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Several culture techniques have been practiced with regard to fermentation. Compared
with continuous and fed-batch cultures, under some kind of mild conditions, glycerol dis-
mutation in batch culture can obtain the highest production concentration and molar yield
1,3-PD to glycerol [6, 8, 19, 20] and the references cited therein. Relevant literature regard-
ing batch culture includes references [24, 25], where pathway identification for a nonlinear
system in batch culture is researched; reference [2], where robust suboptimal control of
a microbial batch culture process is studied; references [27], where robustness analysis of
nonlinear dynamical system in batch culture is investigated; reference [31], where strong
stability of a nonlinear multi-stage dynamic system in batch culture of glycerol biocon-
version to 1,3-propanediol is discussed; reference [9], where parameter identification for a
nonlinear time-delay system in microbial batch fermentation is investigated; reference [26],
where robust parameter identification using parallel global optimization for a batch nonlin-
ear enzyme-catalytic time-delayed process presenting metabolic discontinuities is considered;
reference [10], where bi-objective dynamic optimization of a nonlinear time-delay system in
microbial batch process is researched; reference [18], where practical algorithm for stochas-
tic optimal control problem about microbial fermentation in batch culture is studied; refer-
ence [23], where optimal control of a batch fermentation process with nonlinear time-delay
and free terminal time and cost sensitivity constraint is taken into account.

In this paper, on the basis of the previous model and parameter in [5], we consider a
two-stage dynamical system in batch culture. Then we take the yield intensity of 1,3-PD
as the performance index, the initial concentration of biomass, glycerol and terminal time
as the control vector. Based on the properties of the two-stage dynamical system and the
solution of it, we obtain the optimality condition of the optimal control problem. Then the
optimal condition is used as a convergence criteria of the optimization algorithm. Finally,
we presented a modified Nelder-Mead simplex search algorithm to solve the optimal control
problem.

This paper is organized as follows. In section 2, we simply review the two-stage nonlinear
system of batch fermentation. In section 3, some properties of the solution to the system are
proved. Then, an optimal control model and optimality conditions are proposed in section
4. Finally, we propose an algorithm and give the results in section 5, 6 and 7.

2 Two-stage Dynamical System in Batch Culture

In batch culture, a quantity of biomass and glycerol are added to the reactor only once and
stirred uniformly under given conditions. During the process of the culture, the concen-
tration of the glycerol decreases gradually and tends to zero finally. Let In denotes the set
of {1, . . . , n}. Let I := [0, tf ] denote the time interval and tf ∈ (0,+∞) be the terminal
moment of the batch culture. According to the actual fermentation process, we make the
following assumptions.

(A1) : During the process of batch fermentation, no medium is pumped inside or outside
the reactor.
(A2) : The concentrations of reactants are uniform in the reactor.
Under the above assumptions, the simplified mass balances of biomass, substrate and prod-



OPTIMALITY CONDITION AND OPTIMAL CONTROL IN BATCH CULTURE 3

ucts in batch culture [21] are written as follows
ẋ 1(t) = µ(t)x1,

ẋ2(t) = −q2(t)x1, t ∈ I,

ẋi(t) = qi(t)x1, i ∈ {3 , 4 , 5},
xi(0) = x0i, i ∈ I5 .

(2.1)

where x1(t), x2(t), x3(t), x4(t), x5(t) denote the concentrations of biomass, glycerol, 1-3PD,
acetic acid and ethanol concentrations at time t in reactor, and x0i, i ∈ I5 , are the initial
concentrations of biomass, glycerol, 1,3-PD, acetate and ethanol, respectively. Further the
specific growth rate of cells µ, specific consumption rate of substrate q2 and specific formation
rates of products qi, i ∈ {3 , 4 , 5} are expressed by the following equations respectively,

µ(t) = µm
x2(t)

x2(t) + k2

5∏
i=2

(
1− xi(t)

x∗i

)ni

, (2.2)

q2(t) = m2 +
µ(t)

Y2
, (2.3)

qi(t) = mi + µ(t)Yi, i ∈ {3 , 4 , 5}, (2.4)

where k2 is the Monod saturation constant for substrate (in mmol L−1); x∗i , i ∈ {2 , 3 , 4 , 5},
are, respectively, the critical concentrations of glycerol, 1,3-PD, acetate, and ethanol required
for cell growth; mi, i ∈ {2 , 3 , 4 , 5}, are the maintenance terms of substrate consumption
and product formation(in mmol g−1h−1) under substrate-limited conditions respectively;
Yi, i ∈ {3 , 4 , 5}, are the maximum product yields (in mmol g−1). The maximum specific
growth rate µm is 0.67(h−1). We collect these system parameters into a vector σ:

σ := [k2,m2,m3,m4,m5, Y2, Y3, Y4, Y5] ∈ R9.

The following estimates obtained in [17] are used in this paper.

σ = [50,−2.2,−2.69,−0.97, 5.26, 0.0082, 67.69, 33.07, 11.66] ∈ R9.

Numerical results in [4] show that the system (2.1) can only describe the developmen-
tal and vegetation phases well. However, the errors between the experimental data and
computational values are very large in the stationary phase. To formulate the process of
batch fermentation better, we revise the model of the stationary phase according to the
experimental data in the fermentation process. Let tg ∈ [0, tf ] be the moment after which
the system reaches the stationary phase. Then the time inteval of culture process [0, tf ] is
divided into two phases, i.e., [0, tg) is the time interval of developmental and growth periods
and [tg, tf ] is the one of stationary phase. So the two-stage nonlinear dynamical system can
be formulated as follows,

ẋ1(t) = µ(t)x1,

ẋ2(t) = −q2(t)x1, t ∈ [0, tg),

ẋi(t) = qi(t)x1,

xj(0) = x0j , j = 1, . . . , 5,

(2.5)
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ẋ1(t) = µ(t)e−a1(t−tg)x1,

ẋ2(t) = −q2(t)e−a2(t−tg)x1, t ∈ [tg, tf ],

ẋi(t) = qi(t)e
−ai(t−tg)x1, i = 3, 4, 5,

xj(t
+
g ) = xj(tg), j = 1, . . . , 5,

(2.6)

where tg is given by the experimental results and xj(t
+
g ) denotes the right limit of concen-

tration at time tg.
Let x(t) := (x1(t), x2(t), x3(t), x4(t), x5(t))

⊤ be the concentrations of biomass, glycerol,
1,3- PD, acetate and ethanol at time t respectively. Then the upper and lower bounds of x
are

x∗ := (x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5)

⊤ = (10, 2039, 939.5, 1026, 360.9)⊤,

and

x∗ := (x∗1, x∗2, x∗3, x∗4, x∗5)
⊤ = (0.01, 200, 0.01, 0.01, 0.01)⊤,

respectively. Then the admission set of state variables is defined by

Wad :=

5∏
i=1

[x∗i, x
∗
i ].

The initial concentrations of 1,3-PD, acetate, and ethanol in the dynamic model (2.5) are
given. The initial concentrations of biomass and glycerol together with the terminal time tf
are control variables to be optimized. And Uad is the control variables admission set,

Uad := {(x01, x02, tf )⊤|x01 ∈ [0.01, 1], x02 ∈ [200, 1700], tf ∈ [2, 10]}.

For convenience, we denote that

f1(t, x(t, u)) := (µ(t)x1,−q2(t)x1, q3(t)x1, q4(t)x1, q5(t)x1)⊤, (2.7)

and

f2(t, x(t, u)) :=
(
µ(t)e−a1(t−tg)x1,−q2(t)e−a2(t−tg)x1, q3(t)e

−a3(t−tg)x1,

q4(t)e
−a4(t−tg)x1, q5(t)e

−a5(t−tg)x1

)⊤
.

(2.8)

Then, the two-stage system (3) of the batch culture can be rewritten as

{
ẋ(t) = f(t, x(t, u)),

x(0) = x0,
(2.9)

where

f(t, x(t, u)) =

{
f1(t, x(t, u)), t ∈ [0, tg],

f2(t, x(t, u)), t ∈ (tg, tf ],

and x0 := (x01, x02, x03, x04, x05)
⊤ denotes the initial concentration.

From the equation (2.2) to (2.9), we can directly get that for all u ∈ Uad the function
f in (2.9) is twice continuously differentiable and satisfies the linear growth condition, i.e.,
there exists a K > 0, such that

∥f(t, x(t, u))∥ ≤ K(∥x∥+ 1). (2.10)
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3 Properties of the Two-stage System

To solve our problem, it is necessary to guarantee the existence, uniqueness and Lipschitz
continuity of the solution to (2.9). In this section, we prove some properties of (2.9) and its
solution. In view of the mechanism of bio-dissimilation of glycerol to 1,3-PD, the following
assumptions hold.

(A3) : The concentrations of biomass, glycerol and three products are nonnegative during
the process of the batch culture, that is, xi ≥ 0, ∀ i ∈ I5.
(A4) : The concentrations of biomass, glycerol and products can not exceed their critical
values, namely, xi ≤ x∗i , i ∈ I5.

Proposition 3.1. Under the assumptions (A3) and (A4), there exists a constant L, for all
given t ∈ I , x, y ∈ Wad and u, v ∈ Uad, so that function f i, i ∈ I2, defined by (2.7) and
(2.8) satisfy the following condition

∥f i(t, x(t, u))− f i(t, y(t, v))∥ ≤ L(∥x− y∥+ ∥u− v∥), (3.1)

where ∥ · ∥ denotes the Euclidean norm.

Proof. For all t ∈ I , x, y ∈ S0 and u, v ∈ Uad, we denote y = x +△x, v = u +△u. Then,
by the differential mean value inequality, we obtain that

∥f i(t, y(t, v))− f i(t, x(t, u))∥ ≤
∥∥∥∂f i
∂x

(
t, (x+ θ1 △ x)(t, u)

)∥∥∥∥ △ x∥

+
∥∥∥∂f i
∂u

(
t, (x+△x)(t, u+ θ2 △ u)

)∥∥∥∥ △ u∥.

where 0 < θ1, θ2 < 1. Let

Ai1 :=
∂f i

∂x

(
t, (x+ θ1 △ x)(t, u)

)
, Ai2 :=

∂f i

∂u

(
t, (x+△x)(t, u+ θ2 △ u)

)
.

In view of (2.7) and (2.8), it is easy to show that ∥Aij∥, i ∈ I2, j ∈ I2 are bounded.
Consequently, there exists Lij > 0 such that ∥Aij∥ ≤ ∥Lij∥. Take L = max

i,j
{Lij}, then (3.1)

holds.

Proposition 3.2. Given x(t, u) and y(t, v) are the solutions of system (2.9) for u, v ∈ Uad

respectively, then ∃ K1, K2 > 0, satisfy:∥∥∥∂f
∂x

(t, x(t, u))− ∂f

∂x
(t, y(t, v))

∥∥∥ ≤ K1(∥x− y∥+ ∥u− v∥), (3.2)

∥∥∥∂f
∂u

(t, x(t, u))− ∂f

∂u
(t, y(t, v))

∥∥∥ ≤ K2(∥x− y∥+ ∥u− v∥), (3.3)

Proposition 3.3. Under the assumptions (A3) and (A4), for all u ∈ Uad and t ∈ [0, tf ],
the system (2.9) has a unique solution x(t, u) which satisfies the following integral equation:

x(t;u) =

{∫ t

0
f1(s, x(s, u))ds+ x0, t ∈ [0, tg],∫ t

tg
f2(s, x(s, u))ds+ x(tg, u), t ∈ (tg, tf ].

(3.4)

Furthermore, x(t, u) is Lipschitz continuous in u on Uad.
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Proof. Since f i(t, x(t, u)), i ∈ I2 is Lipschitz continuous with respect to x inWad, for a given
u, the system (2.9) has a unique solution by the theory of differential equations. Obviously,
the solution x(t, u) is continuous in I . Now, we prove that x(t;u) is Lipschitz continuous in
u on Uad.

Case 1. The case for t ∈ [0, tg].

On the basis of Property (3.1), Property (3.2) and function (3.4), we obtain that, for all
u, v ∈ Uad,

∥x(t, u)− x(t, v)∥ ≤ Ltg∥u− v∥+ L
∫ t

0
∥x(s, u)− x(s, v)∥ds.

By Bellman Gronwall inequality, the following

∥x(t, u)− x(t, v)∥ ≤ Ltg∥u− v∥e(Ltg),

holds.

Case 2. The case for t ∈ (tg, tf ].

Similar to Case 1, the following

∥x(t, u)− x(t, v)∥ ≤ L(tge
Ltg + (tf − tg))e

L(tf−tg)∥u− v∥,

holds. According to the above cases, we complete the proof.

Proposition 3.4. Under the assumptions (A3) and (A4), the solution (3.4) is bounded,
that is , there exists an M > 0 such that, for any t ∈ I,

∥x(t, u)∥ ≤M, ∀ u ∈ Uad. (3.5)

Proof. According to (2.10) and Bellman Gronwall inequality, we can obtain our desired
result.

For given x0 ∈Wad, we define the set of solutions to the system (2.9) as follows,

S1 := {x(t, u) ∈ R5|x(t, u) is a solution to the system (2.9) ∀ u ∈ Uad}. (3.6)

In view of the compactness of Uad ⊆ R3 and the continuity of the mapping from u ∈ Uad

to x(t, u), we have the following result.

Proposition 3.5. The set S1 defined by (3.6) is compact in C1([0, tf ];R
5).
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4 Optimal Control Problem and Optimality Condition

Let xi(t, u), i ∈ I5, be the solution of (2.9) corresponding to the control vector u :=
(x01, x02, tf ). Then our goal is to maximize the yield of 1,3-PD in microbial fermenta-
tion. Thus, we need to choose the control vector u to maximize the following objective
function J(u):

(P) J(u) =
x3(tf , u)

tf

s,t tf ∈ I ,

u ∈ Uad.

(4.1)

According to [3], we make some notes of the state constraint set Wad as follows

φj(t, u) := xj(t, u)− x∗j , j ∈ I5,

φj+5(t, u) := −xj(t, u) + x∗j , j ∈ I10,

fj(u) := max
t∈I

{φj(t, u)}, j ∈ I10,

f0(u) := −J(u).

(4.2)

So the optimal control problem can be equivalent to the following problem:

(OCP) min{f0(u)|u ∈ Uad, fj(u) ≤ 0, j ∈ I10}. (4.3)

Based on the theorem 4.1.5 in [15] and (4.2), we know that the directional derivatives
dfj(u, δu) j ∈ I10 , exist and are given by

dfj(u, δu) = max
t∈Tj(u)

⟨∇uφj(t, u), δu⟩,

= max
z∈∂fj(u)

⟨z, δu⟩,

where

Tj(u) := {t ∈ I|φj(t, u) = fj(u)},

and

∂fj(u) := cot∈Tj(u){∇uφj(u, t)}.

Let u∗ := (x∗01, x
∗
02, t

∗
f ) be the optimal solution of (OCP), and ψ(u) := max{fj(u), j ∈

I10} then from [3], we have

dψ(u∗, u− u∗) = max
j∈q(u∗)

dfj(u
∗, u− u∗).

Further, for convenience when getting the optimal conditions, we define F (u) as

F (u) := max{f0(u)− f0(u∗), ψ(u)},

then it follows from the properties and the solution of the system that:

Theorem 4.1. If u∗ ∈ Uad is the optimal solution of problem OCP, then F (u) researches
the minimum at u∗.

Theorem 4.2. If u∗ ∈ Uad is the optimal solution of problem OCP, then

dF (u∗, u− u∗) ≥ 0, ∀u ∈ Uad. (4.4)
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5 Algorithm

Based on the Nelder-Mead (N-M) simplex search, we developed a modified N-M simplex
method to solve Problem OCP. The N-M simplex method, in some cases, is more convenient
to solve optimal control problems than another gradient-based optimization methods.

The N-M simplex method uses the concept of a simplex, which is a special polytope of
N + 1 vertices in N dimensions [14]. That is to say, Nelder-Mead maintains a set of N + 1
test points arranged as a simplex in N dimensions. It then extrapolates the behavior of
the objective function measured at each test point, in order to find a new test point and to
replace one of the old test points with the new one, and so the technique progresses. The
simplest approach is to replace the worst point with a point reflected through the centroid
of the remaining N points. If this point is better than the best current point, then we can
try stretching exponentially out along this line. On the other hand, if this new point isn’t
much better than the previous value, then we are stepping across a valley, so we shrink the
simplex towards a better point.

Firstly, we calculate the function values at the initial vertices. Considering the mini-
mization case, we replace the vertex with the highest function value by a better one at each
time. The replacement process consists of four operations: reflection, expansion, contrac-
tion and reduction. After each replacement, the simplex becomes better and be closer to the
locally optimal point [7, 12]. As the number of initial vertices are changeable according to
the problems, this method is extremely flexible when solving the OCP.

In this paper, Problem OCP is an optimization problem subject to the two-stage dy-
namical system (2.9). We use the 4th Runge-Kutta method to solve the system (2.9) and
the modified simplex method is as follows.

Step 1. Generate the initial simplex with K vertices randomly and the control vertices
(x01, x02, tf ) denoted by P 1, . . . , PK , where P i = (pi1, p

i
2, p

i
3) ∈ Uad, i ∈ IK . Solve the

system (2.9) by the forth order Runge-Kutta algorithm, then to compute the function value
J i of the ith vertex.
Step 2. Find the best and the worst vertex P b, Pw, and the function values Jb, Jw, respec-

tively, by ordering the values J i. If
|Jw − Jb|

|Jb|
< ϵ̄ (where ϵ̄ is the convergence tolerance of

the relative deviation corresponding to the cost function) or the result in Theorem 4.2 holds,
then output the corresponding result and we have a successful exit; otherwise, go to Step 3.
Step 3. Calculate P c, the centroid of all points except Pw, by the following formula

P o = (P 1 + . . .+ Pw−1 + Pw+1 + . . .+ PK)/(K − 1). (5.1)

Then we get the reflected point P r defined by P r = P o + α(P o − Pw), α > 0.
Step 4. If P r /∈ Uad, then we have

prj =

{
u∗j , if prj ≥ u∗j ,

uj∗, if prj ≤ uj∗,
j ∈ I3. (5.2)

where (u∗1, u
∗
2, u

∗
3) and (u1∗, u2∗, u3∗) denote the upper and lower bound of (x01, x02, tf ),

respectively.
Step 5. If the reflected point is the best so far, i.e., Jr > Jb, then compute the expansion
point P e = P o + β(P o − Pw), β > α, else go to Step 7.
Step 6. If the expanded point is better than the reflected point, Je > Jr, then we can
obtain a new simplex by replacing the worst point Pw with the expanded point P e, and go
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to Step 2; otherwise, we obtain a new simplex by replacing the worst point Pw with the
reflected point P r, and go to Step 2.

Step 7. Compute the contracted point P c = P o − δ(P o − Pw), δ ∈ (0, 1). If Jc > Jw, go
to Step 2; otherwise, go to Step 8.

Step 8. For all but the best point, replace the point with P i = P b+σ(P i−P b), go to Step
2.

Then we get the optimal parameter vector.

6 Numerical Results

On the basis of the model and algorithm mentioned above, we have programmed the software
and applied it to the optimal control problem of microbial fermentation in batch culture.
The system parameters are listed in Table 1 [5].

Table 1: The system parameters in (2.2)-(2.6)
m2 m3 m4 m5 Y2 Y3 Y4 Y5 K

0.0100 -3.9472 2.1098 -0.1830 0.0165 41.2584 4.5410 3.0460 39.68

n2 n3 n4 n5 a1 a2 a3 a4 a5

0 1 5 1 1.804 0.23 0.551 0.12 0

And the parameters in the algorithm are as follows: K = 5, α = 1, β = 1.6, γ = 0.5, δ =
0.5, ϵ = 0.001, ϵ̄ = 0.01. Then, by the N-M simplex search method, the optimal control
vector and the performance index are (0.98793, 785.828, 4.94116)T and 56.266, respectively.
The change of the concentration of 1,3-PD with respect to t is plotted in Figure 1.

From the image above we can see that the concentration of 1,3-PD keeps increasing
at first and reaches the highest rate of growth at about 6.7h. While at the end of the
fermentation, it begins to decrease slowly.

7 Conclusions and Future Works

In this paper, we first introduce a two-stage dynamical system in batch culture and discuss
the properties of its solution and optimality condition. Then we propose a modified N-M
simplex search method to solve the optimal control problem. The final results showed how
the concentration of 1,3-PD varied with respect to time and it wasn’t increasing all the time
but reached the maximum at about 6.7h.

Next, it is intended to study models of continuous culture in which the fermentation
covers both extracellular and intracellular environments and compare with the results in
batch culture.
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