exp y4 ].

Figure 3: Feasible set. Example 2.17.

Then, we have F (x1, x2) = f (x1, x2, r(x1, x2)) = ( 2x1 + 3, x2

4 , x1
2, exp ( 12x1 + x2)).

We can see that f and r satisfy the assumptions of Corollary 2.16, so we obtain E(X,F,R4
=) =

E(X, r,R2
=) = AC = {(1− λ, λ) : λ ∈ [0, 1]}.

2.2.3 Using Intermediate Functions as Objective Functions

In the preceding subsections, we have considered the intermediate function’s output as
an input in the objective functions. In this subsection, we will consider the intermediate
function’s output as an additional objective.
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Let r : A ⊆ Rn −→ B ⊆ Rp2 and f : B ⊆ Rp2 −→ C ⊆ Rp1 and let X ⊆ A. We now
consider the function F : A → C ×B ⊆ Rp where p = p1 + p2 and F (x) = (f (r(x)) , r(x)).
The global formulation is as follows,

minF (x) = (f (r(x)) , r(x)) subject to x ∈ X. (2.11)

Firstly consider the following subproblem for the previous system

min r(x) subject to x ∈ X. (2.12)

In order to relate the efficient points in X for r and the efficient points in X for F , it is
necessary to impose some restrictions on f .

Proposition 2.18. If F = (f ◦ r, r) and f is a strongly increasing function on r(X), then

E(X,F,Rp
=) = E(X, r,Rp2

= ).

This proposition implies that, under relatively weak conditions on the systems, all effi-
cient solutions for the global problem can be found by computing only efficient solutions for
the subproblem. It can be obtained as an immediate consequence of a result from Haimes
et al. [9, p. 85] for non-dominated points.

Example 2.19. Let r : R2 −→ R2 where r(x1, x2) = [x2
1 + x2

2, (x1 − 1)2 + (x2 − 1)2 ],
f : R2 −→ R2 where f(y1, y2) = [ y1 · y2, y1 + y2 ] and X is given as in Example 2.17. Then
E(X, r,R2

=) = AB = { ( 12 + λ
2 ,

1
2 + λ

2 ) : λ ∈ [ 0, 1 ]}, (see Figure 4).

Figure 4: Efficient and Feasible sets. Example 2.19.

The function f is strongly increasing on r(X) and so by Proposition 2.18, E(X,F,R4
=) =

E(X, r,R2
=) = AB. Note that F (x1, x2) = [ (x2

1+x2
2)·((x1−1)2+(x2−1)2), (x2

1+x2
2)+((x1−

1)2 + (x2 − 1)2), x2
1 + x2

2, (x1 − 1)2 + (x2 − 1)2 ]. We see that the above example illustrates
a typical case where it is easier to obtain the set E(X, r,R2

=) than the set E(X,F,R4
=).
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We now consider the following new subproblem:

min f (r(x)) subject to x ∈ X. (2.13)

and we have the following results.

Proposition 2.20. If F = (f ◦ r, r) and f is an injective function on r(X), then

E(X, f ◦ r,Rp1

= ) ⊆ E(X,F,Rp
=).

Proof. Let x be efficient in X for (f ◦r), and suppose x is not efficient in X for F = (f ◦r, r).
Then there exists x̂ ∈ X such that

F (x̂) = (f(r(x̂)), r(x̂)) ≤ (f(r(x)), r(x)) = F (x).

The possibility that f (r(x̂)) = f (r(x)) is ruled out by the injectivity of f . So f (r(x̂)) ≤
f (r(x)), which contradicts the efficient character of x in X for (f ◦ r).

An alternative hypothesis over f yields the following result:

Proposition 2.21. Let F = (f ◦ r, r). If f is a strongly increasing continuous function on
r(X), then

E(X, f ◦ r,Rp1

= ) ⊆ E(X,F,Rp
=).

Proof. The result follows from Proposition 2.12 (a) and Proposition 2.18.

Note that the inclusion

{x : r(x) ∈ E(r(X), f,Rp1

= )} ⊆ E(X,F,Rp
=), (2.14)

by Proposition 2.10, can be viewed as a reformulation of Proposition 2.21. So we see that a
subset of the Pareto global set can be obtained by considering the Pareto set for f over the
image set r(X).

Example 2.22. Let us consider the data from Example 2.19, and we solve it in a new way.
Firstly, taking into account that r(x1, x2) = r(x2, x1) we calculate the image of X under r:
r(X) = { (y1, y2) : (y1−y2)

2−4(y1−1) = 0, (y1−y2)
2−4(y1+y2)+4 5 0, y1−y2 = 0} ⊆ R2.

See Figure 5.

Figure 5: The Image of X under r and Efficient Set. Example 2.22.

Now we compute E(r(X), f,R2
=) = { (y1, y2) : (y1 − y2)

2 − 4(y1 + y2) + 4 = 0, 1
2 5 y1 5

2, 0 5 y2 5 1
2 }. This set is represented by the black line in Figure 5, which is precisely

the image of the segment AB (see Figure 4) under the function r, i.e. r(AB). Therefore,
E(X,F,R4

=) = AB.
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In Proposition 2.21 the reverse inclusion does not hold in general as we show in the
following example.

Example 2.23. In Example 2.22, we replace f by a new function defined by f(y1, y2) =
(y1, y1 + y2). In this case E(r(X), f,R2

=) = {( 12 ,
1
2 )}, while E(X,F,R4

=) = AB, (see Figure 4

and 5).

In light of the above examples we observe that the reverse inclusion, E(X,F,Rp
=) ⊆

E(X, f ◦r,Rp1

= ), from Proposition 2.21 only holds in some special cases. In the next corollary

we give some additional conditions under which this occurs.

Proposition 2.24. Let F = (f ◦ r, r). If f is a strongly increasing and a strongly order
reflecting function on r(X), then

E(X, f ◦ r,Rp1

= ) = E(X,F,Rp
=).

Proof. It follows from Propositions 2.13 and 2.18.

3 Complex Composite Systems

We use the previously developed relationships from the preceding sections to find the efficient
sets of other composite systems, which are referred as complex composite systems. These
systems can be thought of as combinations of two or more basic composite systems.

We examine a composite system with two independent blocks of variables. One of them
containing all the local decision variables (x), each of which directly affects only one of the
N subsystems and the other including decision variables (x0) which affect the behavior of
the global system and could also influence on the subsystems. Therefore, two cases can
be distinguished depending on whether the subsystems have only local information or not.
They will be analyzed in the following subsections.

3.1 Subsystems with Only Local Information

We start by considering N subsystems each with their own variable, which we denote as xi,
and let ri : Ai ⊆ Rni → Bi ⊆ Rqi be the objective function for subsystem i, or the i-th
intermediate function. In particular, Xi ⊆ Ai.

We consider a map r : A ⊆ Rn → B ⊆ Rq, with n =
∑N

i=1 ni, A ⊆
∏N

i=1 Ai, and the set of

the decision vectors x = (x1, . . . , xN ) ∈ X ⊆
∏N

i=1 Xi ⊆ A in order to capture the influence
of the different subsystems over the global system. Different possibilities can be employed
for the objective function r of a system of N -subsystems by mixing the objective functions
ri in many ways. So, for example, each of the following possibilities can be considered:

(1) If q = q1 = · · · = qN and the linear span of the set ∪N
i=1Bi is contained in B, then r

can be defined as the linear combination of the ri; that is, r(x) =
∑N

i=1 αiri(xi), (αi ∈
R, i = 1, . . . , N), for all x ∈ X.

(2) In the case that q =
∑N

i=1 qi and
∏N

i=1 Bi ⊆ B, then it is possible to define r as the
joint vector of the subsystems’ objectives, that is, r(x) = (r1(x1), . . . , rN (xN )), for all
x ∈ X.
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Since r is the objective function of a system of N -subsystems, then the problem for this
system can be formulated in the following way:

min r(x) = subject to x ∈ X ⊆
N∏
i=1

Xi. (3.1)

Let f : C0 × C ⊆ Rn0+q → D ⊆ Rp be a function such that X0 ⊆ C0 and r(A) ⊆ C.
We can now introduce a new function F : C0 × A ⊆ Rn0+n → D × B ⊆ Rp+q defined as
F (x0, x) = (f(x0, r(x)), r(x)). Here the elements of X0 play the role of a global variable for
the composite system. We now consider the case that the overall formulation of the problem
is as follows,

minF (x0, x) = (f(x0, r(x)), r(x))

subject to (x0, x) ∈ Z = X0 ×X. (3.2)

To develop the next relationship, we require an objective function to be increasing (or
strongly increasing) in one of its variables. In a more specific way, given the function
f : C0 × C → D, we primarily fix the first argument (s1 ∈ C0), and we consider the
partial function fs1 : C −→ D given by fs1(s2) = f(s1, s2). f is said to be an increasing
(resp. strongly increasing) function in the second argument, when this argument belongs to
C̃ ⊆ C, if all the restrictions to C̃ of the partial functions fs1 are increasing (resp. strongly
increasing).

In a similar way, f is said to be a continuous function in the second argument if its
restrictions to C̃ of the partial functions fs1 are so.

Proposition 3.1. Let F (x0, x) = (f(x0, r(x)), r(x)) and Z = X0 × X, with X a compact
subset of Rn. If r is a continuous function on X and f is a increasing function in the second
argument, when this argument belongs to r(X), then

{
(x0, x) ∈ Z : (x0, r(x)) ∈ E

(
X0 × E(r(X), Rq

=), f, R
p
=

)}
⊆ E(Z,F,Rp+q

= ).

Proof. Let (x0, r(x)) be efficient in X0 × E(r(X),Rq
=) for f . To obtain a contradiction,we

suppose that (x0, x) is not efficient in Z for F . Then (x̂0, x̂) ∈ Z exists such that

F (x̂0, x̂) = (f(x̂0, r(x̂)), r(x̂)) ≤ (f(x0, r(x)), r(x)) = F (x0, x).

We consider two cases, (i) r(x̂) ≤ r(x); or (ii) r(x̂) = r(x) and f (x̂0, r(x̂)) ≤ f (x0, r(x)).
Case (i) can be ruled out, because it contradicts the assumption that r(x) is non-

dominated in r(X). Now we suppose that Case (ii) holds. If x̂ is efficient in X for
r we make x̆ = x̂. If x is not efficient, we choose x̆ efficient in X for r thereby sat-
isfying r(x̆) ≤ r(x̂), which can be guaranteed by Lemma 2.4. Since f is an increas-
ing function in the second argument when this argument belongs to r(X), we have that
f (x̂0, r(x̆)) 5 f (x̂0, r(x̂)) ≤ f (x0, r(x)), which contradicts the assumption that (x0, r(x)) is
efficient in X0 × E(r(X),Rq

=) for f .

This proposition implies that a subset of the efficient set for the overall problem can be
obtained by a two step-procedure. In the first step, the set of the non-dominated points for
r is found. In the second step, the efficient set for f in the Cartesian product of X0 by the
set of this non dominated points is calculated.
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A second approach to finding efficient solutions to system (3.2) involves fixing the global
variable, thereby allowing us the possibility of finding the efficient set for the overall problem
by means of finding the efficient sets of the subsystems. This approach is best-suited to
problems where the global variable takes a finite number of feasible values.

Let us suppose that the global variable is fixed by setting a value x̄0, x̄0 ∈ X0 and we
consider the subset defined by

Zx̄0 = {(x̄0, x) : x ∈ X} (3.3)

and the partial function Fx̄0 : A ⊆ Rn → D ×B ⊆ Rp+q, Fx̄0(x) = F (x̄0, x).
Since Z = X0 ×X, we have Zx̄0 = {x̄0} ×X and by a direct verification we see that

E(Zx̄0 , F,R
p+q
= ) = {x̄0} × E(X,Fx̄0 ,R

p+q
= ). (3.4)

The following proposition provides a relationship implying that the efficient set of the
overall problem can be determined through a multilevel procedure. It is a revised version of
a result given by Li and Haimes [16], where the necessary assumption of compactness was
not noted.

Proposition 3.2. Let F (x0, x) = (f(x0, r(x)), r(x)) and Z = X0 × X, with X a compact
subset of Rn. If r is a continuous function on X and f is a continuous function in the
second argument, when this argument belongs to r(X), then

E(Z,F,Rp+q
= ) = E

( ∪
x̄0∈X0

{x̄0} × E(X,Fx̄0 ,R
p+q
= ), F,Rp+q

=

)
.

Proof. We first assert that

Zx̄0 ∩ E(Z,F,Rp+q
= ) ⊆ {x̄0} × E(X,Fx̄0 ,R

p+q
= ). (3.5)

Indeed, let (x̄0, x) an element of Zx̄0 ⊆ Z which is efficient in Z for F . On the contrary, we
suppose (x̄0, x) /∈ {x̄0}×E(X,Fx̄0 ,R

p+q
= ), then there exists x̂ ∈ X such that Fx̄0(x̂) ≤ Fx̄0(x),

which contradicts the assumption that (x̄0, x) is efficient in Z for F .

From (3.5) we obtain E(Z,F,Rp+q
= ) =

∪
x̄0∈X0

(
Zx̄0 ∩ E(Z,F,Rp+q

= )
)

⊆
∪

x̄0∈X0
{x̄0}

×E(X,Fx̄0 ,R
p+q
= ). Now by Lemma 2.3 it follows E(Z,F,Rp+q

= ) ⊆ E(
∪

x̄0∈X0
{x̄0}×

E(X,Fx̄0 ,R
p+q
= ), F,Rp+q

= ).

Let us now prove the converse inclusion. Let (x0, x) be efficient in
∪

x̄0∈X0
{x̄0} ×

E(X,Fx̄0 ,R
p+q
= ) for F and, by contradiction, suppose that (x0, x) is not efficient in Z for F .

Then there exists (x̂0, x̂) ∈ Z =
∪

x̄0∈X0
Zx̄0 such that F (x̂0, x̂) ≤ F (x0, x).

We consider two cases, either (x̂0, x̂) ∈ {x̂0}×E(X,Fx̂0 ,R
p+q
= ) or (x̂0, x̂) ∈ {x̂0}×X and

x̂ /∈ E(X,Fx̂0 ,R
p+q
= ).

The first case can be ruled out, because this contradicts the assumption that (x0, x)
is efficient in

∪
x̄0∈X0

{x̄0} × E(X,Fx̄0 ,R
p+q
= ) for F . Suppose that x̂ /∈ E(X,Fx̂0 ,R

p+q
= ).

By Lemma 2.4, there exists x̆ ∈ E(X,Fx̂0 ,R
p+q
= ) such that Fx̂0(x̆) ≤ Fx̂0(x̂). Now, from

F (x̂0, x̂) ≤ F (x0, x) it follows that (x0, x) is not efficient in
∪

x̄0∈X0
{x̄0} × E(X,Fx̄0 ,R

p+q
= )

for F , which is a contradiction. Thus (x0, x) ∈ E(Z,F,Rp+q
= ).
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Propositions 3.1 and 3.2 can be improved when the N subsystems are independent,
something which we carry out in the next propositions by a complete reduction of the global
problem to each of its components.

Let us explain this new case. If X,X1 and X2 are feasible sets with X a proper subset of
X1 ×X2, then X can be viewed as the subset of the elements (x1, x2) of X1 ×X2 satisfying
a certain property P . This makes it natural to consider the equality X = X1×X2 as one of
requirements for the independence of subsystems. So we will say that the N subsystems are
independent if X =

∏N
i=1 Xi and, in addition, the objective function r(x) can be expresed as

r(x) = (r1(x1), . . . , rN (xN )). Then the problem (3.1) can be decomposed into the following
subproblems

min ri(xi) subject to xi ∈ Xi, i = 1, . . . , N, (3.6)

and the relationship given in Lemma 3.3 can be obtained.

Lemma 3.3. If the subsystems are independent, then

E(X, r,Rq
=) =

N∏
i=1

E(Xi, ri,Rqi
=).

Proof. Let x be efficient in X for r. On the contrary, suppose that for some j, xj is
not efficient in Xj for rj . Then there exists x̂j ∈ Xj such that rj(x̂j) ≤ rj(xj), and
consequentially for x̌ = (x1, . . . , xj−1, x̂j , xj+1, . . . , xN ) ∈ X it holds r(x̌) ≤ r(x), contrary
to the efficient character of x in X for r.

Let xi be efficient in Xi for ri for all i, and suppose that x is not efficient in X for r.
Then there exists x̂ ∈ X such that r(x̂) ≤ r(x). Then for some j, there exists x̂j ∈ Xj such
that rj(x̂j) ≤ rj(xj), contrary to the assumption that xi is efficient in Xi for ri for all i.

This lemma implies that if the subsystems are independent, then problem (3.1) can
be solved by considering the resolution of the different subsystems (3.6), in a separate and
independent way. So the efficient set for r is obtained as the Cartesian product of the Pareto
sets, individually solved, for each subproblem.

In order to improve Proposition 3.1 we use the previous lemma when the subsystems are
independent.

Proposition 3.4. Let F (x0, x) = (f(x0, r(x)), r(x)) and Z = X0 × X, with X a compact
subset of Rn. If r is a continuous function on X, f is a increasing function in the second
argument when this argument belongs to r(X) and the subsystems are independent, then{

(x0, x) ∈ Z : (x0, r(x)) ∈ E

(
X0 ×

N∏
i=1

E(ri(Xi),Rqi
=), f,Rp

=

)}
⊆ E(Z,F,Rp+q

= ).

Proof. Using Lemma 3.3 we obtain E(r(X),Rq
=)=r

(
E(X, r,Rq

=)
)
=r
(∏N

i=1 E(Xi, ri,Rqi
=)
)
=∏N

i=1 ri
(
E(Xi, ri,Rqi

=)
)
=
∏N

i=1 E(ri(Xi),Rqi
=). Proposition 3.1 now completes the proof.

Proposition 3.5. Let F (x0, x) = (f(x0, r(x)), r(x)) and Z = X0 × X, with X a compact
subset of Rn. If r is a continuous function on X, f is both an increasing and a continuous
function in the second argument when this argument belongs to r(X) and the subsystems are
independent, then

E(Z,F,Rp+q
= ) = E

( ∪
x̄0∈X0

{x̄0} ×
N∏
i=1

E(Xi, ri,Rqi
=), F,Rp+q

=

)
.
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Proof. From Proposition 3.2 and by applying Proposition 2.18 to the partial functions Fx̄0 ,
we have E(Z,F,Rp+q

= ) = E(
∪

x̄0∈X0
{x̄0} × E(X, r,Rq

=), F,R
p+q
= ). Since the subsystems are

independent, we can apply Lemma 3.3 to obtain the stated result.

It follows from this proposition that the efficient set of the overall problem can be de-
termined through a multilevel procedure. In the lower level, problem (3.1) is solved in each
subsystem, to obtain the sets E(Xi, ri,Rqi

=), i = 1, 2, . . . N . The Cartesian product of these

sets is then constructed and each of its N -tuples is augmented by a component taking a fixed
value x̄0 of the first variable x0. In the upper level, we obtain the set of efficient solutions for
the global problem (3.2) by making use of these (N +1)-tuples associated with the different
x̄0.

3.2 Subsystems with Global and Local Information

In this subsection we study the case that the global variable affects the subsystems.
Let ri : A

0×Ai ⊆ Rn0+ni → Bi ⊆ Rqi be the objective function for subsystem i, which is
a function ri(x0, xi) depending on the global variable x0 ∈ A0 and the local variable xi ∈ Ai,
for i = 1, . . . , N . In a similar way to Subsection 3.1, let r : A0 × A ⊆ Rn0+n → B ⊆ Rq be
the function that captures the influence of the subsystems’ objective functions on the overall
system, similarly n =

∑N
i=1 ni and A ⊆

∏N
i=1 Ai. Now let f : B ⊆ Rq → D ⊆ Rp be another

function that incorporates the influences of the subsystems’ outputs on the overall system,
which could be as simple as a linear combination of them, or a more complicated functional
dependence. Finally, we introduce the map F : A0 × A ⊆ Rn0+n → D × B ⊆ Rp+q defined
as F (x0, x) = (f(r(x0, x)), r(x0, x)) and we consider particularly the subsets X0 ⊆ A0 and
∈ Xi ⊆ Ai, for i = 1, . . . , N . We shall consider the following global formulation of the
problem:

minF (x0, x) = (f(r(x0, x)), r(x0, x))

subject to (x0, x) ∈ Z ⊆
∏N

i=0 Xi. (3.7)

The results given in Section 2.2.3 can be improved in particular cases, such as when
r is the sum of the subsystems’ objectives, as well as when r is the joint vector of the
subsystems’ objectives. More specifically, in the first case we assume n0 = n1 = · · · = nN =
n
N = q = q1 = · · · = qN and B contained in the linear span of the set ∪N

i=1Bi, and we

consider the function r : A0 × A ⊆ Rn0+n → B ⊆ Rq defined by r(x0, x) =
∑N

i=1 ri(x0, xi)
and ri(x0, xi) = αi

0 x0 + αi xi with αi
0, αi ∈ R>, i = 1, . . . , N . So we can write r(x0, x) =∑N

i=0 αi xi with α0 =
∑N

i=1 α
i
0 and αi ∈ R>, i = 0, . . . , N .

Corollary 3.6. Let F = (f ◦ r, r) and Z =
∏N

i=0 Xi with Xi a compact subset of Rni for

i = 0, . . . , N . If r(x0, x) =
∑N

i=o αi xi, (αi ∈ R>, i = 0, . . . , N) and f is a linear strongly
increasing function on r(Z), then{

(x0, x) : r(x0, x) ∈ E
(∑N

i=0
αi E(Xi, f,Rp

=), f, R
p
=

)}
⊆ E(Z,F,Rp+q

= ).

Proof. From Proposition 2.21, reformulated in (2.14), we have E(Z,F,Rp+q
= ) ⊇

{(x0, x) : r(x0, x) ∈ E(r(Z), f,Rp
=)}. Using relationship (2.6), we obtain {(x0, x) : r(x0, x) ∈

E(r(Z), f,Rp
=)} = {(x0, x) : r(x0, x) ∈ E(

∑N
i=0 αiXi, f,Rp

=)} = {(x0, x) : r(x0, x) ∈

E
(∑N

i=0 αiE(Xi, f,Rp
=), f,R

p
=

)
}.
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We now examine the system (3.7) when Z =
∏N

i=0 Xi and r is the the joint vector of

the subsystems’ objectives, in this case q =
∑N

i=1 qi and B ⊆
∏N

i=1 Bi must hold. Thus, the
problem of the N subsystems would have the following form:

min r(x0, x) = (r1(x0, x1), . . . , rN (x0, xN ))

subject to (x0, x) ∈ Z =
∏N

i=0 Xi. (3.8)

Due to the global variable x0, the N subsystems are not necessarily independent. Never-
theless, for every fixed x̄0 ∈ X0 we can generate a new system constituted by N independent
subsystems, and then use the solutions of the resulting subproblems to generate the solutions
of the original problem.

Let x̄0 ∈ X0 be a fixed element and we consider the subset Zx̄0 as in (3.3). We now
consider the partial functions rix̄0 : Ai ⊆ Rni → Bi ⊆ Rqi given by rix̄0(xi) = ri(x̄0, xi) for
i = 1, . . . , N , and the joint vector of the partial functions rx̄0(x) = (r1x̄0(x1), . . . , rNx̄0(xN )).
Then, for every fixed x̄0 ∈ X0 the problem (3.8) can be decomposed into the following
associated subproblems

min rix̄0(xi) subject to xi ∈ Xi, i = 1, . . . , N, (3.9)

and the following relationships can be obtained.

Lemma 3.7. Let Z = X0 × X, with X =
∏N

i=1 Xi a compact subset of Rn. If r =
(r1, . . . , rN ) is a continuous function on X, then

E(Z, r,Rq
=) = E

( ∪
x̄0∈X0

{x̄0} ×
∏N

i=1
E(Xi, rix̄0 ,R

qi
=), r,Rq

=

)
.

Proof. Firstly, let us prove that E(Z, r,Rq
=) = E(

∪
x̄0∈X0

{x̄0} × E(X, rx̄0 ,R
q
=), r,R

q
=).

Let (x∗
0, x

∗) ∈ E(Z, r,Rq
=). Obviously (x∗

0, x
∗) ∈ Zx∗

0
, and furthermore, (x∗

0, x
∗) ∈ {x∗

0}×
E(X, rx∗

0
,Rq

=) because otherwise there exists x̂ ∈ X such that rx∗
0
(x̂) ≤

rx∗
0
(x∗), which contradicts that (x∗

0, x
∗) is efficient in Z for r. Therefore E(Z, r,Rq

=) ⊆∪
x̄0∈X0

{x̄0}×E(X, rx̄0 ,R
q
=). From Lemma 2.3 it follows that E(Z, r,Rq

=) ⊆ E(
∪

x̄0∈X0
{x̄0}×

E(X, rx̄0 ,R
q
=), r,R

q
=). This proves one inclusion.

Assume that (x0, x) ∈ E(
∪

x̄0∈X0
{x̄0} × E(X, rx̄0

,Rq
=), r,R

q
=) but (x0, x) /∈ E(Z, r,Rq

=).

Then there exists (x̂0, x̂) ∈ Z such that r(x̂0, x̂) ≤ r(x0, x). We assert that x̂ /∈ E(X, rx̂0 ,R
q
=).

Indeed, on the contrary, we should have (x̂0, x̂) ∈ {x̂0} × E(X, rx̂0 ,R
q
=), with r(x̂0, x̂) ≤

r(x0, x). This contradicts the efficient character of (x0, x) in
∪

x̄0∈X0
{x̄0} × E(X, rx̄0 ,R

q
=)

for r. Therefore, x̂ /∈ E(X, rx̂0 ,R
q
=). Then, by Lemma 2.4, there exists x̆ ∈ E(X, rx̂0 ,R

q
=)

such that rx̂0(x̆) ≤ rx̂0(x̂), that is, r(x̂0, x̆) ≤ r(x̂0, x̂). Therefore, from r(x̂0, x̂) ≤ r(x0, x),
we again obtain a contradiction and thus (x0, x) ∈ E(Z, r,Rq

=). This proves the converse

inclusion.
Finally, applying Lemma 3.3 to the set E(X, rx̄0 ,R

q
=), the proof is finished.

This result proves that efficient solutions for the problem (3.8) can be generated by the
efficient solutions of N independent subsystems (3.9). Next we show a relationship between
these solutions and the original problem (3.7).
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Corollary 3.8. Let F = (f ◦ r, r) and Z = X0 ×X, with X =
∏N

i=1 Xi a compact subset
of Rn. If r = (r1, . . . , rN ) is a continuous function on X and f is a strongly increasing
function on r(Z), then

E(Z,F,Rp+q
= ) = E

( ∪
x̄0∈X0

{x̄0} ×
∏N

i=1
E(Xi, rix̄0 ,R

qi
=), r,Rq

=

)
.

Proof. By Proposition 2.18, E(Z,F,Rp+q
= ) = E(Z, r,Rq

=). Applying Lemma 3.7 to the set

E(Z, r,Rq
=) the proof is completed.

This result shows, that the vector-valued objective function F can be ignored to calculate
the efficient set of the global problem.

Example 3.9. Let r : R3 −→ R2 where r(x0, , x1, x2) = [r1(x0, x1), r2(x0, x2)] = [(x1 −
x0)

2, exp(x2 − x0)
2], and let f : R2 −→ R where f(y1, y2) = y2

√
y1. Let X = {(x1, x2) :

x1 = 3, 0 5 x2 5 1} = [3, ∞]× [0, 1] = X1 ×X2, and X0 = {−2,−1, 0, 1, 2}.
According to the above functions, we have F (x0, x1, x2) = [(x1−x0) exp(x2−x0)

2, (x1−
x0)

2, exp(x2 − x0)
2]. Since the function f is strongly increasing in r(Z), E(X0 × X1 ×

X2, F,R3
=) can be determined by Corollary 3.8.

Fixing x̄0 ∈ X0, and solving min r1x̄0(x1) subject to x1 ∈ X1 and min r2x̄0(x2) subject to
x2 ∈ X2 yields

E
(
X1, r1x̄0 ,R=

)
=

 x̄0 if x̄0 = 3

3 if x̄0 < 3

and

E
(
X2, r2x̄0 ,R=

)
=


x̄0 if 0 5 x̄0 5 1

0 if x̄0 < 0

1 if x̄0 > 1

Then
∪

x̄0∈X0
{x̄0} × E(X1, r1x̄0 ,R=) × E(X2, r2x̄0 ,R=) = {(−2, 3, 0); (−1, 3, 0); (0, 3, 0);

(1, 3, 1); (2, 3, 1)} and E
(
{(−2, 3, 0); (−1, 3, 0); (0, 3, 0); (1, 3, 1); (2, 3, 1)}, r,R2

=

)
= {(1, 3, 1);

(2, 3, 1)}. Hence E(X0 ×X1 ×X2, F,R3
=) = {(1, 3, 1); (2, 3, 1)}.

4 An application for the reliability problem

To show how these methods can be applied to the effective solution of practical problems,
let us consider the Redundancy Allocation Problem (RAP) in series-parallel engineering
systems and other systems of similar properties. This problem is one of the most important
reliability optimization problems in the design phase and it is well known to be a NP-hard
problem [2]. The RAP basically involves the determination of the number of components to
be allocated in each subsystem, allowing some degree of redundancies, with the purpose of
maximizing the system reliability. It has been the subject of many studies, [13, 14,25,29].

An engineering system with a series-parallel structure is composed of a fixed number
(N) of independent engineering subsystems connected in series. For the i-th subsystem,
it can have up to nmaxi functionally equivalent components arranged in parallel. The ni
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components are selected from ti available component types where multiple copies of each type
can be selected. xij denotes the number of j-th type components used in subsystem i and
xi = (xi1, . . . , xiti) is the decision vector of the engineering subsystem i. Each component
has different levels of cost, weight and reliability.

A subsystem i can work properly if at least one of its components is operational. But
it is often advantageous to add redundant components to improve reliability. The use of
redundancy increases system reliability but that also increases its cost and weight. The
goal is to determine the optimal number to allocate to the redundant components that will
maximize system reliability, minimize the total cost and minimize the system weight, for a
series-parallel system. This can be reformulated in the following way:

minG(x) =
( 1∏N

i=1 Ri(xi)
,

N∑
i=1

Ci(xi),
N∑
i=1

Wi(xi)
)

(4.1)

subject to

1 ≤
ti∑

j=1

xij ≤ nmax i, i = 1, 2, . . . , N (4.2)

xij ∈ {0, . . . , nmax i}, (4.3)

being xi = (xi1, . . . , xiti) for i = 1, 2, . . . , N , and x = (x1, . . . , xN ), where Ri, Ci and Wi are
the reliability, cost and weight functions of the i-th subsystem. Using Proposition 2.13 with
r = G and f : R> × R× R −→ R3 being the function given by f(u, v, w) = (log u, v, w), we
see that the above optimization problem is equivalent to the following problem:

min
(
−

N∑
i

logRi(xi),

N∑
i=1

Ci(xi),

N∑
i=1

Wi(xi)
)

(4.4)

subject to the same restrictions (4.2) and (4.3).
Now Proposition 2.12 sheds a new light in the resolution of (4.4) subject to the

constrains (4.2) and (4.3). Indeed, for each i we consider the subsets Xi of the xi =
(xi1, . . . , xiti) of Rti satisfying (4.2) and (4.3) and we define ri : Xi −→ R3 given by

ri(xi) = (− logRi(xi), Ci(xi),Wi(xi)). Let r : X =
∏

Xi −→ R3N be the map r : x =

(x1, . . . , xN ) 7→ (r1(x1), . . . , r1(xN )). Using Proposition 2.12 with f : R3N −→ R3 defined

as f(z1, . . . , zN ) =
∑N

i=1 zi we can solve (4.4) subject to the constrains (4.2) and (4.3) by
reduction to the two different easier problems stated below:

Problem A. min r(x) subject to (4.2) and (4.3).
Problem B. (4.4) subject to the restrictions x ∈ Y , where Y is the set of solutions for

Problem A.
Furthermore, by Lemma 3.3, Problem A can be descomposed inN optimization problems

A1, A2, . . . AN , which for each arbitrary i can be stated in the following way:
Problem Ai.

min ri(xi) subject to xi ∈ Xi.

In short, we have seen the way that the decomposition methods studied in this paper
can be applied in the treatment of the redundancy allocation problem. So we can split these
kinds of problems into different sub-problems. At the first level, we consider Problem A,
which is treated by descending to the constituent subsystems and solving the corresponding
minimization problem in each of them (Problems Ai). Now the solution set for Problem A is



DECOMPOSITIONS FOR MULTIOBJECTIVE COMPOSITE SYSTEMS 727

the starting point for Problem B, since based on this set we must consider the corresponding
minimization problem.

This decomposition provides a saving in the computational effort, and could also fa-
cilitate the decision process to select a final solution. The efficient set of the subproblem
Ai (i = 1, 2, . . . , N) can be reduced by incorporating preference information stated by the
decision maker of this subproblem. Thus, only efficient solutions that are of interest to the
decision maker would be generated. Then, by incorporating an interactive procedure (see,
for example, [3] and [4]) among the decision makers of each subsystem into the process, a
final solution in problem B could be selected. Therefore, decomposition allows each person
responsible for a subsystem (with expert knowledge) to be involved in the process of making
a final decision.

5 Conclusion

This study focuses on multiobjective optimization problems that involve several multiobjec-
tive subproblems. In many cases these subproblems can be simpler to treat (they have a
lower dimension and/or they are easier to solve, or can be solved in a parallel way,. . . ). In
this work various results that relate the efficient set of the overall problem to the efficient
sets obtained after the breakdown are offered. These results can be viewed as a theoretical
formulation of different decomposition frameworks for the starting problem in subproblems.

The achieved results and methods are considerably general and so they are valuable in
the case of non-differentiable problems or with integer variables. The latter occurs in the
case of the Redundancy Allocation Problem considered in Section 4, where a decomposition
into subproblems is given for its resolution.

We have analyzed different cases depending on the characteristics of certain elements
which are related to the structure of the considered problem: decision variables that can be
expressed as sum of two or more variables, and can be given as a linear combination of a
finite number of variables, or how it affects a change in the unit measure of these variables on
the initial problem’s solutions; objective functions that depend on intermediate functions,
and decision variables that can be local and/or global. In some cases, the decomposition
produces independent subunits and solving the corresponding subproblems give the overall
solution to the problem. In other cases, the output of the subproblems must be assembled in
a second phase in order to obtain the initial problem’s solution. We illustrate the theoretical
results with some small examples.

We observe that the subproblems studied here each have their own local variables, which
are not interconnected. As a future research line, we want to study more general situations
where such limitations are dropped. On the other hand, we can see that the existence
of some symmetries, such as those underlying Example 2.22, allow us to consider only
a certain relevant part of the feasible set, simplifying then the solution of the starting
problem. This suggests a more accurate study in a next future of the symmetry concepts to
reduce/decompose the overall problem.
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