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INEXACT GENERALIZED PROXIMAL ALTERNATING
DIRECTION METHODS OF MULTIPLIERS AND THEIR
CONVERGENCE RATES*

LIMING SUN, ZHIKAI JIANGT AND XINXIN L1

Abstract: The alternating direction method of multiplies (ADMM) has been well studied in the literature;
and it has inspired some variants such as inexact versions, generalized versions and proximal versions which
are efficient for different circumstances. We propose a general algorithmic framework of ADMM by combining
these variants together, in the setting of convex minimization model with linear constraints and a separable
objective function. Some ADMM type methods in the literature are subsumed by this general algorithmic
framework. More specifically, we allow ADMM’s subproblems to be regularized by proximal terms and solved
approximately; and then the output is further relaxed by a generalized scheme as suggested by Eckstein and
Bertsekas. By choosing different inexactness criteria for the proximal subproblems, two concrete algorithms
of the inexact generalized proximal ADMM kind can be derived. We prove the global convergence for these
new ADMM type algorithms; and establish their worst-case O(1/t) convergence rates in both ergodic and
nonergodic senses. This is a more general and comprehensive work than existing convergence rate results in
ADMM literature.
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Introduction

We consider the convex minimization problem with linear constraints and a separable ob-
jective function

min{0y (2) + 02(y) | Az + By = b,z € X,y € W}, (L1)

where A € R™*", B € R™*P b e R™, X C R"™ and Y C RP are closed and convex
sets, 1 : R™ — R and 65 : RP — R are convex functions. Note both #; and 85 could be
nonsmooth. Throughout, the solution set of (1.1) denoted by S* is assumed to be nonempty.

The Douglas-Rachford alternating direction method of multipliers (ADMM for short)
proposed in [16] (see also [3,13]) is a benchmark solver for the model (1.1), and it becomes
very popular recently because of its efficient applications in many areas such as continuum
mechanics [18], image processing [4,5,29], statistical learning [23,34], video processing [24],
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102 L. SUN, Z. JIANG AND X. LI

and so on; We refer to [2,7,15] for some excellent reviews on the history and applications of
ADMM. The iterative scheme of ADMM for solving (1.1) can be written as

2F1 ¢ argmin {0 (z) — 2T ATN* + 1| Az + ByF — b||%1l reX},
y*+! € argmin {6(y) — y" BTA* + 3||Az* T + By —b||f; |y € V], (1.2)
2Nl — \F _ H(A:EkJrl + Byk+1 _ b)7

where A € R™ is the Lagrange multiplier and H € R™*™ is a symmetric positive definite
matrix playing the role of a penalty parameter. The most popular choice for H is H =
B Imxm where 5 > 0 is a scalar and I,;,«,, is the identity matrix in R™*"™. The ADMM
scheme (1.2) originates from the idea of splitting the subproblem at each iteration of the
augmented Lagrangian method in [22,30] in Gauss-Seidel order so as to generate smaller
and easier subproblems which could exploit the properties of 6; and 65 individually.

In [14], it was shown that the ADMM scheme (1.2) can be obtained by applying the
Douglas-Rachford splitting method in [25] to the dual of (1.1). Then, in [9], Eckstein and
Bertsekas demonstrated that the Douglas-Rachford splitting method is a special form of the
proximal point algorithm (PPA) in [26]. They thus followed the relaxed PPA in [17] and
proposed the generalized alternating direction method of multipliers (GADMM):

1
okl € argmin { 0 (v) — 2T ATAF + §|\Ax + By — b)) |z € X} ,

1
y**1 € argmin < O (y) — yTBT/\k—|—§||ank+1— (1 - a)(By* — b)+ By — b||% ‘ y € y} ,
ML= \F — H[aAzb Tt — (1 — a)(By" — b) + ByF ™ —b],
(1.3)

where the parameter o € (0,2) is a relaxation factor. Clearly, the original ADMM (1.2)
is the special case of the GADMM (1.3) with @ = 1. In some articles such as [1,8,10], it
has been verified that an over-relaxation factor (i.e., a € (1,2)) can accelerate ADMM’s
convergence empirically.

Both (1.2) and (1.3) are generic algorithmic frameworks for the abstract model (1.1);
how to implement them to solve a concrete application of (1.1) depends on the specific
structure/property of the involving objective functions and constraints. For instance, an
application of (1.1) is the total variation image denoising model

1
min{2||x—x0||§+7||Vx||1 | xER"}, (1.4)

where z is the vector representation of a two-dimensional digital image in lexicographical
order, 20 is the observed image corrupted by Gaussian noise, V € R"™*" is the matrix
representation of the nonsmooth isotropic total variation operator proposed in [32], ||z|]1 :=
S @] and 7 > 0 is a trade-off parameter balancing the data fidelity term 1|z —2°||3 and

the regularization term ||Vz||;. By introducing an auxiliary variable y, we can reformulate
(1.4) as

. 1
min <z — 293 + 7yl

st. Ve—y=0.

(1.5)

which is a special case of (1.1) with 6, (z) = 3|lz—2°|3, 62(y) = 7|lyll1, A=V, B=—Ixn,
b=0 m=n=pand X =Y = R". Then, because of the simplicity of the functions

The special case where B = —Ipxp, m =p, b=0 and H = - L, xm was considered in [9].
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in the objective, applying the scheme (1.2) or (1.3) is extremely easy — both the z- and
y-subproblems at each iteration are simple enough to have closed-form solutions.

For more complicated functions (6; and 63) or coefficient matrices (A and B), the - and
y-subproblems in (1.2) or (1.3) might not have closed-form solutions. In such cases, how
to solve these subproblems is crucial for implementing ADMM or GADMM efficiently. One
case having widespread applications is that the function (say 6;) itself is still simple (e.g.,
01(x) = ||z||1) while the corresponding matrix A is not an identity — the z-subproblem in
(1.2) or (1.3) thus can only be solved approximately via inner iterations. But obviously, we
still want to use the advantageous simplicity of 6;; an effective and simple strategy towards
this purpose is to linearize the quadratic term of the z-subproblem in (1.2) or (1.3) and
obtain its approximate problem:

2F+1 = arg min {Hl(x) + (x — 2F)TBAT (Axk + By* —b— lA’“)
B (1.6)

—I—gHac—a:kH2 ]xe?(},

where the parameter r is required to satisfy r > B||AT A|| in order to control the accuracy
of the linearization. Note for simplicity we take H = 8« L,,xm in (1.6). Hence, when
01(x) = ||z||1 and X = R", the closed-form solution of (1.6) is given by the soft-shrinkage
operator (e.g. [6]). This ADMM linearization strategy is the essential idea of the well-known
split inexact Uzawa method proposed in [36,37]. Obviously, the approximate z-subproblem
(1.6) can be written as

1 1
" = arg min {Gl(z) — 2T AT)\F 4 §\|Ax + By* —b||% + §||z —zM|% |z e X} , (L.7)

where G = 1 - I,x,, — ATHA. Therefore, the original ADMM (1.2) and the split inexact
Uzawa method in [36,37] are both special cases of the following scheme

1
¢t € argmin { 6 (z) — 2T ATNF 5”1437 + ByF — b4 + Lo — 2| |z € X} )

1
y’““ € arg min Hg(y) — yTBT)\k + §||Axk+1 + By — b||%{ | y € y} 7 (1.8)

Mo+l — \F H(A.’L'k+1 + Byk-‘rl _ b),

where the z-subproblem is regularized by a proximal term and G € R™ ™ could be an
arbitrary symmetric positive semidefinite matrix. Because of its ability to take advantage of
the properties of 6; effectively, the scheme (1.8) is very efficient for solving a broad spectrum
of applications (see, e.g., [23,31,33,35,37]) and it has received wide attention from various
areas. Note in (1.8) we allow the matrix G to be only positive semi-definite and accordingly
|z||2 := 2T Gx. This also explains “€” rather than “=" in (1.8), since the uniqueness of
the 2- or y-subproblem in (1.8) is not guaranteed. In fact, the scheme (1.8) is a special case
of the proximal ADMM (PADMM) in [19,37] which suggests to regularize both ADMM’s
subproblems by proximal terms:

. 1
2P+l € argmin { 0y (z) — 2T ATAF + §||Am + ByF —b||3 + slla —a*|% |2 € X} ,

. 1 1.9
y*+1 € argmin %(y)—yTBTm2||Axk+1+By—b||%1+;ny—ykn%!yey},< )

)\k+1 — )\k _ H(Al‘k+1 + Byk+1 _ b),
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where S € RP*P is also an arbitrary symmetric positive semidefinite matrix.

Because of the obvious advantages of the GADMM (1.3) and the PADMM (1.9), we are
inspired to consider combining these two ideas for ADMM and thus propose the following
generalized proximal ADMM (GPADMM for short):

1
2F ! € argmin {Ql(x) — 2T ATk 4 EHAJL' + By* — b))% + 1|z — 2F||% |z € X} ,

k+1 : T Tk
Y € argmin {02(y) —y* B* A
{ (1.10)

1
gl = (1= a)(Byt ~ 0)+ By~ o+l — oM | v e V).
ML = 2\F _ HlaAzF ! — (1 — a)(By® — b) + By*t! —b),

with @ € (0,2). Again, the scheme (1.10) is a generic algorithmic framework applicable

to the abstract model (1.1). Clearly, ADMM (1.2), GADMM (1.3), PADMM (1.9) and
the split inexact Uzawa method (1.6) are all special cases of this scheme. For special cases
of (1.1) with simple functions, the GPADMM scheme (1.10) could be used directly as its
subproblems might be solved easily. On the other hand, for general cases of (1.1) with
generic functions, the z- and y-subproblems in (1.10) must be solved iteratively; we thus
can only implement the following inexact version of the GPADMM scheme:

1
P! ~ arg min {01(1:) —zTAT)F 4 §HA$ +By* — bl + Sz — 2B |z € X} ,
y* T &~ arg min {62(y) — yT BT \F (L.11)
1 1 '
gl = (1= a)(By —0)+ By =W + gl = 0¥ |y € V]
Aot = \F _ H[ozAack+1 — (1= a)(By* —b)+ By*+ — b].

When some standard inexact criteria in the literature are employed for its subproblems, the
scheme (1.11) can be solidified as some implementable algorithms. We refer to [28] and [19]
for some inexact versions of the original ADMM (1.2) and the PADMM (1.9), respectively.
As we shall show later, the inexact ADMM in [28] can be subsumed by the general inexact
GPADMM scheme (1.11).

In this paper, we investigate the convergence for some concrete algorithms derived from
the inexact GPADMM scheme (1.11) under different inexactness criteria in a uniform way. In
addition to proving the global convergence, we establish the worst-case O(1/t) convergence
rate in both ergodic and nonergodic senses for these ADMM type algorithms. Recall that the
ergodic and nonergodic worst-case O(1/t) convergence rates of the original ADMM (1.2) and
the split inexact Uzawa method (1.6) have been established simultaneously in [20] and [21],
respectively; and the same convergence rate of the GADMM (1.3) has been proved in [12].
This work represents a more general and comprehensive analysis than the existing work
in [12,20,21].

The rest of this paper is organized as follows. In Section 2, we recall some definitions and
properties which are useful for further analysis. In Section 3, some preliminary assertions
are proved by simple algebra. Then, we propose two concrete algorithms based on the
inexact GPADMM scheme (1.11) under different inexactness criteria in Sections 4-5. For
each algorithm, we prove its global convergence and establish its worst-case convergence rate
in both ergodic and nonergodic senses. Finally, we make some conclusions in Section 6.

Preliminaries

In this section, we recall some basic definitions and properties which will be frequently used
in our later analysis. Some useful notations are also summarized.
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Variational Reformulation of (1.1)

As the work [20, 21], our analysis requires a variational reformulation of (1.1). Thus we
first state it. More specifically, by attaching a Lagrange multiplier A € R™ to the linear
constraints, solving (1.1) is equivalent to the variational inequality problem: Finding w* €
W:=X x Y x R™ such that

O(u) — O(u*) + (w — w)TQ(w*) >0, Yw e W, (2.1)
where
x —AT )
u = < ;3 > , wi=|y |, O(u) :=01(x)+02(y) and Qw):= —-BT)
A Az + By —b
(2.2)

We denote by VI(W, @, 0) the variational inequality problem (2.1)-(2.2). Clearly, the map-
ping Q(w) defined in (2.2) is affine with a skew-symmetric matrix; it is thus monotone.
Furthermore, under our nonempty assumption onto §*, the solution set of VI(OW, @, 0) (de-
noted by W*) is also nonempty.

The following theorem originates from [11], and it provides us a very useful characteriza-
tion on W* for establishing worst-case O(1/t) convergence rates for ADMM type algorithms.
Since the proof can be found in [11,20], it is omitted.

Theorem 2.1. The solution set of VIIW, Q,0) is convex and it can be characterized as
W= () {w e W|0(u) - 0(a) + (w — 0)"Q(w) > 0}.
weWw
Based on Theorem 2.1, w € W can be regarded as an e-approximation solution of

VIOW, Q, 6) if it satisfies
sup {6(@) — 0(u) + (@ — )" Q(w)} < &,

weD

where D C W is some compact set. As Definition 1 in [27], we can take
D =By (w) :={weW||w—w| <1}.
In our later analysis, we shall establish ergodic worst-case O(1/t) convergence rates for some
algorithms based on the inexact GPADMM (1.11) in the sense that after ¢ iterations of such
an algorithm, we can find @w € W such that
0(a) — O(u) + (0 — w)'Q(w) < e, Yw € Byy(w),
with e = O(1/¢).

Some Notations

Let 2 be a nonempty closed and convex subset of R, N € R'*! be a positive definite matrix,
and the N-norm of a vector v € R! be denoted by ||v||x = VvT Nwv.

Let @ € (0,2), G € R™™™, § € RP*P and H € R™*™ be positive definite matrices.
Throughout we define the matrices P, and M, as

G 0 0 G 0 0
P,=| 0 S 0 and  My:=| 0 IBTHB+S =2BT
00 2-aH™* 0 i=ep gt

(2.3)
Both P, and M, are positive definite under our assumption.
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Some Preliminary Assertions

In this section, we prove some simple assertions which will be used later when we analyze
the convergence for the inexact GPADMM (1.11) under different circumstances. To prove
these assertions, only preliminary algebra is needed. Although we attach the superscript k&
to the letters, the proof of the following lemma is irrelevant to the specific scheme (1.11).

Lemma 3.1. Let a € (0,2), zF € R, y*, ¥ € RP and \F € R™. If we define \* and pUan
as

A= N H(AZF+ By —b)  and M= N —H {[aAz* — (1 - a)(By* - b)] + Bg* - b},

respectively; then for any y € RP and A € R™, we have
- 2 :
2(A = AN)T(Az" + By" —b) + —(y — )" BT HB(y" - 7")

1 _ 1 ]
= —(ly = 7" e rp = lly = v" e mp) + (1A = A = A= A )

2(1 -«

+ (2= )|\ = 2F)12 -+ (A = \OT(By* — Bg*).

Proof. Using the definition of A**!, we have
ML = A = H {[aAZ* - (1 - a)(By* - b)] + By* - b}
= X' — H [a(Az* + By* —b) + (o = 1)(By" — By")],

from which we get
—k —k Lo i vk Sktt -« k —k
Az" 4+ By —b:aH (A" = A )+T(By — Bg").

Then, then we obtain

200 = M7 (AZF 4+ ByF —b)
2(1 — «)

— U\~ 3T (By* - By)

_ E(A_S\k)THfl()\k _j\kJrl) +
«

= 2 AT - ) 2 (XT3
20 kT syt - Bty + 2 Bt - B ()

(07

For the first item in (3.1), we have the following identity

2 o _ o 1 « 1 1 “
e B P L Y

(3.2)
Then, it follows from the definitions of A**! and \* that

AL =\ H [a(AZF + By* — b) + (BF* — By")] = \F — a(\¥ — \F) + H(By" — B7").
Therefore, we obtain

M3 = (1= a)(M* = X¥) + H(By"* — By¥) (3-3)
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and R B
N NFFL — o (AF — \F) + H(By" — By"). (3.4)
Using the above equations and by simple manipulations, we get
2 < - _ N 2(1 — « - B
a()\k+17>\k)TH 1(>\k7Ak+1)+ ( - )()\k*)\k)T(Byk*Byk)
2 < _ _ I _
= ~[(1= )\ = N") + H(BY* = By")"H ™ a(\* = M) + H(By" — By")]
2(1 — .
+ 2= o Tyt - Byt

(67

= 91— )|\~ MEs — 2l — 5 s + 20— X7 (BY - BiY). (35)
It follows from (3.4) that
X R = a? X X~ 7 e — 20V AN (By — By)
and thus
200 = )T (By — Byt = all A = R+l 7 s — A~ A

From the above equality and (3.5), we obtain

z(j\kﬂ BT H(NF - AR 2(1-a)

(0% «

< 1 _ 1 .
= (2~ @I~ R = Sy~ Pl — A=

(A\* = AT(By" — By")

Substituting this and (3.2) into (3.1), we have
200 = M (Az" + By® —b)
1 N - 1 _
= (A= A = I = NP + 2 = N = Nl =~y = 7 s

n 2(1 - «)

— (0 AT By~ B,
The following is an identity
2 —INT RT k_ —k 1 k2 1 k(2 Lok kg2
SW=9 ) B HB(y" —9") =~y =5 lprus — Iy =9 srus + V"~ 7 lsrus.

Adding the above two equalities, the assertion is proved. O O

Next, we show an assertion which will be used for proving the convergence of the inexact
GPADMM (1.11) to be proposed.

Theorem 3.2. Let ¢y and a € (0,2) be positive constants; {Cr} and {nr} be nonnegative
sequences with Yy Gk < +00 and Yoo mk < +00; and P, and M, be defined in (2.3).
For any w* € W*, if there are two sequences {w*} and {@"*} satisfying

=l < (4 GOl = w3y, +m = ol a3, WE=0,  (36)

then {wk} is bounded and
klim |w* —@*||p, = 0. (3.7)
—00
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Furthermore, if the mapping Q is continuous and

liminf {f(u) — 0(a") + (w —0")TQw@")} >0,  VweWw, (3.8)

k—o0
then the sequence {w*} converges to a point in W*.

Proof. From Y2 (i < +o0 and (, > 0, it follows that [];- (1 + (&) < +oo. We denote

Cy = ng, Cp = H(l + k) and C, = an.
k=0 k=0 k=0

Let w* € W*. From (3.6) we get

[wFtt —w*|3, < (T4 G)llw® — w3, +
< () [+ Geon) Wbt — w3+ meoa] + e
< T+ G A+ G (W = w3, + M1 + ).

Thus for any [ < k, we have

k k

Jottt w3y, < T+ (e = w3y, + > m)
1=l i=l
< Gy(llo' = w3, + Y m) (3.9)
=l

< Cp”wl - w*||?\/[& + CpChy.
Therefore, there exists a constant C' > 0 such that
[wF —w*||3,. <C,  Vk>0. (3.10)

Then, the sequence {w*} is bounded. Combining (3.6) and (3.10), we have

o0 o0 oo
oy Il =B, <l — w3y, Y Gllw® —wllR, + D m
k=0

;=0 pary
< C+OY G+,

k=0
< (1+C)C+C,

It follows that
lim Hwk — wkaa =0.
k—oo

Thus the first assertion (3.7) is proved.

Since {w*} is bounded and limy_, . [|[w* —w*||p, = 0, we have that {@w"} is also bounded
and then it has at least one cluster point. Let w™ be a cluster point of {w*} and the
subsequences {w"} and {w*i} both converge to w™. It follows from (3.8) that

liminf {6(u) — 0(a") + (w — @) T Q(@*)} >0,  VweWw,

J—0o0
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and consequently
O(u) — O(u™) + (w — w*)TQ(w™>) >0, Yw € W.

This means that w™ is a solution of VI(W, @, 0). Note that inequality (3.9) is true for all
solution points of VI(W, @, ), hence we have

o0
[+ —weRy, < Cplllw' — w3y, + D m), ¥k >0,V < k. (3.11)
i=l
Since wki — w™ (j — oo) and oo ni < 400, for any given € > 0, there exists a jo > 0
h that
such tha k 2 P - P
v . A
whio —w>|2, < 50, and Zk: ni < 50, (3.12)
—™Jo

Therefore, for any k > k;,, it follows from (3.11) and (3.12) that

o0
"t = wlar, < | Cplllwko — w3, + Y m) <e
i=kjq

This implies that the sequence {w*} converges to a point w™ in W*. O O

An Implementable Inexact GPADMM with Absolute Error Con-
trol

In the following sections, we embed the inexactness criteria proposed in [28] into the inexact
version of GPADMM (1.11) and propose some implementable algorithms based on the in-
exact GPADMM (1.11). The algorithmic framework of the new algorithms with the criteria
in [28] can be described as follows: Find wF*! = (xF+1 yF+1 A+l ¢ W, ¢F € R” and
55 € RP such that for any w = (z,y) € X x ) we have

01(x) =01 (" )+ (=2 )T {— AT N — H(A2" 1 - ByP —b)|4+-G (a1 —2F) k) > 0, (4.1)

02(y) — O2(y* ) + (y — " THT{=BT[\* — H(aAz"t!
— (L= a)(By* —b) + By*™ —b)] + S/ — ") + £} >0,
ML= NP H[a Az — (1 — a)(By® — b) + By — ). (4.3)

(4.2)

In (4.1)-(4.3), the terms &* and f’y“ are error terms for solving the respective x- and y-
subproblems; and their specific choices are referred to [28]. In the implementation, we can
control either the absolute or the relative errors of these error terms, and it leads to two
concrete algorithms under the framework (4.1)-(4.3). This section focuses on the case where
the absolute error of those error terms are controlled.

Algorithm

Algorithm 1: An implementable inexact GPADMM with absolute error control

Step 0. Let e > 0; a € (0,2); w® := (2°,9°,0%) € X x Y x R™, G, S and H be positive
definite matrices and {vy} be a nonnegative sequence satisfying > peqo Vi < +00. Set k := 0.
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Step 1. Find "1 € X and ¢¥ € R™ such that
01 (z) =01 (") + (m—xk“)T{ — AT\ — H(Az"*' + ByF —b)]+ G (2" —x’“)+§’;} >0,
Vee X, (4.4)

where € satisfies the inexactness criterion ||€||q-1 < vg.
Step 2. Find y**' € Y and &) € RP such that

a(y) — B2y ) + (v —y" )T { = BT[N — H(ada"*! = (1 - a)(By" —b) + By —1)]

+ S -y +eh) 20, vy e, (4.5)

where f’; satisfies the inexactness criterion ||§§HS_1 < vg.
Step 3. Update \*t! wia

MNHL = A\F — H[a Az — (1 — a)(By" — b) + By*Ft! —b]. (4.6)
Step 4. Set whT! = (aFH1 yF+1 N+ If [[wh ! —wk|| < e, stop; otherwise set k =k + 1

and goto Step 1.

Remark 4.1. If o = 1, Algorithm 1 is just the inexact alternating direction method with
Criterion 1 in [28].

Convergence

In this subsection, we prove the convergence of Algorithm 1. First we define

z* ohtt
o= Y| = yktt (4.7)
AF N — H(Az*! + Byk —b)

to simplify our notation in the following analysis.
We now prove a useful lemma which will be used in Sections 4 and 5.

Lemma 4.2. For given w®, let wk*! be generated by (4.1)-(4.3), and w* be defined by (4.7).
Then for any w = (x,y, ) € W, we have

0(u) = 0(@") + (w — ") Q(@") + (z — ") 7€l + (y - 7)€y
|

> jw* —@F |3, (4.8)

DN | =

k k
([t = wlfy, = llw* —wli3,,) +

where P, and M, are defined by (2.3).

Proof. With the notation w* given in (4.7), the VI (4.4) can be written as

01(z) = 02(3") + (x — )T (- ATX) + (2 — ) Tg;
> (l,k+1 _ l,)TG(xk+1 _ CEk)
1
T2

1 _
= S = 2f& = la® = 2l&) + Slla* = 2"jg, Vo e X (4.9)
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Analogously, from (4.5) and (4.6) we get

02(y)—02(y" )+ (y—y* ) T [ BTN S (yF =M+ (y—5*) Tk >0, Wy e Y. (4.10)

Using the notation @* given in (4.7), A¥*! in (4.6) can be written as

A¥ — H[a(Az*H + ByF —b) + B(yF+ — yF)]
= Mo\ = X))~ HB(" — )
M= (1= )\ = A) = HB(y" — o). (4.11)

/\k+1

Substituting this into (4.10) and using the notation @w*, for any y € ) we obtain

02(y) — 02(5") + (y — )" (=B"N) + (y — ") "¢,
> (y =y TS =" + (v = g BTHB" — 5°) + (1 - a)(AF = 2]
= SO~ yld — Iy — I+ Sl — 51 + - 9N BTHBGF — )
+ (1 —a)(y— ") TBT(\F = \F). (4.12)

Setting A*+1 = A*+1 in Lemma 3.1 and using §* = y**, we have

(A= 2T (AzZ* + By* —b)

1 ) 1
=—(y— )" BTHB(y" - y*) + %(Ily’“+1 —ylprys — 10* — vl %rus)
1 .
ﬂL%(H)\k+1 —AF = I = Al
2 —« - 11—« B
FED N A+ T )TBT O A (113)

Combining (4.9), (4.12) and (4.13) together, we get

0(u) = 0(@*) + (w — w") T Q") + (z — 2") 7€ + (y - ") ¢y

1
> 5 [(”xk+l - l‘”%; - ka - .13”%;) + (Hyk—H - yHQéBTHBJ,_S - Hyk - y”%BTHBJ'_S)
1—a _ _
(I = A = I = AR ) |+ [ - 5" BT HB(E — o)
+aly 5" BT = X) + (5" — )T BT (A - x|

1 B B _
g [l = I I - I+ 2 - @I - 3. (4.14)

From (4.11) and by simple manipulations, we obtain
(y—g")"BTHB(F" —y*) + aly — §°)" BT (\* = N*) + (v* — §") BT (A = \¥)
= (-9 BTHB(Y" —y") + (y = 9")" BTN = ad* = (1 = )X = (y = ¢*)" BT (A = \¥)
= =3B A=A+ (1 - )M = XN) + HB(5* —y")) = (y — ") BT (A= \")
= —g")"BTA =) = (y =" BT (A= AP).
Substituting the above inequality into (4.14) and using the notation P, and M,, we get
(4.8) immediately. The proof is completed. O
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Let us prove two more lemmas before proving the convergence of Algorithm 1.

Lemma 4.3. Let the sequence {w*} be generated by Algorithm 1, the accompanying sequence
{w*} be defined by (4.7). Then for any w = (z,y,\) € W and k > 0, we have

_ _ _ 11— 1 1 B
Olu0) ~0() + (w—#)T Q) > T kR, — L ¥ —wl}, + 3 o, s
(4.15)
where P, and M, are defined by (2.3).
Proof. It follows from Lemma 4.2 that
0(u) — (") + (w — )T Q(@") + (x — ) T¢G + (y — 7)€y
1 1 _
> Sl —wliy, = v = wiliy,) + 5w = ",
Note that z¥ = zF+1. Using Cauchy-Schwarz Inequality and the inexactness criterion
[€5llg-1 < vk, we obtain
_ . Vi 1 . Vi Vi
(@ —2)ey > 2" —allg — o N€GIE- = —F e —2lle -, Yo e X (4.16)
2 2uy, 2 2
Similarly, we have
ok NTek ~ Ve kst o2 Yk v 4.17
@ =y & =< ly ylls == yey. (4.17)

Summing the above three inequalities and using the notation M, we get

0(u) — 0(a*) + (w — @") T Q(a")

> okt —wly, — (e~ ol - glR) - sl — wlid, + gt — @b, - v
> L b,
Sl — iy, + et — @, — o

The proof is completed. O

The following result shows the contraction of the sequence generated by Algorithm 1,
based on which the convergence of Algorithm 1 can be established easily.

Lemma 4.4. Let the sequence {w*} be generated by Algorithm 1. Then for any w* € W*,
we have

o™+t —w* |}, < (14 2u) [0 — w3y, + (2o + 405) — [0 — ",
where P, and M, are defined by (2.3).
Proof. Setting w = w* in (4.15), we get
2[0(u*) - 0(@") + (w* — @*)T Q(w")]
> (1= w0t — w3y, = llw® —w*|iy, + 0" =@}, — 20

> (1 )b — w3y, — b — w3, + (- )t — ¥, — 20
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On the other hand, since @) is monotone and w* € W*, we have
0> 0(u) - 0(a*) + (w* — @*)TQ(w*) > O(u*) — (") + (w* — &™) Q(a").

Recall that >~ v < +oo. Without loss of generality (say, 0 < v < 1/2), we assume that

§1+2I/k.
l—Vk

It follows from the above three inequalities that

« 1 « 2Vk _
o =By, S et R, + e - 2,
< (U4 2u) w0 — w3, + 20 (1 + 20) — w* — D" |3,
The proof is completed. O

Now we are ready to prove the global convergence for Algorithm 1.

Theorem 4.5. The sequence {w*} generated by Algorithm 1 converges to some w> which
is a solution of VI, Q,0).

Proof. From Y 72 vy < 400 and v > 0, it follows that

oo

Z(ka +4v2) < +oo.
k=0

Setting Cx = 2vg, Nk = 2v +4v2, o = 1 in (3.6), from Lemma 4.4 and Theorem 3.2 we have

lim ||w® —@*|p, =0.
k— o0

And thus we get

lim [|w® —@"|| 5, = 0.
k—o00

Then it follows from (4.6), (4.7) and (3.3) that

1 _
lim ”,wk-‘rl _ wk”Ma — lim 7”)\k+1 _ )\kHH—l
k—o0 k—oo (¢
.1 < _
= lim =[(1 —a)(\* = X¥) + H(By* — By*)|| -
k—oo (¢
=0.

Note that limg_,o vx = 0. From (4.15) and the above three formulae, we get
likm inf {0(u) — 0(a") + (w — 0*)TQ(@*)} >0, Yw e W.
—00

The convergence of Algorithm 1 is then obtained immediately from Theorem 3.2. O
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Ergodic Worst-case O(1/t) Convergence Rate
Now, we establish a worst-case O(1/t) convergence rate in ergodic sense for Algorithm 1.

Theorem 4.6. For any integer t > 0, there is a wy € W which is a convex combination of

the iterates w°, wt, - w' defined by (4.7). Then for any w € W, we have
t
1
0 (i) — 0(u) + (0, —w) " Q(w) < ) llw— w13, +;)yk(|\w—wk+1||ﬁ4a +2)}, (4.18)

where w; 1= (Zk o W)/ (t+ 1) and M, is defined by (2.3).
Proof. From (4.15), we have

1 1-—
O(u) — 0(a") + (w — ™) T Q") + §||w — w3, > 2Vk Jw— w3, — vk, Yw e W.
Since @) is monotone, we have

(w— " TQ(w) > (w — w*)TQ(w"), Ywe W.

It follows from the above two inequalities that

1 1-—
() —=0(a")+(w—") Q(w)+5 fw—w |}y, =~ fw—w* |, —vi, Y €W (4.19)

Summing the inequality (4.19) over £k =0,1,--- ,¢, we obtain

t t

(t+1)0(u) — > 0@@k) + [H—lw—z ] %Hw—w(’ll?wa

k=0 k=0

1 1 .
> L — w1, - LS o -t R, +2)
k=0

t
1
> 52_: p(lw = w3, +2),  YweW.

Since Y;_, 1/(t +1) = 1, @, is a convex combination of @°, @', --- , @' and thus @, € W.
Using the notation of w;, we derive

t

t% > 0(@") = 0(uw) + (@0 — w)"Q(w)
k=0
t
SETESY [”w — w3y, + Y velllw —w S, +2)|, YweWw.  (4.20)

k=0

Since 6(u) is convex and

we have that

[~
=
N

k=0
Substituting it in (4.20), the assertion (4.18) follows immediately. O



INEXACT GENERALIZED PROXIMAL ALTERNATING DIRECTION METHODS 115

We first notice that since the sequence {w*} generated by Algorithm 1 converges to
the solution, it is bounded. According to (4.2), the sequence {w*} defined by (4.7) is also
bounded. Therefore, there exists a constant D > 0 such that

|wF|y, <D  and |@* ||, <D, VEk>0.
Recall that w; is the average of {@w®,w?,--- ,w'}. Thus, we have ||| rs, < D. Denote
By =) v < +oo. (4.21)
k=0

For any w € Byy(w;) = {w € W [|w — @¢|[ar, <1}, we get

0(te) — 0(u) + (0, — w) " Q(w)

[l — w13, + 3" v (llw = w3, +2)]
k=0

SRSy

IA

t
{(lw = @illas, + o = w¥llar)* + 3 v (le = willas,
k=0

+ e = wlag,)* +2] }

IN

_ _ 2
{(lw = @dllar, + el + 0 lar.)

t
_ _ 2
+ 3" v (e = willar, + el + o) +2] )
k=0
1

IN

{a+2D)?+ By[(1+2D) + 2]}

_ [(1+2D)*(1 + E1) + 2E4].

(1+2D)2(1+E1)+2E;

Thus, for any given ¢ > 0, after most t := | 5

— 1] iterations, we have
0(ir) — O(u) + (0 — w)"Q(w) <&, VYw € By (wy),

which means @, is an approximate solution of VI(W, @, 8) with an accuracy of O(1/t). That
is, a worst-case O(1/t) convergence rate of Algorithm 1 is established in ergodic sense.

Nonergodic Worst-case O(1/t) Convergence Rate

In this subsection, we establish a worst-case O(1/t) convergence rate in nonergodic sense for
Algorithm 1.

Recall that the sequence {w*} generated by Algorithm 1 is bounded. Thus, for any given
w* € W*, there is a constant C,« > 0 such that for any k& > 0 we have

[w* — w*||a, < Cue. (4.22)
Theorem 4.7. Let the sequence {w*} be generated by Algorithm 1, the accompanying se-
quence {w*} be defined by (4.7). Then, for any w* € W* we have
1

. e ATV < _ 0 _ ¥ 62* E 423
ZE{I(I)}]HJC}HU/ w ||pa =~ k+1 [”w w ”Ma +( w + ) 1]’ ( )
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where P, and M, are defined by (2.3).
Proof. Setting w = w* in (4.15), for any ¢ > 0 we get
2[0(u*) - 0(a") + (w* — @) Q(u")]
> (=)™ —wy, = o' = w3, +llw' - @[3, - 2v:.
On the other hand, since @ is monotone, @' € W, and w* € W*, we have
0> 0(u*) - 0(a) + (w* — ") Q(w") > () — (@) + (w* — @')T Q).
It follows from the above two inequalities that

o' — @I, <l — 0"y, — (= wllw’™ — R, + 20

Summing the above inequality over ¢ = 0,1,--- ,k and using (4.22) and (4.21), we obtain

k k
S =3, < = w3, +> v (o — w3, +2) < lu® w3, +(C2+2) By,
i=0 i=0

The assertion (4.23) follows from the above inequality immediately. 0
If |w* — @*||p, = 0, from (4.4), (4.5) and (4.7) we have
e X, 01(x) — 01 (2F) + (x — M) T (—ATINF) > — (2 — )Tk, Vo € X,
v €Y, ba(y) — ")+ (y— )T (=BTN) = —(y —y")TE, Wy e,
Az* + By —b=0.

Combining the above three formulae together and using the inexactness criteria [|€F||g-1 <
v and [|EF]|g-1 < g, we get

O(u) = 0(u*) + (w —w") T Qw*) > —(z—2")T¢h — (y—y")"¢)
> o —a"elllc- —lly — v IslEgls—
> v (|lz = 2"le + lly = v*[ls)
> —pllw — w(|p,
> —U, Yw € By (w"),

where
By(w) = {w e W | w—w*|p, <1}.

This means that w* € W can be regarded as a vj-approximation solution of VI(W, Q,6)
according to (2.1). Therefore, ||w* —w*| p, can be viewed as an error measurement in terms
of the distance to the solution set of VIO, @, §) for the (k 4 1)-th iteration of Algorithm
1. Hence, Theorem 4.7 shows a worst-case O(1/t) convergence rate in nonergodic sense for
Algorithm 1.
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An Implementable Inexact GPADMM with Relative Error Con-
trol

In Section 4, the absolute errors of the error terms ¢¥ and 55 are controlled by the summable
sequence {vg}. As in [28], we also investigate the case where the relative errors of the error
terms &F and f’; are controlled in this section. The control sequence {vy} can be also
required to be summable: Y p- ;v < +00. But in this section, we propose a more relaxable
requirement on {v;} in [28]: Y2, vi < +oo.

Algorithm

Algorithm 2: An implementable inexact GPADMM with relative error control
Step 0. Lete > 0; a € (0,2); w° := (2%,9°,\%) € X x Y x R™; G, S and H be positive
definite matrices; and {vy} be a nonnegative sequence satisfying ZZC:O V% < 4o00. Setk:=0.
Step 1. Find 2! € X and €% € R™ such that

01(z) — 01 (=" 1) +(x—xk+1)T{ — AT\~ H (A2 + By* —b)]+ G2 —2b) —|—§I;} >0,
Vee X, (5.1)
where £F satisfies the following inevactness criterion:
I€zllg-1 < vellz® — 2™+l (5.2)
Step 2. Find y**t' €Y and 5’; € RP such that
O2(y) — O2(y" ) + (y — y’““)T{ — BT[\* — H(aAz"" — (1 - )(By" — b) + By"*! —b)]
+ S -y + ek 20, vye, (5.3)
where §§ satisfies the following inexactness criterion:
€5l < villy® —y* s (5.4)
Step 3. Update \*1 via
MNHL = \F — H[a Az — (1 — a)(By* — b) + By —1). (5.5)

Step 4. Set whtl = (2F+1 yFTL NFL) | If |whHl — wk|| < e, stop; otherwise set k =k + 1
and go to Step 1.

Remark 5.1. Algorithm 2 with o = 1 reduces to the inexact ADMM with Criterion 2
in [28].

Convergence

In this subsection, we prove the convergence of Algorithm 2. In addition, we define

jk xk-l—l
o= P | = yhtl (5.6)
Ak AE — H(Azh+! + By* —b)

to further alleviate the complication of notation.
Let us start the proof with a lemma.
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Lemma 5.2. Let the sequence {w"*} be generated by Algorithm 2, the accompanying sequence
{w*} be defined by (5.6). Then for any w := (x,y,\) € W and k > 0, we have

1— 207 1 1
0(u) = 0(a") + (w = 0*) Q") > ——Fw* — w3, — Slw* —wli, + v —a"[F,,

2
(5.7)
where P, and M, are defined by (2.3).
Proof. From Lemma 4.2, we have
O(u) — 6(a*) + (w — )" Q") + (v — )Tk + (y — ") "¢y
1 1 _
> (™t = wlfy, = v = wliy,) + Sllw® = @[, (5.8)

It follows from (5.2) that
ez < villa® — a2

Note that z% = z#+!. Using Cauchy-Schwarz Inequality and the above inequality, we obtain
—k T ¢k 207 g 2 Lo kg2 201, k+1 o Lok k2
@27k > =2 - R > e - S, e,
k
Similarly, we have
_ 1 _
@ =97y = —vily™ = ylE - gl -7t lE vy el

Adding (5.8) and the above two inequalities, we get

6u) —6(a") + (w —0*)TQ(u)
=+

k k k
[ —wlfy, — Rl = 2llE + 15 = yl3)

1 1 _
St = wlly, + 5wt - @,

1 _ _
— et = 213+ Iy~ 7413)
1—2u3 L, & 1
> utt —wl, - Sl —wlR, + et —atlE, vwew.
The proof is completed. O

The following result shows the contraction of the sequence generated by Algorithm 2,
based on which the convergence of Algorithm 2 can be established easily.

Lemma 5.3. Let the sequence {w*} be generated by Algorithm 2. Then for any w* € W*,
we have

1
[t — w3y, < (1+303)[w® — w3, - gHwk — "3,
where P, and M, are defined by (2.3).
Proof. Setting w = w* in (5.7), we get

2[0(u”) — 0(@*) + (w* — @*)TQ(w")]
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1
> (1 - 23)[wb ! —wr Iy, — b — w3, + Sl - ¥,

1— 207

> (1= 2w — w3y, — w* =}, + —

[w* — @3,
On the other hand, since @ is monotone and w* € W*, we have
0> 0(u*) — 0(a") + (w* — @")TQ(w*) > 0(u*) — 0(a") + (w* — w")TQ(w").

Recall that Y7, vZ < +oco. Without loss of generality (say, 0 < v, < v/6/6), we assume
that

— <143
o2 = T
It follows from the above three inequalities that
[ —w By, < sl — R, — gl - ot
« T 122 « 2 a
1
< (43 llw* — w3y, - §||wk — "3,
The proof is completed. O

Theorem 5.4. The sequence {w*} generated by Algorithm 2 converges to some w™ which
is a solution of VIO, Q,0).

Proof. Setting ¢ = 3vZ, ny =0, co = 1/2 in (3.6), from Lemma 5.3 and Theorem 3.2 we
have

lim ||w® —@*|p, =0.
k— o0

Then it follows from (5.5), (5.6) and (3.3) that

1 _
lim [|w**t — @5, = lim —|[XFL = NF)|
k—o0 ) k—oo (v
1 < ,
= lim — (1 —a)(A\* = \*) + H(By* — By")|| sz
k—oo ¢
=0.
From (5.7) and the above two formulae, we get
likm inf {0(u) — 0(a") + (w — w’“)TQ(w’“)} >0, Yw e W.
—00

The convergence of Algorithm 2 is then obtained immediately from Theorem 3.2. mE

Ergodic Worst-case O(1/t) Convergence Rate
Now, we establish a worst-case O(1/t) convergence rate in ergodic sense for Algorithm 2.

Theorem 5.5. For any integer t > 0, there is a wy € W which is a convexr combination of

the iterates w°, wl, - - w! defined by (5.6). Then for any w € W, we have
- - T L /1 02 ¢ 2 k4112
0(00) — 0(0) + (4~ 0)7 Q) < it (Sl — w3y, + 3 Rl — w13, ), (59
k=0

where @y == (Yh_ @")/(t + 1), and M, is defined by (2.3).
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Proof. From (5.7), we have

1 1—202
B(u) — 6(a") + (w — @M Q@") + Slhw — w3y, =~ w — R, VweW.

Since () is monotone, we have
(w ="' Q(w) > (w - a*)TQ(@"), Vwew.
It follows from the above two inequalities that

1— 2Vk

TH w3, Yw e W. (5.10)

()~ 0()+ (=) Q) g w3, >

Summing the inequality (5.10) over k = 0,1,--- , ¢, we obtain

t t
1
(t+1)8(u) — 3 6(a*) + [t+1w— > } )+ Slhw = w®ll%,
k=0 k=0
L k
> L=, = 3 o — a1,
k=0
t

Z—Zy,%ﬂw—wkﬂ\ﬁwu, Yw e W.

Since ZZ:O 1/(t+1) =1, w; is a convex combination of @, w!,--- ,w’ and thus w, € W.

Using the notation of w;, we derive
t t
& — T 1 02 2 k412
T D 0() = 0w) + (@ — )T Q(w) < == (G w —w [y, + D2 v llw =t ).
k=0 k=0

YweWw. (5.11)

Since 6(u) is convex and

we have that

>
—
SN—
AN
—_
-
S
~
N
&
S—

Substituting it in (5.11), the assertion (5.9) follows immediately. 0 O

Analogous to Algorithm 1, Theorem 5.5 implies a worst-case O(1/t) convergence rate in
ergodic sense of Algorithm 2.

Nonergodic Worst-case O(1/t) Convergence Rate

In this subsection, we establish a worst-case O(1/t) convergence rate in nonergodic sense for
Algorithm 2.
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Since the sequence {w*} generated by Algorithm 2 converges to the solution, it is
bounded. For given w* € W*, there is a constant Cy» > 0 such that for any & > 0 we
have

Jwh = w*||ar, < Cur. (5.12)

Denote -
By =) vp<+o0. (5.13)

k=0

Theorem 5.6. Let the sequence {w*} be generated by Algorithm 2, the accompanying se-
quence {w*} be defined by (5.6). Then, for any w* € W* we have

) . 1 ~
: i i2 < 2w — w*|2 402*}3) 5.14
{0 ) o’ = w*p, < k+1( o = wlh, +4C0- B2 ), (5.14)

where P, and M, are defined by (2.3).
Proof. Setting w = w* in (5.7), for any ¢ > 0 we get
4[0u) — (@) + (" — )T Q"] 2 201-22) | —w [, ~2w’ "3, +]w' |,
On the other hand, since @ is monotone, W' € W, and w* € W*, we have
0> 0(u”) = 0(a") + (w — ") Q(w”) > (u”) — (') + (w* — ") Q(w").
It follows from the above two inequalities that

lw' — @[5, < 2fw' —w*|i, — 20 - 207)[lw'™ —w}y,, ¥ix0.

Summing the above inequality over ¢ = 0,1,--- , k and using (5.12) and (5.13), we obtain
k k )
St — @, < 2 — w3, 4D - [, < 2w, + 4G B,
i=0 =0
The assertion (5.14) follows from the above inequality immediately. a O

If |w* — @*||p, =0, from (5.1)-(5.6) we have
0(u) — 0(u*) + (w — w")T Q") > 0, Yw e W,

which means that w* is a solution of VI(W, Q, #) according to (2.1). Therefore, ||w* —@"| p,
can be viewed as an error measurement in terms of the distance to the solution set of
VIOW, @, 0) for the (k + 1)-th iteration of Algorithm 2. Hence, Theorem 5.6 shows a worst-
case O(1/t) convergence rate in nonergodic sense for Algorithm 2.

(6] Conclusions

This paper studies the convergence of a general algorithmic framework which blends the
inexact, generalized and proximal versions of the alternating direction method of multipliers
(ADMM). The global convergence and worst-case O(1/t) convergence rates in both ergodic
and nonergodic senses are established for two concrete algorithms based on the inexact
generalized proximal ADMM framework. The convergence rate results of some ADMM type
algorithms in the literature are thus further developed in a uniform manner.
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