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and so on; We refer to [2,7,15] for some excellent reviews on the history and applications of
ADMM. The iterative scheme of ADMM for solving (1.1) can be written as xk+1 ∈ argmin

{
θ1(x)− xTATλk + 1

2∥Ax+Byk − b∥2H
∣∣ x ∈ X

}
,

yk+1 ∈ argmin
{
θ2(y)− yTBTλk + 1

2∥Axk+1 +By − b∥2H
∣∣ y ∈ Y

}
,

λk+1 = λk −H(Axk+1 +Byk+1 − b),
(1.2)

where λ ∈ Rm is the Lagrange multiplier and H ∈ Rm×m is a symmetric positive definite
matrix playing the role of a penalty parameter. The most popular choice for H is H =
β · Im×m where β > 0 is a scalar and Im×m is the identity matrix in Rm×m. The ADMM
scheme (1.2) originates from the idea of splitting the subproblem at each iteration of the
augmented Lagrangian method in [22, 30] in Gauss-Seidel order so as to generate smaller
and easier subproblems which could exploit the properties of θ1 and θ2 individually.

In [14], it was shown that the ADMM scheme (1.2) can be obtained by applying the
Douglas-Rachford splitting method in [25] to the dual of (1.1). Then, in [9], Eckstein and
Bertsekas demonstrated that the Douglas-Rachford splitting method is a special form of the
proximal point algorithm (PPA) in [26]. They thus followed the relaxed PPA in [17] and
proposed the generalized alternating direction method of multipliers (GADMM):

xk+1 ∈ argmin

{
θ1(x)− xTATλk +

1

2
∥Ax+Byk − b∥2H

∣∣ x ∈ X
}
,

yk+1 ∈ argmin

{
θ2(y)− yTBTλk+

1

2
∥αAxk+1− (1− α)(Byk − b)+By − b∥2H

∣∣ y ∈ Y
}
,

λk+1 = λk −H
[
αAxk+1 − (1− α)(Byk − b) +Byk+1 − b

]
,

(1.3)

where the parameter α ∈ (0, 2) is a relaxation factor. Clearly, the original ADMM (1.2)
is the special case of the GADMM (1.3) with α = 1. In some articles such as [1, 8, 10], it
has been verified that an over-relaxation factor (i.e., α ∈ (1, 2)) can accelerate ADMM’s
convergence empirically.

Both (1.2) and (1.3) are generic algorithmic frameworks for the abstract model (1.1);
how to implement them to solve a concrete application of (1.1) depends on the specific
structure/property of the involving objective functions and constraints. For instance, an
application of (1.1) is the total variation image denoising model

min

{
1

2
∥x− x0∥22 + τ∥∇x∥1 | x ∈ Rn

}
, (1.4)

where x is the vector representation of a two-dimensional digital image in lexicographical
order, x0 is the observed image corrupted by Gaussian noise, ∇ ∈ Rn×n is the matrix
representation of the nonsmooth isotropic total variation operator proposed in [32], ∥x∥1 :=∑n

i=1 |xi| and τ > 0 is a trade-off parameter balancing the data fidelity term 1
2∥x−x0∥22 and

the regularization term ∥∇x∥1. By introducing an auxiliary variable y, we can reformulate
(1.4) as

min
1

2
∥x− x0∥22 + τ∥y∥1

s.t. ∇x− y = 0.
(1.5)

which is a special case of (1.1) with θ1(x) =
1
2∥x−x0∥22, θ2(y) = τ∥y∥1, A = ∇, B = −In×n,

b = 0, m = n = p and X = Y = Rn. Then, because of the simplicity of the functions

The special case where B = −Ip×p, m = p, b = 0 and H = β · Im×m was considered in [9].
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in the objective, applying the scheme (1.2) or (1.3) is extremely easy — both the x- and
y-subproblems at each iteration are simple enough to have closed-form solutions.

For more complicated functions (θ1 and θ2) or coefficient matrices (A and B), the x- and
y-subproblems in (1.2) or (1.3) might not have closed-form solutions. In such cases, how
to solve these subproblems is crucial for implementing ADMM or GADMM efficiently. One
case having widespread applications is that the function (say θ1) itself is still simple (e.g.,
θ1(x) = ∥x∥1) while the corresponding matrix A is not an identity — the x-subproblem in
(1.2) or (1.3) thus can only be solved approximately via inner iterations. But obviously, we
still want to use the advantageous simplicity of θ1; an effective and simple strategy towards
this purpose is to linearize the quadratic term of the x-subproblem in (1.2) or (1.3) and
obtain its approximate problem:

xk+1 =argmin

{
θ1(x) + (x− xk)TβAT

(
Axk +Byk − b− 1

β
λk

)
+
r

2
∥x− xk∥2

∣∣ x ∈ X
}
,

(1.6)

where the parameter r is required to satisfy r > β∥ATA∥ in order to control the accuracy
of the linearization. Note for simplicity we take H = β · Im×m in (1.6). Hence, when
θ1(x) = ∥x∥1 and X = Rn, the closed-form solution of (1.6) is given by the soft-shrinkage
operator (e.g. [6]). This ADMM linearization strategy is the essential idea of the well-known
split inexact Uzawa method proposed in [36,37]. Obviously, the approximate x-subproblem
(1.6) can be written as

xk+1 = argmin

{
θ1(x)− xTATλk +

1

2
∥Ax+Byk − b∥2H +

1

2
∥x− xk∥2G

∣∣ x ∈ X
}
, (1.7)

where G = r · In×n − ATHA. Therefore, the original ADMM (1.2) and the split inexact
Uzawa method in [36,37] are both special cases of the following scheme

xk+1 ∈ argmin

{
θ1(x)− xTATλk +

1

2
∥Ax+Byk − b∥2H + 1

2∥x− xk∥2G
∣∣ x ∈ X

}
,

yk+1 ∈ argmin

{
θ2(y)− yTBTλk +

1

2
∥Axk+1 +By − b∥2H

∣∣ y ∈ Y
}
,

λk+1 = λk −H(Axk+1 +Byk+1 − b),

(1.8)

where the x-subproblem is regularized by a proximal term and G ∈ Rn×n could be an
arbitrary symmetric positive semidefinite matrix. Because of its ability to take advantage of
the properties of θ1 effectively, the scheme (1.8) is very efficient for solving a broad spectrum
of applications (see, e.g., [23, 31, 33, 35, 37]) and it has received wide attention from various
areas. Note in (1.8) we allow the matrix G to be only positive semi-definite and accordingly
∥x∥2G := xTGx. This also explains “∈” rather than “=” in (1.8), since the uniqueness of
the x- or y-subproblem in (1.8) is not guaranteed. In fact, the scheme (1.8) is a special case
of the proximal ADMM (PADMM) in [19, 37] which suggests to regularize both ADMM’s
subproblems by proximal terms:

xk+1 ∈ argmin

{
θ1(x)− xTATλk +

1

2
∥Ax+Byk − b∥2H + 1

2∥x− xk∥2G
∣∣ x ∈ X

}
,

yk+1 ∈ argmin

{
θ2(y)− yTBTλk +

1

2
∥Axk+1 +By − b∥2H + 1

2∥y − yk∥2S
∣∣ y ∈ Y

}
,

λk+1 = λk −H(Axk+1 +Byk+1 − b),

(1.9)
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where S ∈ Rp×p is also an arbitrary symmetric positive semidefinite matrix.
Because of the obvious advantages of the GADMM (1.3) and the PADMM (1.9), we are

inspired to consider combining these two ideas for ADMM and thus propose the following
generalized proximal ADMM (GPADMM for short):

xk+1 ∈ argmin

{
θ1(x)− xTATλk +

1

2
∥Ax+Byk − b∥2H + 1

2
∥x− xk∥2G

∣∣ x ∈ X
}
,

yk+1 ∈ argmin
{
θ2(y)− yTBTλk

+
1

2
∥αAxk+1 − (1− α)(Byk − b) +By − b∥2H + 1

2
∥y − yk∥2S

∣∣ y ∈ Y
}
,

λk+1 = λk −H[αAxk+1 − (1− α)(Byk − b) +Byk+1 − b],

(1.10)

with α ∈ (0, 2). Again, the scheme (1.10) is a generic algorithmic framework applicable
to the abstract model (1.1). Clearly, ADMM (1.2), GADMM (1.3), PADMM (1.9) and
the split inexact Uzawa method (1.6) are all special cases of this scheme. For special cases
of (1.1) with simple functions, the GPADMM scheme (1.10) could be used directly as its
subproblems might be solved easily. On the other hand, for general cases of (1.1) with
generic functions, the x- and y-subproblems in (1.10) must be solved iteratively; we thus
can only implement the following inexact version of the GPADMM scheme:

xk+1 ≈ argmin

{
θ1(x)− xTATλk +

1

2
∥Ax+Byk − b∥2H + 1

2
∥x− xk∥2G

∣∣ x ∈ X
}
,

yk+1 ≈ argmin
{
θ2(y)− yTBTλk

+
1

2
∥αAxk+1 − (1− α)(Byk − b) +By − b∥2H +

1

2
∥y − yk∥2S

∣∣ y ∈ Y
}
,

λk+1 = λk −H
[
αAxk+1 − (1− α)(Byk − b) +Byk+1 − b

]
.

(1.11)

When some standard inexact criteria in the literature are employed for its subproblems, the
scheme (1.11) can be solidified as some implementable algorithms. We refer to [28] and [19]
for some inexact versions of the original ADMM (1.2) and the PADMM (1.9), respectively.
As we shall show later, the inexact ADMM in [28] can be subsumed by the general inexact
GPADMM scheme (1.11).

In this paper, we investigate the convergence for some concrete algorithms derived from
the inexact GPADMM scheme (1.11) under different inexactness criteria in a uniform way. In
addition to proving the global convergence, we establish the worst-case O(1/t) convergence
rate in both ergodic and nonergodic senses for these ADMM type algorithms. Recall that the
ergodic and nonergodic worst-case O(1/t) convergence rates of the original ADMM (1.2) and
the split inexact Uzawa method (1.6) have been established simultaneously in [20] and [21],
respectively; and the same convergence rate of the GADMM (1.3) has been proved in [12].
This work represents a more general and comprehensive analysis than the existing work
in [12,20,21].

The rest of this paper is organized as follows. In Section 2, we recall some definitions and
properties which are useful for further analysis. In Section 3, some preliminary assertions
are proved by simple algebra. Then, we propose two concrete algorithms based on the
inexact GPADMM scheme (1.11) under different inexactness criteria in Sections 4-5. For
each algorithm, we prove its global convergence and establish its worst-case convergence rate
in both ergodic and nonergodic senses. Finally, we make some conclusions in Section 6.

2 Preliminaries

In this section, we recall some basic definitions and properties which will be frequently used
in our later analysis. Some useful notations are also summarized.
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2.1 Variational Reformulation of (1.1)

As the work [20, 21], our analysis requires a variational reformulation of (1.1). Thus we
first state it. More specifically, by attaching a Lagrange multiplier λ ∈ Rm to the linear
constraints, solving (1.1) is equivalent to the variational inequality problem: Finding w∗ ∈
W := X × Y ×Rm such that

θ(u)− θ(u∗) + (w − w∗)TQ(w∗) ≥ 0, ∀w ∈ W, (2.1)

where

u :=

(
x
y

)
, w :=

 x
y
λ

 , θ(u) := θ1(x)+θ2(y) and Q(w) :=

 −ATλ
−BTλ

Ax+By − b

 .

(2.2)
We denote by VI(W, Q, θ) the variational inequality problem (2.1)-(2.2). Clearly, the map-
ping Q(w) defined in (2.2) is affine with a skew-symmetric matrix; it is thus monotone.
Furthermore, under our nonempty assumption onto S∗, the solution set of VI(W, Q, θ) (de-
noted by W∗) is also nonempty.

The following theorem originates from [11], and it provides us a very useful characteriza-
tion on W∗ for establishing worst-case O(1/t) convergence rates for ADMM type algorithms.
Since the proof can be found in [11,20], it is omitted.

Theorem 2.1. The solution set of VI(W, Q, θ) is convex and it can be characterized as

W∗ :=
∩

w∈W
{w̄ ∈ W | θ(u)− θ(ū) + (w − w̄)TQ(w) ≥ 0}.

Based on Theorem 2.1, w̄ ∈ W can be regarded as an ε-approximation solution of
VI(W, Q, θ) if it satisfies

sup
w∈D

{
θ(ū)− θ(u) + (w̄ − w)TQ(w)

}
≤ ε,

where D ⊆ W is some compact set. As Definition 1 in [27], we can take

D = BW(w̄) :=
{
w ∈ W | ∥w − w̄∥ ≤ 1

}
.

In our later analysis, we shall establish ergodic worst-case O(1/t) convergence rates for some
algorithms based on the inexact GPADMM (1.11) in the sense that after t iterations of such
an algorithm, we can find w̄ ∈ W such that

θ(ū)− θ(u) + (w̄ − w)TQ(w) ≤ ε, ∀w ∈ BW(w̄),

with ε = O(1/t).

2.2 Some Notations

Let Ω be a nonempty closed and convex subset of Rl, N ∈ Rl×l be a positive definite matrix,
and the N -norm of a vector v ∈ Rl be denoted by ∥v∥N =

√
vTNv.

Let α ∈ (0, 2), G ∈ Rn×n, S ∈ Rp×p and H ∈ Rm×m be positive definite matrices.
Throughout we define the matrices Pα and Mα as

Pα :=

 G 0 0
0 S 0
0 0 (2− α)H−1

 and Mα :=

 G 0 0
0 1

αB
THB + S 1−α

α BT

0 1−α
α B 1

αH
−1

 .

(2.3)
Both Pα and Mα are positive definite under our assumption.
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3 Some Preliminary Assertions

In this section, we prove some simple assertions which will be used later when we analyze
the convergence for the inexact GPADMM (1.11) under different circumstances. To prove
these assertions, only preliminary algebra is needed. Although we attach the superscript k
to the letters, the proof of the following lemma is irrelevant to the specific scheme (1.11).

Lemma 3.1. Let α ∈ (0, 2), x̄k ∈ Rn, yk, ȳk ∈ Rp and λk ∈ Rm. If we define λ̄k and λ̂k+1

as

λ̄k := λk−H(Ax̄k+Byk−b) and λ̂k+1 := λk−H
{
[αAx̄k − (1− α)(Byk − b)] +Bȳk − b

}
,

respectively; then for any y ∈ Rp and λ ∈ Rm, we have

2(λ− λ̄k)T (Ax̄k +Bȳk − b) +
2

α
(y − ȳk)TBTHB(yk − ȳk)

=
1

α
(∥y − ȳk∥2BTHB − ∥y − yk∥2BTHB) +

1

α
(∥λ− λ̂k+1∥2H−1 − ∥λ− λk∥2H−1)

+ (2− α)∥λk − λ̄k∥2H−1 +
2(1− α)

α
(λ− λk)T (Byk −Bȳk).

Proof. Using the definition of λ̂k+1, we have

λ̂k+1 = λk −H
{
[αAx̄k − (1− α)(Byk − b)] +Bȳk − b

}
= λk −H

[
α(Ax̄k +Bȳk − b) + (α− 1)(Byk −Bȳk)

]
,

from which we get

Ax̄k +Bȳk − b =
1

α
H−1(λk − λ̂k+1) +

1− α

α
(Byk −Bȳk).

Then, then we obtain

2(λ− λ̄k)T (Ax̄k +Bȳk − b)

=
2

α
(λ− λ̄k)TH−1(λk − λ̂k+1) +

2(1− α)

α
(λ− λ̄k)T (Byk −Bȳk)

=
2

α
(λ− λ̂k+1)TH−1(λk − λ̂k+1) +

2

α
(λ̂k+1 − λ̄k)TH−1(λk − λ̂k+1)

+
2(1− α)

α
(λk − λ̄k)T (Byk −Bȳk) +

2(1− α)

α
(λ− λk)T (Byk −Bȳk). (3.1)

For the first item in (3.1), we have the following identity

2

α
(λ− λ̂k+1)TH−1(λk− λ̂k+1) =

1

α
∥λ− λ̂k+1∥2H−1 −

1

α
∥λ−λk∥2H−1 +

1

α
∥λk− λ̂k+1∥2H−1 .

(3.2)

Then, it follows from the definitions of λ̂k+1 and λ̄k that

λ̂k+1 = λk −H
[
α(Ax̄k +Byk − b) + (Bȳk −Byk)

]
= λk − α(λk − λ̄k) +H(Byk −Bȳk).

Therefore, we obtain

λ̂k+1 − λ̄k = (1− α)(λk − λ̄k) +H(Byk −Bȳk) (3.3)
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and
λk − λ̂k+1 = α(λk − λ̄k) +H(Bȳk −Byk). (3.4)

Using the above equations and by simple manipulations, we get

2

α
(λ̂k+1 − λ̄k)TH−1(λk − λ̂k+1) +

2(1− α)

α
(λk − λ̄k)T (Byk −Bȳk)

=
2

α
[(1− α)(λk − λ̄k) +H(Byk −Bȳk)]TH−1[α(λk − λ̄k) +H(Bȳk −Byk)]

+
2(1− α)

α
(λk − λ̄k)T (Byk −Bȳk)

= 2(1− α)∥λk − λ̄k∥2H−1 −
2

α
∥yk − ȳk∥2BTHB + 2(λk − λ̄k)T (Byk −Bȳk). (3.5)

It follows from (3.4) that

∥λk − λ̂k+1∥2H−1 = α2∥λk − λ̄k∥2H−1 + ∥yk − ȳk∥2BTHB − 2α(λk − λ̄k)T (Byk −Bȳk),

and thus

2(λk − λ̄k)T (Byk −Bȳk) = α∥λk − λ̄k∥2H−1 +
1

α
∥yk − ȳk∥2BTHB − 1

α
∥λk − λ̂k+1∥2H−1 .

From the above equality and (3.5), we obtain

2

α
(λ̂k+1 − λ̄k)TH−1(λk − λ̂k+1) +

2(1− α)

α
(λk − λ̄k)T (Byk −Bȳk)

= (2− α)∥λk − λ̄k∥2H−1 −
1

α
∥yk − ȳk∥2BTHB − 1

α
∥λk − λ̂k+1∥2H−1 .

Substituting this and (3.2) into (3.1), we have

2(λ− λ̄k)T (Ax̄k +Bȳk − b)

=
1

α
(∥λ− λ̂k+1∥2H−1 − ∥λ− λk∥2H−1) + (2− α)∥λk − λ̄k∥2H−1 −

1

α
∥yk − ȳk∥2BTHB

+
2(1− α)

α
(λ− λk)T (Byk −Bȳk).

The following is an identity

2

α
(y − ȳk)TBTHB(yk − ȳk) =

1

α
∥y − ȳk∥2BTHB − 1

α
∥y − yk∥2BTHB +

1

α
∥yk − ȳk∥2BTHB .

Adding the above two equalities, the assertion is proved. 2

Next, we show an assertion which will be used for proving the convergence of the inexact
GPADMM (1.11) to be proposed.

Theorem 3.2. Let c0 and α ∈ (0, 2) be positive constants; {ζk} and {ηk} be nonnegative
sequences with

∑∞
k=0 ζk < +∞ and

∑∞
k=0 ηk < +∞; and Pα and Mα be defined in (2.3).

For any w∗ ∈ W∗, if there are two sequences {wk} and {w̄k} satisfying

∥wk+1 − w∗∥2Mα
≤ (1 + ζk)∥wk − w∗∥2Mα

+ ηk − c0∥wk − w̄k∥2Pα
, ∀k ≥ 0, (3.6)

then {wk} is bounded and
lim
k→∞

∥wk − w̄k∥Pα
= 0. (3.7)
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Furthermore, if the mapping Q is continuous and

lim inf
k→∞

{
θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k)

}
≥ 0, ∀w ∈ W, (3.8)

then the sequence {wk} converges to a point in W∗.

Proof. From
∑∞

k=0 ζk < +∞ and ζk ≥ 0, it follows that
∏∞

k=0(1 + ζk) < +∞. We denote

Cs :=

∞∑
k=0

ζk, Cp :=

∞∏
k=0

(1 + ζk) and Cη :=

∞∑
k=0

ηk.

Let w∗ ∈ W∗. From (3.6) we get

∥wk+1 − w∗∥2Mα
≤ (1 + ζk)∥wk − w∗∥2Mα

+ ηk

≤ (1 + ζk)
[
(1 + ζk−1)∥wk−1 − w∗∥2Mα

+ ηk−1

]
+ ηk

≤ (1 + ζk)(1 + ζk−1)
(
∥wk−1 − w∗∥2Mα

+ ηk−1 + ηk
)
.

Thus for any l ≤ k, we have

∥wk+1 − w∗∥2Mα
≤

k∏
i=l

(1 + ζi)
(
∥wl − w∗∥2Mα

+

k∑
i=l

ηi

)
≤ Cp

(
∥wl − w∗∥2Mα

+

∞∑
i=l

ηi

)
(3.9)

≤ Cp∥wl − w∗∥2Mα
+ CpCη.

Therefore, there exists a constant C > 0 such that

∥wk − w∗∥2Mα
≤ C, ∀k ≥ 0. (3.10)

Then, the sequence {wk} is bounded. Combining (3.6) and (3.10), we have

c0

∞∑
k=0

∥wk − w̄k∥2Pα
≤ ∥w0 − w∗∥2Mα

+

∞∑
k=0

ζk∥wk − w∗∥2Mα
+

∞∑
k=0

ηk

≤ C + C

∞∑
k=0

ζk + Cη

≤ (1 + Cs)C + Cη.

It follows that

lim
k→∞

∥wk − w̄k∥Pα
= 0.

Thus the first assertion (3.7) is proved.
Since {wk} is bounded and limk→∞ ∥wk−w̄k∥Pα

= 0, we have that {w̄k} is also bounded
and then it has at least one cluster point. Let w∞ be a cluster point of {w̄k} and the
subsequences {w̄kj} and {wkj} both converge to w∞. It follows from (3.8) that

lim inf
j→∞

{
θ(u)− θ(ūkj ) + (w − w̄kj )TQ(w̄kj )

}
≥ 0, ∀w ∈ W,
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and consequently

θ(u)− θ(u∞) + (w − w∞)TQ(w∞) ≥ 0, ∀w ∈ W.

This means that w∞ is a solution of VI(W, Q, θ). Note that inequality (3.9) is true for all
solution points of VI(W, Q, θ), hence we have

∥wk+1 − w∞∥2Mα
≤ Cp(∥wl − w∞∥2Mα

+

∞∑
i=l

ηi), ∀k ≥ 0,∀l ≤ k. (3.11)

Since wkj → w∞ (j → ∞) and
∑∞

i=0 ηi < +∞, for any given ε > 0, there exists a j0 > 0
such that

∥wkj0 − w∞∥2Mα
≤ ε2

2Cp
and

∞∑
i=kj0

ηi ≤
ε2

2Cp
. (3.12)

Therefore, for any k ≥ kj0 , it follows from (3.11) and (3.12) that

∥wk+1 − w∞∥Mα ≤

√√√√Cp(∥wkj0 − w∞∥2Mα
+

∞∑
i=kj0

ηi) ≤ ε.

This implies that the sequence {wk} converges to a point w∞ in W∗. 2

4 An Implementable Inexact GPADMM with Absolute Error Con-
trol

In the following sections, we embed the inexactness criteria proposed in [28] into the inexact
version of GPADMM (1.11) and propose some implementable algorithms based on the in-
exact GPADMM (1.11). The algorithmic framework of the new algorithms with the criteria
in [28] can be described as follows: Find wk+1 = (xk+1, yk+1, λk+1) ∈ W, ξkx ∈ Rn, and
ξky ∈ Rp such that for any w = (x, y) ∈ X × Y we have

θ1(x)−θ1(x
k+1)+(x−xk+1)T {−AT [λk−H(Axk+1+Byk−b)]+G(xk+1−xk)+ξkx} ≥ 0, (4.1)

θ2(y)− θ2(y
k+1) + (y − yk+1)T {−BT [λk −H(αAxk+1

− (1− α)(Byk − b) +Byk+1 − b)] + S(yk+1 − yk) + ξky} ≥ 0,
(4.2)

λk+1 := λk −H[αAxk+1 − (1− α)(Byk − b) +Byk+1 − b]. (4.3)

In (4.1)-(4.3), the terms ξkx and ξky are error terms for solving the respective x- and y-
subproblems; and their specific choices are referred to [28]. In the implementation, we can
control either the absolute or the relative errors of these error terms, and it leads to two
concrete algorithms under the framework (4.1)-(4.3). This section focuses on the case where
the absolute error of those error terms are controlled.

4.1 Algorithm

Algorithm 1: An implementable inexact GPADMM with absolute error control

Step 0. Let ε > 0; α ∈ (0, 2); w0 := (x0, y0, λ0) ∈ X × Y × Rm, G, S and H be positive
definite matrices and {νk} be a nonnegative sequence satisfying

∑∞
k=0 νk < +∞. Set k := 0.
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Step 1. Find xk+1 ∈ X and ξkx ∈ Rn such that

θ1(x)−θ1(x
k+1)+(x−xk+1)T

{
−AT [λk−H(Axk+1+Byk−b)]+G(xk+1−xk)+ξkx

}
≥ 0,

∀x ∈ X , (4.4)

where ξkx satisfies the inexactness criterion ∥ξkx∥G−1 ≤ νk.
Step 2. Find yk+1 ∈ Y and ξky ∈ Rp such that

θ2(y)− θ2(y
k+1) + (y − yk+1)T

{
−BT

[
λk −H

(
αAxk+1 − (1− α)(Byk − b) +Byk+1 − b

)]
+ S(yk+1 − yk) + ξky

}
≥ 0, ∀y ∈ Y, (4.5)

where ξky satisfies the inexactness criterion ∥ξky∥S−1 ≤ νk.

Step 3. Update λk+1 via

λk+1 := λk −H
[
αAxk+1 − (1− α)(Byk − b) +Byk+1 − b

]
. (4.6)

Step 4. Set wk+1 := (xk+1, yk+1, λk+1). If ∥wk+1 −wk∥ ≤ ε, stop; otherwise set k = k + 1
and goto Step 1.

Remark 4.1. If α = 1, Algorithm 1 is just the inexact alternating direction method with
Criterion 1 in [28].

4.2 Convergence

In this subsection, we prove the convergence of Algorithm 1. First we define

w̄k :=

 x̄k

ȳk

λ̄k

 =

 xk+1

yk+1

λk −H(Axk+1 +Byk − b)

 (4.7)

to simplify our notation in the following analysis.
We now prove a useful lemma which will be used in Sections 4 and 5.

Lemma 4.2. For given wk, let wk+1 be generated by (4.1)-(4.3), and w̄k be defined by (4.7).
Then for any w = (x, y, λ) ∈ W, we have

θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k) + (x− x̄k)T ξkx + (y − ȳk)T ξky

≥ 1

2
(∥wk+1 − w∥2Mα

− ∥wk − w∥2Mα
) +

1

2
∥wk − w̄k∥2Pα

, (4.8)

where Pα and Mα are defined by (2.3).

Proof. With the notation w̄k given in (4.7), the VI (4.4) can be written as

θ1(x)− θ1(x̄
k) + (x− x̄k)T (−AT λ̄k) + (x− x̄k)T ξkx

≥ (xk+1 − x)TG(xk+1 − xk)

=
1

2
(∥xk+1 − x∥2G − ∥xk − x∥2G) +

1

2
∥xk − x̄k∥2G, ∀x ∈ X . (4.9)
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Analogously, from (4.5) and (4.6) we get

θ2(y)−θ2(y
k+1)+(y−yk+1)T [−BTλk+1+S(yk+1−yk)]+(y−ȳk)T ξky ≥ 0, ∀y ∈ Y. (4.10)

Using the notation w̄k given in (4.7), λk+1 in (4.6) can be written as

λk+1 = λk −H[α(Axk+1 +Byk − b) +B(yk+1 − yk)]

= λk − α(λk − λ̄k)−HB(ȳk − yk)

= λ̄k − (1− α)(λ̄k − λk)−HB(ȳk − yk). (4.11)

Substituting this into (4.10) and using the notation w̄k, for any y ∈ Y we obtain

θ2(y)− θ2(ȳ
k) + (y − ȳk)T (−BT λ̄k) + (y − ȳk)T ξky

≥ (y − yk+1)TS(yk − yk+1) + (y − ȳk)TBT [HB(yk − ȳk) + (1− α)(λk − λ̄k)]

=
1

2
(∥yk+1 − y∥2S − ∥yk − y∥2S) +

1

2
∥yk − ȳk∥2S + (y − ȳk)TBTHB(yk − ȳk)

+ (1− α)(y − ȳk)TBT (λk − λ̄k). (4.12)

Setting λ̂k+1 = λk+1 in Lemma 3.1 and using ȳk = yk+1, we have

(λ− λ̄k)T (Ax̄k +Bȳk − b)

=
1

α
(y − ȳk)TBTHB(ȳk − yk) +

1

2α
(∥yk+1 − y∥2BTHB − ∥yk − y∥2BTHB)

+
1

2α
(∥λk+1 − λ∥2H−1 − ∥λk − λ∥2H−1)

+
2− α

2
∥λk − λ̄k∥2H−1 +

1− α

α
(yk − ȳk)TBT (λ− λk). (4.13)

Combining (4.9), (4.12) and (4.13) together, we get

θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k) + (x− x̄k)T ξkx + (y − ȳk)T ξky

≥ 1

2

[(
∥xk+1 − x∥2G − ∥xk − x∥2G

)
+
(
∥yk+1 − y∥21

αBTHB+S − ∥yk − y∥21
αBTHB+S

)
+
(
∥λk+1 − λ∥21

αH−1 − ∥λk − λ∥21
αH−1

)]
+

1− α

α

[
(y − ȳk)TBTHB(ȳk − yk)

+ α(y − ȳk)TBT (λk − λ̄k) + (yk − ȳk)TBT (λ− λk)
]

+
1

2

[
∥xk − x̄k∥2G + ∥yk − ȳk∥2S + (2− α)∥λk − λ̄k∥2H−1

]
. (4.14)

From (4.11) and by simple manipulations, we obtain

(y − ȳk)TBTHB(ȳk − yk) + α(y − ȳk)TBT (λk − λ̄k) + (yk − ȳk)BT (λ− λk)

= (y − ȳk)TBTHB(ȳk − yk) + (y − ȳk)TBT [λ− αλ̄k − (1− α)λk]− (y − yk)TBT (λ− λk)

= (y − ȳk)TBT [λ− λ̄k + (1− α)(λ̄k − λk) +HB(ȳk − yk)]− (y − yk)TBT (λ− λk)

= (y − ȳk)TBT (λ− λk+1)− (y − yk)TBT (λ− λk).

Substituting the above inequality into (4.14) and using the notation Pα and Mα, we get
(4.8) immediately. The proof is completed.
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Let us prove two more lemmas before proving the convergence of Algorithm 1.

Lemma 4.3. Let the sequence {wk} be generated by Algorithm 1, the accompanying sequence
{w̄k} be defined by (4.7). Then for any w = (x, y, λ) ∈ W and k ≥ 0, we have

θ(u)−θ(ūk)+(w−w̄k)TQ(w̄k) ≥ 1− νk
2

∥wk+1−w∥2Mα
− 1

2
∥wk−w∥2Mα

+
1

2
∥wk−w̄k∥2Pα

−νk,

(4.15)
where Pα and Mα are defined by (2.3).

Proof. It follows from Lemma 4.2 that

θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k) + (x− x̄k)T ξkx + (y − ȳk)T ξky

≥ 1

2
(∥wk+1 − w∥2Mα

− ∥wk − w∥2Mα
) +

1

2
∥wk − w̄k∥2Pα

.

Note that x̄k = xk+1. Using Cauchy-Schwarz Inequality and the inexactness criterion
∥ξkx∥G−1 ≤ νk, we obtain

(x̄k −x)T ξkx ≥ −νk
2
∥x̄k −x∥2G− 1

2νk
∥ξkx∥2G−1 ≥ −νk

2
∥xk+1−x∥2G− νk

2
, ∀x ∈ X . (4.16)

Similarly, we have

(ȳk − y)T ξky ≥ −νk
2
∥yk+1 − y∥2S − νk

2
, ∀y ∈ Y. (4.17)

Summing the above three inequalities and using the notation Mα, we get

θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k)

≥ 1

2
∥wk+1 − w∥2Mα

− νk
2
(∥xk+1 − x∥2G + ∥yk+1 − y∥2S)−

1

2
∥wk − w∥2Mα

+
1

2
∥wk − w̄k∥2Pα

− νk

≥ 1− νk
2

∥wk+1 − w∥2Mα

−1

2
∥wk − w∥2Mα

+
1

2
∥wk − w̄k∥2Pα

− νk.

The proof is completed.

The following result shows the contraction of the sequence generated by Algorithm 1,
based on which the convergence of Algorithm 1 can be established easily.

Lemma 4.4. Let the sequence {wk} be generated by Algorithm 1. Then for any w∗ ∈ W∗,
we have

∥wk+1 − w∗∥2Mα
≤ (1 + 2νk)∥wk − w∗∥2Mα

+ (2νk + 4ν2k)− ∥wk − w̄k∥2Pα
,

where Pα and Mα are defined by (2.3).

Proof. Setting w = w∗ in (4.15), we get

2
[
θ(u∗)− θ(ūk) + (w∗ − w̄k)TQ(w̄k)

]
≥ (1− νk)∥wk+1 − w∗∥2Mα

− ∥wk − w∗∥2Mα
+ ∥wk − w̄k∥2Pα

− 2νk

≥ (1− νk)∥wk+1 − w∗∥2Mα
− ∥wk − w∗∥2Mα

+ (1− νk)∥wk − w̄k∥2Pα
− 2νk.
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On the other hand, since Q is monotone and w∗ ∈ W∗, we have

0 ≥ θ(u∗)− θ(ūk) + (w∗ − w̄k)TQ(w∗) ≥ θ(u∗)− θ(ūk) + (w∗ − w̄k)TQ(w̄k).

Recall that
∑∞

k=0 νk < +∞. Without loss of generality (say, 0 < νk < 1/2), we assume that

1

1− νk
≤ 1 + 2νk.

It follows from the above three inequalities that

∥wk+1 − w∗∥2Mα
≤ 1

1− νk
∥wk − w∗∥2Mα

+
2νk

1− νk
− ∥wk − w̄k∥2Pα

≤ (1 + 2νk)∥wk − w∗∥2Mα
+ 2νk(1 + 2νk)− ∥wk − w̄k∥2Pα

.

The proof is completed.

Now we are ready to prove the global convergence for Algorithm 1.

Theorem 4.5. The sequence {wk} generated by Algorithm 1 converges to some w∞ which
is a solution of VI(W, Q, θ).

Proof. From
∑∞

k=0 νk < +∞ and νk ≥ 0, it follows that

∞∑
k=0

(2νk + 4ν2k) < +∞.

Setting ζk = 2νk, ηk = 2νk+4ν2k , c0 = 1 in (3.6), from Lemma 4.4 and Theorem 3.2 we have

lim
k→∞

∥wk − w̄k∥Pα
= 0.

And thus we get

lim
k→∞

∥wk − w̄k∥Mα = 0.

Then it follows from (4.6), (4.7) and (3.3) that

lim
k→∞

∥wk+1 − w̄k∥Mα
= lim

k→∞

1

α
∥λk+1 − λ̄k∥H−1

= lim
k→∞

1

α
∥(1− α)(λk − λ̄k) +H(Byk −Bȳk)∥H−1

= 0.

Note that limk→∞ νk = 0. From (4.15) and the above three formulae, we get

lim inf
k→∞

{
θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k)

}
≥ 0, ∀w ∈ W.

The convergence of Algorithm 1 is then obtained immediately from Theorem 3.2.
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4.3 Ergodic Worst-case O(1/t) Convergence Rate

Now, we establish a worst-case O(1/t) convergence rate in ergodic sense for Algorithm 1.

Theorem 4.6. For any integer t > 0, there is a w̄t ∈ W which is a convex combination of
the iterates w̄0, w̄1, · · · , w̄t defined by (4.7). Then for any w ∈ W, we have

θ(ūt)−θ(u)+(w̄t−w)TQ(w) ≤ 1

2(t+ 1)

[
∥w−w0∥2Mα

+

t∑
k=0

νk(∥w−wk+1∥2Mα
+2)

]
, (4.18)

where w̄t := (
∑t

k=0 w̄
k)/(t+ 1) and Mα is defined by (2.3).

Proof. From (4.15), we have

θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k) +
1

2
∥w − wk∥2Mα

≥ 1− νk
2

∥w − wk+1∥2Mα
− νk, ∀w ∈ W.

Since Q is monotone, we have

(w − w̄k)TQ(w) ≥ (w − w̄k)TQ(w̄k), ∀w ∈ W.

It follows from the above two inequalities that

θ(u)−θ(ūk)+(w−w̄k)TQ(w)+
1

2
∥w−wk∥2Mα

≥ 1− νk
2

∥w−wk+1∥2Mα
−νk, ∀w ∈ W. (4.19)

Summing the inequality (4.19) over k = 0, 1, · · · , t, we obtain

(t+ 1)θ(u)−
t∑

k=0

θ(ūk) +
[
(t+ 1)w − (

t∑
k=0

w̄k)
]T

Q(w) +
1

2
∥w − w0∥2Mα

≥ 1

2
∥w − wt+1∥2Mα

− 1

2

t∑
k=0

νk(∥w − wk+1∥2Mα
+ 2)

≥ −1

2

t∑
k=0

νk(∥w − wk+1∥2Mα
+ 2), ∀w ∈ W.

Since
∑t

k=0 1/(t + 1) = 1, w̄t is a convex combination of w̄0, w̄1, · · · , w̄t and thus w̄t ∈ W.
Using the notation of w̄t, we derive

1

t+ 1

t∑
k=0

θ(ūk)− θ(u) + (w̄t − w)TQ(w)

≤ 1

2(t+ 1)

[
∥w − w0∥2Mα

+

t∑
k=0

νk(∥w − wk+1∥2Mα
+ 2)

]
, ∀w ∈ W. (4.20)

Since θ(u) is convex and

ūt :=
1

t+ 1

t∑
k=1

ūk,

we have that

θ(ūt) ≤
1

t+ 1

t∑
k=0

θ(ūk).

Substituting it in (4.20), the assertion (4.18) follows immediately.
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We first notice that since the sequence {wk} generated by Algorithm 1 converges to
the solution, it is bounded. According to (4.2), the sequence {w̄k} defined by (4.7) is also
bounded. Therefore, there exists a constant D > 0 such that

∥wk∥Mα ≤ D and ∥w̄k∥Mα ≤ D, ∀k ≥ 0.

Recall that w̄t is the average of {w̄0, w̄1, · · · , w̄t}. Thus, we have ∥w̄t∥Mα
≤ D. Denote

E1 :=

∞∑
k=0

νk < +∞. (4.21)

For any w ∈ BW(w̄t) :=
{
w ∈ W | ∥w − w̄t∥Mα

≤ 1
}
, we get

θ(ūt)− θ(u) + (w̄t − w)TQ(w)

≤ 1

2(t+ 1)

[
∥w − w0∥2Mα

+

t∑
k=0

νk
(
∥w − wk+1∥2Mα

+ 2
)]

≤ 1

2(t+ 1)

{(
∥w − w̄t∥Mα + ∥w̄t − w0∥Mα

)2
+

t∑
k=0

νk

[(
∥w − w̄t∥Mα

+ ∥w̄t − wk+1∥Mα

)2
+ 2

]}
≤ 1

2(t+ 1)

{(
∥w − w̄t∥Mα

+ ∥w̄t∥Mα
+ ∥w0∥Mα

)2
+

t∑
k=0

νk

[(
∥w − w̄t∥Mα + ∥w̄t∥Mα + ∥wk+1∥Mα

)2
+ 2

]}
≤ 1

2(t+ 1)

{
(1 + 2D)2 + E1

[(
1 + 2D

)2
+ 2

]}
=

1

2(t+ 1)

[
(1 + 2D)2(1 + E1) + 2E1

]
.

Thus, for any given ε > 0, after most t := ⌈ (1+2D)2(1+E1)+2E1

2ε − 1⌉ iterations, we have

θ(ūt)− θ(u) + (w̄t − w)TQ(w) ≤ ε, ∀w ∈ BW(w̄t),

which means w̄t is an approximate solution of VI(W, Q, θ) with an accuracy of O(1/t). That
is, a worst-case O(1/t) convergence rate of Algorithm 1 is established in ergodic sense.

4.4 Nonergodic Worst-case O(1/t) Convergence Rate

In this subsection, we establish a worst-case O(1/t) convergence rate in nonergodic sense for
Algorithm 1.

Recall that the sequence {wk} generated by Algorithm 1 is bounded. Thus, for any given
w∗ ∈ W∗, there is a constant C̄w∗ > 0 such that for any k ≥ 0 we have

∥wk − w∗∥Mα ≤ C̄w∗ . (4.22)

Theorem 4.7. Let the sequence {wk} be generated by Algorithm 1, the accompanying se-
quence {w̄k} be defined by (4.7). Then, for any w∗ ∈ W∗ we have

min
i∈{0,··· ,k}

∥wi − w̄i∥2Pα
≤ 1

k + 1

[
∥w0 − w∗∥2Mα

+ (C̄2
w∗ + 2)E1

]
, (4.23)
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where Pα and Mα are defined by (2.3).

Proof. Setting w = w∗ in (4.15), for any i ≥ 0 we get

2
[
θ(u∗)− θ(ūi) + (w∗ − w̄i)TQ(w̄i)

]
≥ (1− νi)∥wi+1 − w∗∥2Mα

− ∥wi − w∗∥2Mα
+ ∥wi − w̄i∥2Pα

− 2νi.

On the other hand, since Q is monotone, w̄i ∈ W, and w∗ ∈ W∗, we have

0 ≥ θ(u∗)− θ(ūi) + (w∗ − w̄i)TQ(w∗) ≥ θ(u∗)− θ(ūi) + (w∗ − w̄i)TQ(w̄i).

It follows from the above two inequalities that

∥wi − w̄i∥2Pα
≤ ∥wi − w∗∥2Mα

− (1− νi)∥wi+1 − w∗∥2Mα
+ 2νi.

Summing the above inequality over i = 0, 1, · · · , k and using (4.22) and (4.21), we obtain

k∑
i=0

∥wi−w̄i∥2Pα
≤ ∥w0−w∗∥2Mα

+

k∑
i=0

νi
(
∥wi+1 − w∗∥2Mα

+ 2
)
≤ ∥w0−w∗∥2Mα

+(C̄2
w∗+2)E1.

The assertion (4.23) follows from the above inequality immediately.

If ∥wk − w̄k∥Pα = 0, from (4.4), (4.5) and (4.7) we have

xk ∈ X , θ1(x)− θ1(x
k) + (x− xk)T (−ATλk) ≥ −(x− xk)T ξkx , ∀x ∈ X ,

yk ∈ Y, θ2(y)− θ2(y
k) + (y − yk)T (−BTλk) ≥ −(y − yk)T ξky , ∀y ∈ Y,

Axk +Byk − b = 0.

Combining the above three formulae together and using the inexactness criteria ∥ξkx∥G−1 ≤
νk and ∥ξky∥S−1 ≤ νk, we get

θ(u)− θ(uk) + (w − wk)TQ(wk) ≥ −(x− xk)T ξkx − (y − yk)T ξky

≥ −∥x− xk∥G∥ξkx∥G−1 − ∥y − yk∥S∥ξky∥S−1

≥ −νk
(
∥x− xk∥G + ∥y − yk∥S

)
≥ −νk∥w − wk∥Pα

≥ −νk, ∀w ∈ BW(wk),

where

BW(wk) :=
{
w ∈ W | ∥w − wk∥Pα

≤ 1
}
.

This means that wk ∈ W can be regarded as a νk-approximation solution of VI(W, Q, θ)
according to (2.1). Therefore, ∥wk− w̄k∥Pα

can be viewed as an error measurement in terms
of the distance to the solution set of VI(W, Q, θ) for the (k + 1)-th iteration of Algorithm
1. Hence, Theorem 4.7 shows a worst-case O(1/t) convergence rate in nonergodic sense for
Algorithm 1.
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5 An Implementable Inexact GPADMM with Relative Error Con-
trol

In Section 4, the absolute errors of the error terms ξkx and ξky are controlled by the summable
sequence {νk}. As in [28], we also investigate the case where the relative errors of the error
terms ξkx and ξky are controlled in this section. The control sequence {νk} can be also
required to be summable:

∑∞
k=0 νk < +∞. But in this section, we propose a more relaxable

requirement on {νk} in [28]:
∑∞

k=0 ν
2
k < +∞.

5.1 Algorithm

Algorithm 2: An implementable inexact GPADMM with relative error control

Step 0. Let ε > 0; α ∈ (0, 2); w0 := (x0, y0, λ0) ∈ X × Y × Rm; G, S and H be positive
definite matrices; and {νk} be a nonnegative sequence satisfying

∑∞
k=0 ν

2
k < +∞. Set k := 0.

Step 1. Find xk+1 ∈ X and ξkx ∈ Rn such that

θ1(x)−θ1(x
k+1)+(x−xk+1)T

{
−AT [λk−H(Axk+1+Byk−b)]+G(xk+1−xk)+ξkx

}
≥ 0,

∀x ∈ X , (5.1)

where ξkx satisfies the following inexactness criterion:

∥ξkx∥G−1 ≤ νk∥xk − xk+1∥G. (5.2)

Step 2. Find yk+1 ∈ Y and ξky ∈ Rp such that

θ2(y)− θ2(y
k+1) + (y − yk+1)T

{
−BT

[
λk −H

(
αAxk+1 − (1− α)(Byk − b) +Byk+1 − b

)]
+ S(yk+1 − yk) + ξky

}
≥ 0, ∀y ∈ Y, (5.3)

where ξky satisfies the following inexactness criterion:

∥ξky∥S−1 ≤ νk∥yk − yk+1∥S . (5.4)

Step 3. Update λk+1 via

λk+1 := λk −H[αAxk+1 − (1− α)(Byk − b) +Byk+1 − b]. (5.5)

Step 4. Set wk+1 := (xk+1, yk+1, λk+1). If ∥wk+1 −wk∥ ≤ ε, stop; otherwise set k = k + 1
and go to Step 1.

Remark 5.1. Algorithm 2 with α = 1 reduces to the inexact ADMM with Criterion 2
in [28].

5.2 Convergence

In this subsection, we prove the convergence of Algorithm 2. In addition, we define

w̄k :=

 x̄k

ȳk

λ̄k

 =

 xk+1

yk+1

λk −H(Axk+1 +Byk − b)

 (5.6)

to further alleviate the complication of notation.
Let us start the proof with a lemma.
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Lemma 5.2. Let the sequence {wk} be generated by Algorithm 2, the accompanying sequence
{w̄k} be defined by (5.6). Then for any w := (x, y, λ) ∈ W and k ≥ 0, we have

θ(u)− θ(ūk)+ (w− w̄k)TQ(w̄k) ≥ 1− 2ν2k
2

∥wk+1−w∥2Mα
− 1

2
∥wk −w∥2Mα

+
1

4
∥wk − w̄k∥2Pα

,

(5.7)
where Pα and Mα are defined by (2.3).

Proof. From Lemma 4.2, we have

θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k) + (x− x̄k)T ξkx + (y − ȳk)T ξky

≥ 1

2
(∥wk+1 − w∥2Mα

− ∥wk − w∥2Mα
) +

1

2
∥wk − w̄k∥2Pα

. (5.8)

It follows from (5.2) that
∥ξkx∥2G−1 ≤ ν2k∥xk − xk+1∥2G.

Note that x̄k = xk+1. Using Cauchy-Schwarz Inequality and the above inequality, we obtain

(x̄k−x)T ξkx ≥ −2ν2k
2

∥x̄k−x∥2G− 1

4ν2k
∥ξkx∥2G−1 ≥ −ν2k∥xk+1−x∥2G− 1

4
∥xk−x̄k∥2G, ∀x ∈ X .

Similarly, we have

(ȳk − y)T ξky ≥ −ν2k∥yk+1 − y∥2S − 1

4
∥yk − ȳk∥2S , ∀y ∈ Y.

Adding (5.8) and the above two inequalities, we get

θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k)

≥ 1

2
∥wk+1 − w∥2Mα

− ν2k(∥xk+1 − x∥2G + ∥yk+1 − y∥2S)

−1

2
∥wk − w∥2Mα

+
1

2
∥wk − w̄k∥2Pα

−1

4
(∥xk − x̄k∥2G + ∥yk − ȳk∥2S)

≥ 1− 2ν2k
2

∥wk+1 − w∥2Mα
− 1

2
∥wk − w∥2Mα

+
1

4
∥wk − w̄k∥2Pα

, ∀w ∈ W.

The proof is completed.

The following result shows the contraction of the sequence generated by Algorithm 2,
based on which the convergence of Algorithm 2 can be established easily.

Lemma 5.3. Let the sequence {wk} be generated by Algorithm 2. Then for any w∗ ∈ W∗,
we have

∥wk+1 − w∗∥2Mα
≤ (1 + 3ν2k)∥wk − w∗∥2Mα

− 1

2
∥wk − w̄k∥2Pα

,

where Pα and Mα are defined by (2.3).

Proof. Setting w = w∗ in (5.7), we get

2
[
θ(u∗)− θ(ūk) + (w∗ − w̄k)TQ(w̄k)

]
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≥ (1− 2ν2k)∥wk+1 − w∗∥2Mα
− ∥wk − w∗∥2Mα

+
1

2
∥wk − w̄k∥2Pα

≥ (1− 2ν2k)∥wk+1 − w∗∥2Mα
− ∥wk − w∗∥2Mα

+
1− 2ν2k

2
∥wk − w̄k∥2Pα

.

On the other hand, since Q is monotone and w∗ ∈ W∗, we have

0 ≥ θ(u∗)− θ(ūk) + (w∗ − w̄k)TQ(w∗) ≥ θ(u∗)− θ(ūk) + (w∗ − w̄k)TQ(w̄k).

Recall that
∑∞

k=0 ν
2
k < +∞. Without loss of generality (say, 0 < νk <

√
6/6), we assume

that
1

1− 2ν2k
≤ 1 + 3ν2k .

It follows from the above three inequalities that

∥wk+1 − w∗∥2Mα
≤ 1

1− 2ν2k
∥wk − w∗∥2Mα

− 1

2
∥wk − w̄k∥2Pα

≤ (1 + 3ν2k)∥wk − w∗∥2Mα
− 1

2
∥wk − w̄k∥2Pα

.

The proof is completed.

Theorem 5.4. The sequence {wk} generated by Algorithm 2 converges to some w∞ which
is a solution of VI(W, Q, θ).

Proof. Setting ζk = 3ν2k , ηk ≡ 0, c0 = 1/2 in (3.6), from Lemma 5.3 and Theorem 3.2 we
have

lim
k→∞

∥wk − w̄k∥Pα
= 0.

Then it follows from (5.5), (5.6) and (3.3) that

lim
k→∞

∥wk+1 − w̄k∥Mα
= lim

k→∞

1

α
∥λk+1 − λ̄k∥H−1

= lim
k→∞

1

α
∥(1− α)(λk − λ̄k) +H(Byk −Bȳk)∥H−1

= 0.

From (5.7) and the above two formulae, we get

lim inf
k→∞

{
θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k)

}
≥ 0, ∀w ∈ W.

The convergence of Algorithm 2 is then obtained immediately from Theorem 3.2. 2

5.3 Ergodic Worst-case O(1/t) Convergence Rate

Now, we establish a worst-case O(1/t) convergence rate in ergodic sense for Algorithm 2.

Theorem 5.5. For any integer t > 0, there is a w̄t ∈ W which is a convex combination of
the iterates w̄0, w̄1, · · · , w̄t defined by (5.6). Then for any w ∈ W, we have

θ(ūt)− θ(u) + (w̄t − w)TQ(w) ≤ 1

t+ 1

(1
2
∥w − w0∥2Mα

+

t∑
k=0

ν2k∥w − wk+1∥2Mα

)
, (5.9)

where w̄t := (
∑t

k=0 w̄
k)/(t+ 1), and Mα is defined by (2.3).
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Proof. From (5.7), we have

θ(u)− θ(ūk) + (w − w̄k)TQ(w̄k) +
1

2
∥w − wk∥2Mα

≥ 1− 2ν2k
2

∥w − wk+1∥2Mα
, ∀w ∈ W.

Since Q is monotone, we have

(w − w̄k)TQ(w) ≥ (w − w̄k)TQ(w̄k), ∀w ∈ W.

It follows from the above two inequalities that

θ(u)−θ(ūk)+(w−w̄k)TQ(w)+
1

2
∥w−wk∥2Mα

≥ 1− 2ν2k
2

∥w−wk+1∥2Mα
, ∀w ∈ W. (5.10)

Summing the inequality (5.10) over k = 0, 1, · · · , t, we obtain

(t+ 1)θ(u)−
t∑

k=0

θ(ūk) +
[
(t+ 1)w − (

t∑
k=0

w̄k)
]T

Q(w) +
1

2
∥w − w0∥2Mα

≥ 1

2
∥w − wt+1∥2Mα

−
t∑

k=0

ν2k∥w − wk+1∥2Mα

≥ −
t∑

k=0

ν2k∥w − wk+1∥2Mα
, ∀w ∈ W.

Since
∑t

k=0 1/(t + 1) = 1, w̄t is a convex combination of w̄0, w̄1, · · · , w̄t and thus w̄t ∈ W.
Using the notation of w̄t, we derive

1

t+ 1

t∑
k=0

θ(ūk)− θ(u) + (w̄t −w)TQ(w) ≤ 1

t+ 1

(1
2
∥w−w0∥2Mα

+

t∑
k=0

ν2k∥w−wk+1∥2Mα

)
,

∀w ∈ W. (5.11)

Since θ(u) is convex and

ūt :=
1

t+ 1

t∑
k=1

ūk,

we have that

θ(ūt) ≤
1

t+ 1

t∑
k=0

θ(ūk).

Substituting it in (5.11), the assertion (5.9) follows immediately. 2

Analogous to Algorithm 1, Theorem 5.5 implies a worst-case O(1/t) convergence rate in
ergodic sense of Algorithm 2.

5.4 Nonergodic Worst-case O(1/t) Convergence Rate

In this subsection, we establish a worst-case O(1/t) convergence rate in nonergodic sense for
Algorithm 2.
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Since the sequence {wk} generated by Algorithm 2 converges to the solution, it is
bounded. For given w∗ ∈ W∗, there is a constant C̃w∗ > 0 such that for any k ≥ 0 we
have

∥wk − w∗∥Mα ≤ C̃w∗ . (5.12)

Denote

E2 :=

∞∑
k=0

ν2k < +∞. (5.13)

Theorem 5.6. Let the sequence {wk} be generated by Algorithm 2, the accompanying se-
quence {w̄k} be defined by (5.6). Then, for any w∗ ∈ W∗ we have

min
i∈{0,··· ,k}

∥wi − w̄i∥2Pα
≤ 1

k + 1

(
2∥w0 − w∗∥2Mα

+ 4C̃2
w∗E2

)
, (5.14)

where Pα and Mα are defined by (2.3).

Proof. Setting w = w∗ in (5.7), for any i ≥ 0 we get

4
[
θ(u∗)− θ(ūi) + (w∗ − w̄i)TQ(w̄i)

]
≥ 2(1−2ν2i )∥wi+1−w∗∥2Mα

−2∥wi−w∗∥2Mα
+∥wi−w̄i∥2Pα

.

On the other hand, since Q is monotone, w̄i ∈ W, and w∗ ∈ W∗, we have

0 ≥ θ(u∗)− θ(ūi) + (w∗ − w̄i)TQ(w∗) ≥ θ(u∗)− θ(ūi) + (w∗ − w̄i)TQ(w̄i).

It follows from the above two inequalities that

∥wi − w̄i∥2Pα
≤ 2∥wi − w∗∥2Mα

− 2(1− 2ν2i )∥wi+1 − w∗∥2Mα
, ∀i ≥ 0.

Summing the above inequality over i = 0, 1, · · · , k and using (5.12) and (5.13), we obtain

k∑
i=0

∥wi − w̄i∥2Pα
≤ 2∥w0 − w∗∥2Mα

+ 4

k∑
i=0

ν2i ∥wi+1 − w∗∥2Mα
≤ 2∥w0 − w∗∥2Mα

+ 4C̃2
w∗E2.

The assertion (5.14) follows from the above inequality immediately. 2

If ∥wk − w̄k∥Pα = 0, from (5.1)-(5.6) we have

θ(u)− θ(uk) + (w − wk)TQ(wk) ≥ 0, ∀w ∈ W,

which means that wk is a solution of VI(W, Q, θ) according to (2.1). Therefore, ∥wk−w̄k∥Pα

can be viewed as an error measurement in terms of the distance to the solution set of
VI(W, Q, θ) for the (k+1)-th iteration of Algorithm 2. Hence, Theorem 5.6 shows a worst-
case O(1/t) convergence rate in nonergodic sense for Algorithm 2.

6 Conclusions

This paper studies the convergence of a general algorithmic framework which blends the
inexact, generalized and proximal versions of the alternating direction method of multipliers
(ADMM). The global convergence and worst-case O(1/t) convergence rates in both ergodic
and nonergodic senses are established for two concrete algorithms based on the inexact
generalized proximal ADMM framework. The convergence rate results of some ADMM type
algorithms in the literature are thus further developed in a uniform manner.
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