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programming Problem (1.1). The Coleman-Li scaling matrix was first introduced by [2] for
unconstrained optimization problem and used by [6,8] for equality constrained optimization
problem.

As we know a trust-region method is a well-accepted technique in nonlinear optimization
to assure global convergence and is more robust when they deal with rounding errors, so
we used it in this paper. One of the advantages of trust-region method is that it does not
require the objective function of the model to be convex. However, in traditional trust-
region method, after solving a trust-region subproblem, we need to use some criterion to
check if the trial step is acceptable. If not, the subproblem must be resolved with a reduced
trust-region radius. For more details see ( [11,16,19,23,24,26]).

If the trust-region constraint is simply added to the sequential quadratic subproblem of
the equality constrained optimization problem, the resulting trust-region subproblem may be
infeasible, because there may be no intersecting points between the trust-region constraint
and the hyperplane of the linearized constraints. Even if they intersect, there is no guarantee
that this will remain true if the trust-region radius is decreased. For more details see [6].

A reduced Hessian is a successful approach to overcoming the difficulty of having an infea-
sible trust-region subproblem. The approach was suggested by [1,17] and used by [4,17–19],
[27]. In this approach, the trial step is decomposed into two orthogonal components; the
tangential component and the normal component. Each component is computed by solving
a trust-region subproblem. One of the advantages of this approaches, the two subproblems
are similar to the trust-region subproblem for the unconstrained case. Under credible as-
sumptions, a convergence theory for the proposed interior-point trust-region algorithm is
introduced.

In this paper, we use the symbol fk = f(xk), hk = h(xk), gk = g(xk), ℓk = ℓ(xk, µk),

∇xℓk = ∇xℓ(xk, µk), and so on. We use the notation x
(i)
k to denote the ith component of

the vector xk, and so on. Finally, all the norms used in this paper are ℓ2-norms.

The paper is organized as follows. Active-set and Newton’s method are described in in
Section 2. A detailed description of the main steps of the algorithm are presented in Section
3. Section 4 is devoted to analysis of the global convergence of the proposed algorithm. In
Section 5, numerical results are reported. Finally, Section 6 contains concluding remarks.

2 An Active-Set and Newton’s Method

Following the active set method in [5], we define a 0-1 diagonal matrix V (x) ∈ ℜm×m, whose
diagonal entries are

vi(x) =

{
1 if gi(x) ≥ 0,

0 if gi(x) < 0.
(2.1)

Using the above matrix, Problem (1.1) is converted to the following equality constrained
optimization problem

minimize f(x)

subject to h(x) = 0,

g(x)TV (x)g(x) = 0,

α ≤ x ≤ β.
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Using penalty method, the above problem can be written as follows

minimize f(x) +
ρ

2
∥V (x)g(x)∥2

subject to h(x) = 0,

α ≤ x ≤ β,

(2.2)

where ρ is a positive parameter. Let

ℓ(x, µ) = f(x) + µTh(x), (2.3)

and

ℓ(x, µ; ρ) = ℓ(x, µ) +
ρ

2
∥V (x)g(x)∥2, (2.4)

where µ is a Lagrange multiplier vector associated with equality constraint h(x).
The Lagrangian function associated with Problem (2.2) is defined as follows

L(x, µ, λα, λβ) = ℓ(x, µ; ρ)− λTα(x− α)− λTβ (β − x), (2.5)

where the vectors λα, and λβ are Lagrange multiplier vectors associated with inequality
constraints (x− α) and (β − x) respectively.

The first-order necessary conditions for a point x∗ to be a local minimizer of Prob-
lem (2.2) are the existence of multipliers µ∗ ∈ ℜp, λα∗ ∈ ℜn+, and λβ∗ ∈ ℜn+, such that
(x∗, µ∗, λα∗, λβ∗) satisfies

∇xℓ(x∗, µ∗; ρ∗)− λα∗ + λβ∗ = 0, (2.6)

h(x∗) = 0, (2.7)

α ≤ x∗ ≤ β, (2.8)

and for all e corresponding to x(e) with finite bound, we have

λα
(e)
∗ (x

(e)
∗ − α(e)) = 0, (2.9)

λβ
(e)
∗ (β(e) − x

(e)
∗ ) = 0, (2.10)

where

∇xℓ(x∗, µ∗; ρ∗) = ∇xℓ(x∗, µ∗) + ρ∗∇g(x∗)V (x∗)g(x∗), (2.11)

and

∇xℓ(x∗, µ∗) = ∇f(x∗) +∇h(x∗)µ∗. (2.12)

Motivated by the Coleman-Li scaling matrix [8], we define a diagonal matrix A(x) whose
diagonal elements are

a(e)(x) =


√
(x(e) − α(e)), if (∇xℓ(x, µ; ρ))

(e) ≥ 0 and α(e) > −∞,√
(β(e) − x(e)), if (∇xℓ(x, µ; ρ))

(e) < 0 and β(e) < +∞ ,

1, otherwise.

(2.13)

Let F = {x : α ≤ x ≤ β} and int(F) = {x : α < x < β}. Using the scaling matrix A(x), the
first-order necessary conditions for the point x∗ to be a local minimizer of Problem (1.1) are
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that x∗ ∈ F and there exists a Lagrange multiplier vector µ∗, such that (x∗, µ∗) solves the
following nonlinear system

A2(x)∇xℓ(x, µ; ρ) = 0, (2.14)

h(x) = 0. (2.15)

Any point (x∗, µ∗) that satisfies the conditions (2.14)-(2.15) is called a Karush-Kuhn-Tucker
point or a KKT point. For more details see [13].

System (2.14)-(2.15) is continuous but not everywhere differentiable. The non-differentiability
occurs at two cases:

i) If a(e)(x) = 0, then these points are avoided by restricting x ∈ intF.
ii) If a variable x(e) has a finite lower bound and an infinite upper bound (or vice-verse)

and (∇xℓ(x, µ; ρ))
(e) = 0. But these points are not significant. So, we define a vector

η(e)(x) =
∂(a(e)(x))2

∂x(e)
, e = 1, . . . , n,

such that η(e)(x) = 0 when (∇xℓ(x, µ; ρ))
(e) = 0. This is equivalent to

η(e)(x) =


1, if (∇xℓ(x, µ; ρ))

(e) ≥ 0 and α(e) > −∞,

−1, if (∇xℓ(x, µ; ρ))
(e) < 0 and β(e) <∞,

0, otherwise.

(2.16)

Applying Newton’s method on the nonlinear system (2.14)-(2.15), then we have

[A2(x)∇2
xℓ(x, µ; ρ) + diag(∇xℓ(x, µ; ρ))diag(η(x))]∆x

+A2(x)∇h(x)∆µ = −A2(x)∇xℓ(x, µ; ρ), (2.17)

∇h(x)T∆x = −h(x), (2.18)

where

∇2
xℓ(x, µ; ρ) = H + ρ∇g(x)V (x)∇g(x)T , (2.19)

and H is the Hessian of the Lagrangian function (2.3) or an approximation to it.

Restricting x ∈ int(F) makes A(x) necessarily nonsingular. Therefore, multiplying both
side of Equation (2.17) by A−1(x), and put ∆x = A(x)s in both Equation (2.17)and (2.18),
we have

[A(x)∇2
xℓ(x, µ; ρ)A(x) + diag(∇xℓ(x, µ; ρ))diag(η(x))]s

+A(x)∇h(x)∆µ = −A(x)∇xℓ(x, µ; ρ), (2.20)

(A(x)∇h(x))T s = −h(x). (2.21)

The above system shares the advantages and the disadvantages of Newton’s method. From
the good side of Newton’s method, it converges quadratically to stationary point (x∗, µ∗)
under reasonable assumptions. From the bade side of Newton’s method, it may not converge
at all if the starting point is far away from the solution. Trust-region approach is a very
successful approach to ensure global convergence from any starting point. To add trust
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region constraint we have to rewrite the above system as a minimization problem. An
equivalent problem is the following quadratically programming problem

minimize ℓ(x, µ; ρ) + (A(x)∇xℓ(x, µ; ρ))
T s+

1

2
sTBs

subject to h(x) + (A(x)∇h(x))T s = 0,

(2.22)

where

B = G(x) + ρA(x)∇g(x)V (x)∇g(x)TA(x), (2.23)

and

G(x) = A(x)H(x)A(x) + diag(∇xℓ(x, µ; ρ))diag(η(x)). (2.24)

That is, the point (x∗, µ∗) that satisfies the first order necessary conditions of Problem (2.22)
will satisfy the first order necessary conditions of Problem (1.1).

In the following section, we present main steps of the proposed interior-point trust-region
algorithm for solving Problem (1.1).

3 Outline of the Proposed Algorithm

This section is devoted to presenting the outline for the main steps of interior-point trust-
region algorithm.

3.1 Evaluating sk

Consider the following trust-region sub problem

minimize ℓ(xk, µk; ρk) + (Ak∇xℓ(xk, µk; ρk))
T s+

1

2
sTBks

subject to hk + (Ak∇hk)T s = 0,

∥s∥ ≤ δk,

(3.1)

where δk is the radius of the trust-region. To evaluate the step sk, a reduced Hessian
method is used for overcoming the difficulty of having an infeasible trust-region subproblem
(3.1). In this method, the step sk is decomposed into two orthogonal components; the
normal component snk and the tangential component stk = Zks̄

t
k where Zk is a matrix whose

columns form an orthonormal basis for the null space of (Ak∇hk)T . The step sk has the
form sk = snk + Zks̄

t
k.

To compute the normal component snk , we solve the following trust-region subproblem

minimize 1
2∥hk + (Ak∇hk)T sn∥2

subject to ∥sn∥ ≤ ζδk,
(3.2)

for some ζ ∈ (0, 1).
It is not necessary to obtain a very accurate approximation to the solution of subproblem

(3.2). Instead any approximation to the solution of subproblem (3.2) can be used as long
as the normal predicted decrease obtained by the normal component snk is greater than or
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equal to a fraction of the normal predicted decrease obtained by the normal Cauchy step
sncpk . That is

∥hk∥2 − ∥hk + (Ak∇hk)T snk∥2 ≥ ϑ1{∥hk∥2 − ∥hk + (Ak∇hk)T sncpk ∥2}, (3.3)

for some ϑ1 ∈ (0, 1]. The normal Cauchy step sncpk is defined as

sncpk = −tncpk Ak∇hkhk, (3.4)

where the parameter tncpk is given by

tncpk =



∥Ak∇hkhk∥2

∥(Ak∇hk)TAk∇hkhk∥2
if

∥Ak∇hkhk∥3

∥(Ak∇hk)TAk∇hkhk)∥2
≤ δk

and ∥(Ak∇hk)TAk∇hkhk)∥ > 0,

δk
∥Ak∇hkhk∥

otherwise.

(3.5)

Let q(Aks) be the quadratic form of the function (2.4) and defined as follows

q(Aks) = ℓ(xk, µk; ρk) + (Ak∇xℓ(xk, µk; ρk))
T s+

1

2
sTBks. (3.6)

Then ∇qk(Aksnk ) = Ak∇xℓ(xk, µk; ρk) +Bks
n
k .

Given snk , we compute the tangential component stk = Zks̄
t
k by solving the following

trust-region subproblem

minimize [ZTk ∇qk(Aksnk ) +Bks
n
k ]
T s̄t +

1

2
s̄t

T

ZTk BkZks̄
t

subject to ∥Zks̄t∥ ≤ ∆k,

(3.7)

where ∆k =
√
δ2k − ∥snk∥2.

A tangential predicted decrease which is obtained by the tangential component stk is
given by

Tpredk(s̄
t
k) = qk(Aks

n
k )− qk(Ak(s

n
k + Zks̄

t
k)). (3.8)

To solve subproblem (3.7), any method can be used as long as Tpredk(s̄
t
k) is greater than

or equal to a fraction of the tangential predicted decrease Tpredk(s̄
tcp
k ) which is obtained

by the tangential Cauchy step s̄tcpk . That is

Tpredk(s̄
t
k) ≥ ϑ2 Tpredk(s̄

tcp
k ), (3.9)

for some ϑ2 ∈ (0, 1]. The tangential Cauchy step s̄tcpk is defined as follows

s̄tcpk = −ttcpk ZTk ∇qk(Aksnk ), (3.10)

where the parameter ttcpk is given by

ttcpk =



∥ZTk ∇qk(Aksnk )∥2

(ZTk ∇qk(Aksnk ))T B̄kZTk ∇qk(Aksnk )
if

∥ZTk ∇qk(Aksnk )∥3

(ZTk ∇qk(Aksnk ))T B̄kZTk ∇qk(Aksnk )
≤ ∆k

and (ZTk ∇qk(Aksnk ))T B̄kZTk ∇qk(Aksnk ) > 0,

∆k

∥ZTk ∇qk(Aksnk )∥
otherwise,

(3.11)
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such that B̄k = ZTk BkZk.
A generalized dogleg algorithm can be used to compute the two components of the trial

step. This algorithm produces the double fraction of the Cauchy decrease on the tangential
and the normal predicted decrease. A convergence theory of the proposed algorithm is based
on the fraction of cauchy decrease condition. For more details see [20] and [21].

Once sk is computed, we set xk+1 = xk + Aksk. To ensure that xk+1 ∈ intF, we need
to compute the damping parameter ψk at every iteration k. The damping parameter ψk is
computed as follows:

ψ = min{min
i
{c(i)k , ω

(i)
k }, 1}, (3.12)

where

c
(i)
k =


α(i) − x

(i)
k

A
(i)
k s

(i)
k

, if α(i) > −∞ and A
(i)
k s

(i)
k < 0

1, otherwise,

and

ω
(i)
k =


β(i) − x

(i)
k

A
(i)
k s

(i)
k

, if β(i) <∞ and A
(i)
k s

(i)
k > 0

1, otherwise.

Another damping parameter σk in the step may be needed to satisfy xk+1 ∈ intF, where
σk is defined as follows. If (xk + ψkAksk) ∈ intF, we set σk = 1. Otherwise, we set
xk+1 = xk + σkψkAksk, such that σk ∈ [1 − θ∥Aksk∥, 1] and θ > 0 is a pre-specified fixed
constant. It is easy to see that 1− σk = O(∥Aksk∥).

3.2 Accepting the step and Updating δk

Once the scaled step σkψkAksk, is computed, it needs to be tested to determine whether it
will be accepted. To do that, a merit function is needed. We use the following augmented
Lagrangian function

Φ(x, µ; ρ; r) = f(x) + µTh(x) +
ρ

2
∥V (x)g(x)∥2 + r∥h(x)∥2, (3.13)

as a merit function, where r is the penalty parameter.
To test the scaled step, we need to estimate the Lagrange multiplier µk+1. To estimate

the Lagrange multiplier µk+1 we use the following scheme

minimize ∥∇fk+1 +∇hk+1µ+ ρk∇gk+1Vk+1gk+1∥2. (3.14)

Let µk+1 be an estimate of the Lagrange multiplier vector. We test whether the point
(xk+1, µk+1) will be taken as a next iterate.

The actual reduction in the merit function in moving from (xk, µk) to (xk + sk, µk+1) is
defined as

Aredk = Φ(xk, µk, ; ρk; rk)− Φ(xk + ψ̃kAksk, µk+1; ρk; rk),

where ψ̃k = σkψk. The actual reduction Aredk can be written as,

Aredk = ℓ(xk, µk)− ℓ(xk+1, µk)−∆µTk hk+1

+
ρk
2
[gTk Vkgk − gTk+1Vk+1gk+1] + rk[∥hk∥2 − ∥hk+1∥2], (3.15)

where ∆µk = (µk+1 − µk).
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The predicted reduction in the merit function is defined to be

Predk = −(Ak∇xℓ(xk, µk))
T ψ̃ksk −

1

2
ψ̃2
ks
T
kGksk −∆µTk (hk + (Ak∇hk)T ψ̃ksk)

+
ρk
2
[∥Vkgk∥2 − ∥Vk(gk + (Ak∇gk)T ψ̃ksk)∥2]

+rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2]. (3.16)

The predicted reduction can be written as

Predk = qk(0)− qk(Akψ̃ksk)−∆µTk (hk + (Ak∇hk)T ψ̃ksk)

+rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2], (3.17)

where
qk(Akψ̃ksk) = ℓ(xk, µk) + (Ak∇xℓ(xk, µk))

T ψ̃ksk

+
1

2
ψ̃2
ks
T
kGksk +

ρk
2
∥Vk(gk + (Ak∇gk)T ψ̃ksk)∥2.

(3.18)

After computing the scaled step and updating the Lagrange multiplier, the penalty param-
eter is updated to ensure that Predk ≥ 0. To update rk, we use a scheme prossed [7]. We
tentatively set

rk+1 = max(rk, ρ
2
k), (3.19)

and if Predk <
rk
2 [∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2], then we set

rk =
2[qk(Akψ̃ksk)− qk(0) + ∆µTk (hk + (Ak∇hk)T ψ̃ksk)]

∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2
+ b0, (3.20)

where b0 > 0 is a small fixed constant. This scheme is described in Step 7 of Algorithm 3.1
below.

The scaled step is tested by comparing Predk against Aredk to know whether it is
accepted. Our way of testing the scaled step and updating the trust-region radius are
presented in Step 8 of Algorithm 3.1 below.

To update ρk, we use a scheme prossed in [25]. In this scheme, if

1

2
Tpredk(ψ̃ks̄

t
k) ≥ ∥Ak∇gkVkgk∥min{∥Ak∇gkVkgk∥,∆k}, (3.21)

we set ρk+1 = ρk. Otherwise, we set ρk+1 = 2ρk.
Finally, the algorithm is terminated when either ∥ZTk Ak∇xℓ(xk, µk)∥+ ∥Ak∇gkVkgk∥+

∥hk∥ ≤ ε1 or ∥sk∥ ≤ ε2, for some ε1, ε2 > 0.

3.3 The master algorithm

A formal description of our an active-set interior-point trust-region algorithm is presented
in the following algorithm.

Algorithm 3.1. (An active-set interior-point trust-region algorithm)

Step 0. Given x0 ∈ intF. Compute V0, A0, η0, and µ0. Set ρ0 = 1, r0 = 1, and b0 = 0.1.
Choose θ > 0, ε1 > 0, ε2 > 0. Choose δmin, δmax, and δ0 such that δmin ≤ δ0 ≤ δmax.
Choose α1, α2, τ1, and τ2 such that 0 < α1 < 1 < α2, and 0 < τ1 < τ2 < 1. Set k = 0.
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Step 1. If ∥ZTk Ak∇xℓ(xk, µk)∥+ ∥Ak∇gkVkgk∥+ ∥hk∥ ≤ ε1, then stop the algorithm.

Step 2.

a) Compute the normal component snk by solving subproblem (3.2).

b) Compute s̄tk by solving subproblem (3.7).

c) Set sk = snk + Zks̄
t
k.

Step 3. If ∥sk∥ ≤ ε2, then stop the algorithm.

Step 4.

a) Compute the damping parameter ψk using (3.12).

b) Set xk+1 = xk +Akψksk.

c) If xk+1 ∈ intF, then go to Step 5.

Else, set xk+1 = xk + σkψkAksk, where σk ∈ [1− θ∥Aksk∥, 1].
End if.

Step 5. Compute Vk+1 given by (2.1).

Step 6. Compute µk+1 by solving

minimize ∥∇fk+1 +∇hk+1µ+ ρk∇gk+1Vk+1gk+1∥2.

Step 7.

a) Set rk+1 = max(rk, ρ
2
k).

b) If Predk ≤ rk
2 [∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2], then set

rk =
2[qk(Akψ̃ksk)− qk(0) + ∆µTk (hk + (Ak∇hk)T ψ̃ksk)]

∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2
+ b0.

End if.

Step 8. If Aredk < τ1Predk. Set δk = α1∥sk∥ and go to Step 2.
Else, if τ1Predk ≤ Aredk < τ2Predk, then accept the step and set δk+1 = max(δk, δmin).
Else, accept the step and set δk+1 = min{δmax,max{δmin, α2δk}}.
End if.

Step 9.

a) Set ρk+1 = ρk.

b) If 1
2Tpredk(ψ̃ks̄

t
k) ≤ ∥Ak∇gkVkgk∥min{∥Ak∇gkVkgk∥,∆k}, then set ρk+1 = 2ρk.

End if.

Step 10. Compute Ak+1 given by (2.13) and ηk+1 given by (2.16).

Step 11. Set k = k + 1 and go to Step 1.
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4 Global Convergence Analysis

Let {(xk, µk)} be the sequence of points generated by Algorithm 3.1 and let Ω be a convex
subset of ℜn that contains all iterates xk ∈ int(F) and xk + ψ̃kAksk ∈ int(F), for all trial
steps sk. On the set Ω, we state the following problem assumptions under which our global
convergence theory is proved.

Problem Assumptions:

PA1. The functions f , h, and g are twice continuously differentiable for all x ∈ Ω.

PA2. The matrix A(x)∇h(x) has full column rank.

PA3. All of f(x), ∇f(x), ∇2f(x), h(x), ∇h(x), ∇2hi(x) for i = 1, 2, . . . , p, g(x),
∇g(x),∇2gi(x) for i = 1, 2, . . . ,m, and (∇h(x)T∇h(x))−1 are uniformly bounded
in Ω.

PA4. The sequence {µk} is bounded.

PA5. If an approximation to the Hessian of the Lagrangian is used, then the sequence
of approximated Hessian matrices {Hk} is bounded.

In the above problem assumptions, even though we assume that A∇h(x) has full column
rank for all x ∈ Ω, we do not require A∇g(x) has full column rank for all x ∈ Ω. So, we may
have other kinds of stationary points. They are presented in the following two definitions.

Definition 4.1. ( Fritz John Point) A point x∗ ∈ Ω is called a Fritz John point if there
exist γ∗, µ∗, and ν∗, not all zeros, such that

γ∗A(x∗)∇f(x∗) +A(x∗)∇h(x∗)µ∗ +A(x∗)∇g(x∗)ν∗ = 0, (4.1)

h(x∗) = 0, (4.2)

V∗g(x∗) = 0, (4.3)

(ν∗)igi(x∗) = 0, i = 1, 2, . . . ,m, (4.4)

γ∗, (ν∗)i ≥ 0, i = 1, 2, . . . ,m. (4.5)

Equations (4.1)-(4.1) are called a Fritz John conditions. More details see [15].
If γ∗ ̸= 0, then the point (x∗, 1,

µ∗
γ∗
, ν∗γ∗ ) is called a KKT point and the Fritz John condi-

tions are called the KKT conditions.

Definition 4.2. (Infeasible Fritz John Point) A point x∗ ∈ Ω is called an infeasible Fritz
John point if there exist γ∗, µ∗, and ν∗ such that

γ∗A(x∗)∇f(x∗) +A(x∗)∇h(x∗)µ∗ +A(x∗)∇g(x∗)ν∗ = 0, (4.6)

h(x∗) = 0, (4.7)

A(x∗)∇g(x∗)V∗g(x∗) = 0 but ∥V∗g(x∗)∥ > 0, (4.8)

(ν∗)igi(x∗) ≥ 0, i = 1, 2, . . . ,m, (4.9)

γ∗, (ν∗)i ≥ 0, i = 1, 2, . . . ,m. (4.10)

Equations (4.6)-(4.10) are called an infeasible Fritz John conditions.
If γ∗ ̸= 0, then the point (x∗, 1,

µ∗
γ∗
, ν∗γ∗ ) is called an infeasible KKT point and the infeasible

Fritz John conditions are called the infeasible KKT conditions.
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Lemma 4.3. Assume PA1-PA5. A subsequence {xki} of the iteration sequence asymptoti-
cally satisfies the infeasible Fritz John conditions if it satisfies:

1) limki→∞ h(xki) = 0.

2) limki→∞ ∥Vkig(xki)∥ > 0.

3) limki→∞

{
mins∈ℜn−p∥Vki(gki + (Ak∇gki)TZki ψ̃ki s̄t)∥2

}
= limki→∞ ∥Vkigki∥2.

Proof. Let the subsequence {ki} be renamed to {k} to simplify the notations avoiding double
indices. The minimizer ŝk of minimizes̄t∥Vk(gk + (Ak∇gk)TZkψ̃ks̄t)∥2 satisfies

ZTk Ak∇gkVkgkψ̃k + ZTk Ak∇gkVk∇gTk AkZkψ̃2
kŝk = 0. (4.11)

From Condition 3, we have

lim
k→∞

{2ψ̃kŝkTZTk Ak∇gkVkgk + ψ̃2
kŝk

TZTk Ak∇gkVk∇gTk AkZkŝk} = 0. (4.12)

We will consider two cases:
1) If limk→∞ ŝk = 0, then from (4.11) we have limk→∞ ψ̃kZ

T
k Ak∇gkVkgk = 0.

2) If limk→∞ ŝk ̸= 0, multiply Equation (4.11) from the left by 2ŝTk and subtract

from the limit (4.12), we have limk→∞ ∥Vk(Ak∇gk)TZkψ̃kŝk∥2 = 0. But this implies
limk→∞ ψ̃kZ

T
k Ak∇gkVkgk = 0. Hence, in either case, we have

lim
k→∞

ZTk Ak∇gkVkgk = 0. (4.13)

Take (νk)i = (Vkgk)i, i = 1, . . . ,m. Since limk→∞ ∥Vkgk∥ > 0, then limk→∞(νk)i ≥ 0, for
i = 1, . . . ,m and limk→∞(νk)i > 0, for some i. Therefore limk→∞ ZTk Ak∇gkνk = 0. But
this implies the existence of a sequence {µk} such that limk→∞{Ak∇hkµk+Ak∇gkνk} = 0.
Thus the infeasible Fritz John conditions are hold in the limit with γ∗ = 0.

From the following lemma, we can easily see that, for any subsequence of the iteration
sequence that asymptotically satisfies the Fritz John conditions, the corresponding subse-
quence of smallest singular values of {ZTk Ak∇gkVk} is not bounded away from zero. This
means that asymptotically the gradient of the active constraints are linearly dependent.

Lemma 4.4. Assume PA1-PA5. A subsequence {ki} of the iteration sequence asymptoti-
cally satisfies Fritz John conditions if it satisfies:

1) limki→∞ h(xki) = 0.

2) For all ki, ∥Vkigki∥ > 0 and limki→∞ Vkigki = 0.

3) limki→∞

{
mins∈ℜn−p

∥Vki
(gki

+(Ak∇gki
)TZki

ψ̃ki
s̄t)∥2

∥Vki
gki

∥2

}
= 1.

Proof. Let the subsequence {ki} be renamed to {k} to simplify the notations avoiding double
indices. The limit in Condition 3 is equivalent to

lim
k→∞

{
min

d̂∈ℜn−p

{
∥Uk + Vk(Ak∇gk)TZkψ̃kd̂∥2

}}
= 1, (4.14)

where Uk is a unit vector in the direction of Vkgk, d̂ = s̄t

∥Vkgk∥ . Consider the problem

min
d̂∈ℜn−p

{
∥Uk + Vk(Ak∇gk)TZkψ̃kd̂∥2

}
. (4.15)
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Let d̄k be a minimizer to the above problem. Then, from the optimality conditions

ZTk (Ak∇gk)Vk(Ak∇gk)TZkd̄kψ̃2
k + ZTk (Ak∇gk)VkUkψ̃k = 0. (4.16)

We consider two cases:
i) If limk→∞ Zkd̄k = 0 in the above equation, then we have, limk→∞ ZTk (Ak∇gk)VkUkψ̃k =

0.
ii)If limk→∞ Zkd̄k ̸= 0, then from (4.14) and the fact that d̄k is a solution to the mini-

mization Problem (4.15), we have

lim
k→∞

{d̄k
T
ZTk (Ak∇gk)Vk(Ak∇gk)TZkd̄kψ̃2

k + 2UTk Vk(Ak∇gk)TZkd̄kψ̃k} = 0.

Multiplying (4.16) from the left by 2d̄k
T and subtract it from the above limit, we have

lim
k→∞

d̄kZ
T
k (Ak∇gk)Vk(Ak∇gk)TZkd̄kψ̃2

k = 0.

This implies limk→∞

{
ZkAk∇gkVkUkψ̃k

}
= 0. Hence in both cases, we have

lim
k→∞

{ZkAk∇gkVkUk} = 0, (4.17)

where limk→∞ ψ̃k = 1. The rest of the proof follows using arguments similar to those in the
above lemma.

In the following subsection, we present some important lemmas needed in the proof of
our main global convergence results.

4.1 Important Lemmas

We present some important lemmas needed in the subsequent proofs.

Lemma 4.5. Let PA1-PA3 hold, then at any iteration k

∥snk∥ ≤ K1∥hk∥, (4.18)

where K1 > 0 is a constant independent of k.

Proof. See Lemma (7.1) of [4].

Lemma 4.6. Assume PA1 and PA3. Then V (x)g(x) is Lipschitz continuous in Ω.

Proof. See Lemma (4.1) of [5].

From the above lemma, we conclude that g(x)TV (x)g(x) is differentiable and
∇g(x)V (x)g(x) is Lipschitz continuous in Ω.

The following lemma shows that, at any iteration k, the normal predicted reduction is
at least equal to the decrease in the 2-norm of the linearized constraints obtained by the
Cauchy step.

Lemma 4.7. Assume PA1-PA5. Then there exists a positive constant K2 independent of
the iterates such that the predicted decrease obtained by the normal component snk of the trial
step satisfies

∥hk∥2 − ∥hk + (Ak∇hk)T snk∥2 ≥ K2∥hk∥min{δk, ∥hk∥}. (4.19)
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Proof. See Lemma (4.6) of [9].
From the above lemma and the fact that

∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksnk∥2 ≥ ψ̃k[∥hk∥2 − ∥hk + (Ak∇hk)T snk∥2],

then we have

∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksnk∥2 ≥ K2ψ̃k∥hk∥min{δk, ∥hk∥}. (4.20)

From the way of updating the penalty parameter rk given in Step 7 of Algorithm 3.1 and
Inequality (4.20), we have, for all k,

Predk ≥ rk
2
K2ψ̃k∥hk∥min{δk, ∥hk∥}. (4.21)

The following lemma gives a lower bound to the tangential predicted decrease which is
obtained by stk.

Lemma 4.8. Assume PA1-PA5. The tangential predicted decrease obtained by stk satisfies

Tpredk(s̄
t
k) ≥

1

2
K3∥ZTk ∇qk(Aksnk )∥min

{
∆k,

∥ZTk ∇qk(Aksnk )∥
∥B̄k∥

}
, (4.22)

where ∆k =
√
δ2k − ∥snk∥2.

Proof. See Lemma (4.7) of [9].
From (3.8), we have

Tpredk(ψ̃ks̄
t
k) = qk(Akψ̃ks

n
k )− qk(Akψ̃k(s

n
k + Zks̄

t
k)). (4.23)

From (4.23) and the fact that

qk(Akψ̃ks
n
k )− qk(Akψ̃k(s

n
k + Zks̄

t
k)) ≥ ψ̃k[qk(Aks

n
k )− qk(Ak(s

n
k + Zks̄

t
k))],

then we have
Tpredk(ψ̃ks̄

t
k) ≥ ψ̃kTpredk(s̄

t
k). (4.24)

From inequalities (4.22) and (4.24), we have

Tpredk(ψ̃ks̄
t
k) ≥

1

2
K3ψ̃k∥ZTk ∇qk(Aksnk )∥min

{
∆k,

∥ZTk ∇qk(Aksnk )∥
∥B̄k∥

}
. (4.25)

Lemma 4.9. At any iteration k, let D(xk) ∈ ℜm×m be a diagonal matrix whose diagonal
entries are

(dk)i =


1 if (gk)i < 0 and (gk+1)i ≥ 0,

−1 if (gk)i ≥ 0 and (gk+1)i < 0,

0 otherwise,

(4.26)

where i = 1, 2, . . . ,m. Then
Vk+1 = Vk +Dk. (4.27)
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Proof. See Lemma (6.2) of [10].

Lemma 4.10. Assume PA1 and PA3. At any iteration k, there exists a positive constant
K4 independent of k, such that

∥Dkgk∥ ≤ K4∥sk∥, (4.28)

where Dk ∈ ℜm×m is the diagonal matrix whose diagonal entries are defined in (4.26).

Proof. The proof is similar to the proof of lemma (6.3) of [10].

The following lemma shows how accurate our definition of Predk is as an approximation
to Aredk.

Lemma 4.11. Assume PA1-PA5, then there exists a constant K5 > 0 that does not depend
on k, such that

| Aredk − Predk |≤ K5rkψ̃k∥sk∥2. (4.29)

Proof. From (3.15) and using (4.27), we have

Aredk = ℓ(xk, µk)− ℓ(xk+1, µk)−∆µTk hk+1

+
ρk
2
[gTk Vkgk − gTk+1(Vk +Dk)gk+1] + rk[∥hk∥2 − ∥hk+1∥2].

From the above equation and (3.16) and using Cauchy-Schwarz inequality, we have

| Aredk − Predk | ≤ | ℓ(xk, µk) + (Ak∇ℓ(xk, µk))T ψ̃ksk − ℓ(xk+1, µk) |
+ | ∆µTk [ hk + (Ak∇hk)T ψ̃ksk − hk+1 ] |

+
ρk
2

| ∥Vk(gk + (Ak∇gk)T ψ̃ksk)∥2 − gTk+1(Vk +Dk)gk+1 |

+rk | ∥hk + (Ak∇hk)T ψ̃ksk∥2 − ∥hk+1∥2 | .

Hence,

|Aredk − Predk|

≤ ψ̃2
k

2
| sTkAk(Hk −∇2ℓ(xk + ξ1Akψ̃ksk, µk))Aksk |

+
ψ̃2
k

2
| sTk diag(∇xℓ(xk, µk))diag(η(xk))sk |

+
ψ̃2
k

2
| sTkAk[∇2h(xk + ξ2Akψ̃ksk)∆µk]Aksk |

+
ρk
2
ψ̃2
k | sTkAk[∇gkVk∇gTk −∇g(xk + ξ4Akψ̃ksk)Vk∇g(xk + ξ4Akψ̃ksk)

T ]Aksk |

+
ρk
2
ψ̃2
k | sTk diag(∇gkVkgk) diag(η(xk))sk |

+
ρk
2
ψ̃2
k | sTkAk∇2g(xk + ξ4Akψ̃ksk)Vkg(xk + ξ4Akψ̃ksk)Aksk |

+
ρk
2
ψ̃k∥Dk[gk +∇g(xk + ξ5Akψ̃ksk)

TAksk]∥2

+rkψ̃
2
k | sTkAk[∇hk∇hTk −∇h(xk + ξ6Akψ̃ksk)∇h(xk + ξ6Akψ̃ksk)

T ]Aksk |
+rkψ̃

2
k | sTkAk∇2h(xk + ξ6Akψ̃ksk)h(xk + ξ6Akψ̃ksk)Aksk |
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for some ξ1, ξ2, ξ3, ξ4, ξ5, and ξ6 ∈ (0, 1). Hence, by using the problem assumptions, the
fact that ψ̃2

k ≤ ψ̃k, rk ≥ ρk, rk ≥ 1, and Inequality (4.28), we have

| Aredk − Predk |≤ ψ̃k[K6∥sk∥2 +K7rk∥sk∥2∥hk∥+K8rk∥sk∥3], (4.30)

where K6, K7, and K8 are positive constants independent of k. From the above inequality,
the fact that rk ≥ 1, and ∥sk∥ and ∥hk∥ are uniformly bound. The proof follows.

The jth trial iterate of iteration k is denoted by kj .
The following lemma shows that if at any iteration k, the point xk is not feasible, then

the algorithm can not loop infinitely without finding an acceptable step.

Lemma 4.12. Assume PA1-PA5. If ∥hk∥ ≥ ε where ε is any positive constant, then the

condition
Aredkj

Predkj
≥ τ1 will be satisfied for some finite j.

Proof. Since ∥hk∥ ≥ ε, then from (4.21) and (4.29), we have∣∣∣∣AredkPredk
− 1

∣∣∣∣ = | Aredk − Predk |
Predk

≤ 2K5ψ̃kδ
2
k

K2ψ̃kεmin{ε, δk}
.

Now as the trial step skj gets rejected, δkj becomes small and eventually we will have∣∣∣∣AredkjPredkj
− 1

∣∣∣∣ ≤ 2K5δkj

K2ε
.

This inequality implies that after a finite number of trials, (i.e., for j finite), the acceptance
rule will be met. This completes the proof.

Lemma 4.13. Assume PA1-PA5. If at a given iteration k, the jth trial step satisfies

∥skj∥ ≤ min
{ (1− τ1)K2

4K5
, 1}

∥∥∥hk∥, (4.31)

then it must be accepted.

Proof. We prove this lemma by contradiction. Assume that the step skj is rejected and
Inequality (4.31) holds. Then, from (4.21), (4.29), and (4.31), we have

(1− τ1) <
| Aredkj − Predkj |

Predkj
<

2K5ψ̃kj∥skj∥2

K2ψ̃kj∥hk∥∥skj∥
≤ (1− τ1)

2
.

This gives a contradiction and proves the lemma.

Lemma 4.14. Assume PA1-PA5. For all trial steps j of any iteration k generated by the
algorithm, δkj satisfies

δkj ≥ min
{δmin

b1
,
α1(1− τ1)K2

4K5
, α1

}
∥hk∥, (4.32)

where b1 is a positive constant independent of k or j.

Proof. Consider any iterate kj . If the previous step was accepted; i.e. if j = 1, then
δk ≥ δmin. Take b1 = supx∈Ω ∥hk∥, we can write

δk ≥ δmin ≥ δmin
b1

∥hk∥. (4.33)

Therefore, (4.32) holds in this case.
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Now assume that j > 1, then there exists at least one rejected trial step. For all rejected
trial steps, we have from Lemma (4.13)

∥ski∥ > min
{ (1− τ1)K2

4K5
, 1
}
∥hk∥,

for all i = 1, 2, . . . , j − 1. Since ski is a rejected trial step, then from the way of updating
the radius of trust region (see Algorithm 3.1) and using the above inequality, we have

δkj = α1∥skj−1∥ > α1 min
{ (1− τ1)K2

4K5
, 1
}
∥hk∥.

From Inequality (4.33) and the above inequality, Inequality (4.32) holds.

The following lemma says that as long as ∥hk∥ is bound away from zero, the trust-region
radius is bound away from zero.

Lemma 4.15. Assume PA1-PA5. If ∥hk∥ ≥ ε, where ε > 0, then there exists a positive
constant K9 that depends on ε but does not depend on k such that

δkj ≥ K9.

Proof. Using (4.32) and taking

K9 = εmin
{δmin

b1
,
α1(1− τ1)K2

4K5
, α1

}
, (4.34)

the proof follows directly.

4.2 Convergence When ρk is Unbound

In this section, we study the convergence of the iteration sequence when the parameter ρk
goes to infinity. Notice that, from the way of updating the penalty parameter rk, the penalty
parameter rk is increased at a given iteration k, because of the rule (3.19) or (3.20).

Lemma 4.16. Assume PA1-PA5. Let k be the index of an iteration at which the penalty
parameter rk is increased. Then there exists a positive constant K10 that does not depend
on k, such that

ρkψ̃k∥hk∥2 ≤ K10. (4.35)

Proof. Since rk is increased using the rule (3.20), then

rk
2
[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2] = [qk(Akψ̃ksk)− qk(0) + ∆µTk (hk + (Ak∇hk)T ψ̃ksk)]

+
b0
2
[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

By using (3.18), (4.20), and (4.33) in the above equality, we have

rk
2
K2ψ̃k∥hk∥2 min

{δmin
b1

,
α1(1− τ1)K2

4K5
, α1

}
≤ (Ak∇xℓ(xk, µk))

T ψ̃ksk +
1

2
ψ̃2
ks
T
kGksk

+∆µTk (hk + (Ak∇hk)T ψ̃ksk)

+
ρk
2
[∥Vk(gk + (Ak∇gk)T ψ̃ksk)∥2 − ∥Vkgk∥2]
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+
b0
2
[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

Since rk ≥ ρ2k, then we can write the above inequality as follows

ρ2k
2
K2ψ̃k∥hk∥2 min

{δmin
b1

,
α1(1− τ1)K2

4K5
, α1

}
≤ (Ak∇xℓ(xk, µk))

T ψ̃ksk +
1

2
ψ̃2
ks
T
kGksk

+∆µTk (hk + (Ak∇hk)T ψ̃ksk)

+
ρk
2
[∥Vk(gk + (Ak∇gk)T ψ̃ksk)∥2

+
b0
2
∥hk∥2.

Hence,

ρk
2
K2ψ̃k∥hk∥2 min

{δmin
b1

,
α1(1− τ1)K2

4K5
, α1

}
≤ 1

ρk

[
(Ak∇xℓ(xk, µk))

T ψ̃ksk +
1

2
ψ̃2
ks
T
kGksk

+∆µTk (hk + (Ak∇hk)T ψ̃ksk) +
b0
2
∥hk∥2

]
+

1

2
∥Vk(gk + (Ak∇gk)T ψ̃ksk)∥2

≤ 1

ρk

[
|(Ak∇xℓ(xk, µk))

T sk|+
1

2
|sTkGksk|

+ |∆µTk (hk + (Ak∇hk)T ψ̃ksk)|+
b0
2
∥hk∥2

]
+

1

2
∥Vk(gk + (Ak∇gk)T ψ̃ksk)∥2,

where ψ̃k ≤ 1. Using the Cauchy-Schwarz inequality, problem assumptions PA3−PA5, and
the fact that ∥sk∥ ≤ δmax the proof is completed.

Lemma 4.17. Assume PA1-PA5. If ρk is unbound and if there exists an infinite subse-
quence {ki} of the iteration sequence at which the penalty parameter rk is increased, then

lim
ki→∞

∥hki∥ = 0. (4.36)

Proof. The proof follows directly from Lemma (4.16),limki→∞ ψ̃ki = 1, and the assumption
that ρk is unbound.

Theorem 4.18. Assume PA1-PA5. If ρk → ∞ as k → ∞, then the sequence of iterates
generated by the algorithm satisfies

lim
k→∞

∥hk∥ = 0. (4.37)

Proof. Assume that lim supk→∞ ∥hk∥ ≥ ε > 0. This implies the existence of an infinite
subsequence of indices {kj} indexing iterates that satisfy ∥hkj∥ ≥ ε

2 . We prove contradiction
by showing that ε must be zero.

Using (3.19), then rk → ∞ such that ρk → ∞ as k → ∞. We consider two cases.
i) If there exists an infinite subsequence {ki} of the iteration sequence at which the

penalty parameter is increased by the rule (3.20), then from Lemma (4.17), we have

lim
ki→∞

∥hki∥ = 0. (4.38)



142 BOTHINA EL-SOBKY

Therefore, for k sufficiently large, there are no common elements between the two sequences
{ki} and {kj}. We have, for all k̂ ∈ {kj},

Aredk̂
rk̂

≥ τ1
Predk̂
rk̂

≥ τ1ψ̃k̂
εK2

4
min

{ε
2
, δk̂

}
≥ τ1ψ̃k̂

εK2

4
min

{ε
2
, K̂9

}
,

where K̂9 is as K9 in (4.34), with ε is replaced by ε
2 . Hence for all acceptable steps, we have

ℓk̂ − ℓk̂+1

rk̂
+
ρk{∥Vk̂gk̂∥

2 − ∥Vk̂+1gk̂+1∥
2}

rk̂
+ ∥hk̂∥

2 − ∥hk̂+1∥
2 ≥ τ1ψ̃k̂

εK2

4
min

{ε
2
, K̂9

}
> 0.

Let kî and kî+1 be two elements of the sequence {ki} such that there exists an iterate indexed
k ∈ {kj} between kî and kî+1. From above inequality we have

kî+1−1∑
k̂=kî

{ℓk̂ − ℓk̂+1}
rk̂

+

kî+1−1∑
k̂=kî

ρk{∥Vk̂gk̂∥
2 − ∥Vk̂+1gk̂+1∥

2}
rk̂

+ ∥hk̂∥
2 − ∥hk̂+1∥

2

≥ τ1ψ̃k̂
εK2

4
min

{ε
2
, K̂9

}
> 0.

Assume that there exists kγ iterations between the iterates indexed kî and kî+1 where the
penalty parameter is increased. Because there is no iteration between the iterates indexed kî
and kî+1 with a penalty parameter that was increased using the rule (3.20), all the penalty
parameters of the kγ iterations are increased using the rule (3.19). If we notice that for all
k, rk ≥ ρ2k and if the value of ρk is increased, it is increased by two times its previous value,
we can write

kî+1−1∑
k̂=kî

{ℓk̂ − ℓk̂+1}
rk̂

+

kî+1−1∑
k̂=kî

ρk{∥Vk̂gk̂∥
2 − ∥Vk̂+1gk̂+1∥

2}
rk̂

≤ 2supx∈Ω{|f(x)|+ µ̄∥h(x)∥}
ρ2kî

kγ−1∑
i=0

1

22i
+

2supx∈Ω∥g(x)∥2

ρkî

kγ−1∑
i=0

1

2i
,

where µ̄ is the upper bound on the sequence {µk}. Since the two infinite series
∑∞
i=0

1
22i

and
∑∞
i=0

1
2i converge, the two series

∑kγ−1
i=0

1
22i and

∑kγ−1
i=0

1
2i are bound for any kγ . Since

ρk → ∞, then for kî sufficiently large, we can write

∣∣∣ kî+1−1∑
k̂=kî

{ℓk̂ − ℓk̂+1}
rk̂

+

kî+1−1∑
k̂=kî

ρk{∥Vk̂gk̂∥
2 − ∥Vk̂+1gk̂+1∥

2}
rk̂

∣∣∣ ≤ τ1ψ̃k̂
εK2

8
min

{ε
2
, K̂9

}
.

Therefore,

∥hk̂∥
2 − ∥hk̂+1∥

2 ≥ τ1ψ̃k̂
εK2

8
min

{ε
2
, K̂9

}
.

But this contradicts (4.38). Thus the supposition is not correct and the theorem is proved
in this case.
ii) Consider the case where there exist finite number of iterates where the penalty parameter
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rk is increased using the rule (3.20). This implies the existence of an integer k̆ such that

there exists no iterate indexed k for all k ≥ k̆ where the penalty parameter is increased using
the rule (3.20). Hence, for all k ≥ k̆, if the penalty parameter is increased, then it will be

increased because of the rule (3.19). Without loss of generality, we assume that k̆ = 1.

From Inequality (4.21), we can write for any acceptable iteration index k,

Aredk
rk

≥ τ1
Predk
rk

≥ τ1
rk
2
K2ψ̃k∥hk∥min{δk, ∥hk∥}.

Let ka1 and ka2 be two consecutive iterates of {kj}. Summing over all acceptable iterates
indexed k such that ka1 ≤ k < ka2 , we have

ka2−1∑
k=ka1

Aredk
rk

≥ τ1ψ̃k
εK2

4
min

{ε
2
, K̂9

}
.

Hence

ka2−1∑
k=ka1

{ℓk − ℓk+1}
rk

+

ka2−1∑
k=ka1

ρk{∥Vkgk∥2 − ∥Vk+1gk+1∥2}
rk

+ ∥hka1
∥2 − ∥hka2

∥2

≥ τ1ψ̃k
εK2

4
min

{ε
2
, K̂9

}
.

Using an argument similar to the first case, we can conclude that, for ka1 sufficiently large

∣∣∣ ka2−1∑
k=ka1

{ℓk − ℓk+1}
rk

+

ka2−1∑
k=ka1

ρk{∥Vkgk∥2 − ∥Vk+1gk+1∥2}
rk

∣∣∣ ≤ τ1ψ̃k
εK2

8
min

{ε
2
, K̂9

}
.

Therefore,

∥ha1∥2 − ∥ha2∥2 ≥ τ1ψ̃k
εK2

8
min

{ε
2
, K̂9

}
.

But this implies that the sequence {∥hkj∥} is unbound. This contradicts assumption PA3.
Thus the supposition is not correct and the theorem is proved.

From the way of updating the parameter ρ, we notice that the sequence {ρk} is un-
bounded only when there exist an infinite subsequence of indices {ki}, at which

1

2
Tpredk(ψ̃ks̄

t
k) < ∥Ak∇gkVkgk∥min

{
∥Ak∇gkVkgk∥,∆k

}
. (4.39)

The following lemma shows that if ρk → ∞ and lim supk→∞ ∥Vkgk∥ > 0 as k → ∞,
then the iteration sequence generated by the algorithm has a subsequence that satisfies the
infeasible Fritz John conditions in the limit.

Lemma 4.19. Assume PA1-PA5. If ρk → ∞, as k → ∞ and there exists a subsequence
{kj} of indices indexing iterates that satisfy ∥Vkgk∥ ≥ ε > 0 for all k ∈ {kj}, then a sub-
sequence of the iteration sequence indexed {kj} satisfies the infeasible Fritz John conditions
in the limit.
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Proof. Let the subsequence {ki} be renamed to {k} to simplify the notations avoiding double
indices. The proof is by contradiction. Suppose there exists no subsequence of the sequence
of iterates that satisfies the infeasible Fritz John conditions in the limit. Using Lemma (4.3),
we have for all k, |∥Vkgk∥2 − ∥Vk(gk + (Ak∇gk)TZkψ̃ks̄tk)∥2| ≥ ε1 for some ε1 > 0. From
(4.13), we have ∥ZkAk∇gkVkgk∥ ≥ ε2, for some ε2 > 0, hence

∥ZTk Ak∇gkVkgk + ZTk [Ak∇gkVkAk∇gTk + diag(∇gkVkgk)diag(ηk)]snk∥
≥ ∥ZTk Ak∇gkVkgk∥ − ∥ZTk [Ak∇gkVkAk∇gTk + diag(∇gkVkgk)diag(ηk)]∥∥snk∥
≥ ε2 −K1∥ZTk [Ak∇gkVkAk∇gTk + diag(∇gkVkgk)diag(ηk)]∥∥hk∥.

Since {∥hk∥} convergence to zero and ∥ZTk [Ak∇gkVkAk∇gTk + diag(∇gkVkgk)diag(ηk)]∥
is bounded, then we can write ∥ZTk Ak∇gkVkgk + [ZTk Ak∇gkVkAk∇gTk +
ZTk diag(∇gkVkgk)diag(ηk)]snk∥ ≥ ε2

2 . Therefore

∥ZTk ∇qk(Aksnk )∥ ≥ ρk∥ZTk Ak∇gkVkgk + ZTk [Ak∇gkVkAk∇gTk + diag(∇gkVkgk)diag(ηk)]snk∥
− ∥ZTk Ak∇xℓk + ZTk [AkHkAk + diag(∇xℓk)diag(ηk)]s

n
k∥

≥ ρk
ε2
2

− ∥ZTk Ak∇xℓk + ZTk [AkHkAk + diag(∇xℓk)diag(ηk)]s
n
k∥

≥ ρk

[ε2
2

− 1

ρk
∥ZTk Ak∇xℓk + ZTk [AkHkAk + diag(∇xℓk)diag(ηk)]s

n
k∥

]
.

From (4.25), we have

Tpredk(ψ̃ks̄
t
k) ≥

1

2
K3ψ̃kρk

[ε2
2

− 1

ρk
∥ZTk [Ak∇xℓk + H̃ks

n
k ]∥

min
{
∆k,

ε2
2 − 1

ρk
∥ZTk [Ak∇xℓk + H̃ks

n
k ]∥

∥ZTk [Ak∇gkVkAk∇gTk + diag(∇gkVkgk)diag(ηk)]Zk∥+ 1
ρk
∥ZTk H̃kZk∥

}]
,

where H̃k = AkHkAk + diag(∇xℓk)diag(ηk). For k sufficiently large we have

Tpredk(ψ̃ks̄
t
k)

≥ ε2
4
K3ψ̃kρkmin

{
∆k,

ε2
2∥ZTk [Ak∇gkVkAk∇gTk + diag(∇gkVkgk)diag(ηk)]Zk∥

}
.

Since ρk → ∞ there exists infinite number of acceptable iterates at which (4.39) hold.
From the way of updating the parameter ρk, as k goes to infinity, ρk → ∞. This gives a
contradiction unless ρk∆k is bounded. Hence ∆k → 0 and therefore ∥sk∥ → 0. We consider
two cases:
i) If ∥Vkgk∥2 − ∥Vk(gk + (Ak∇gk)TZkψ̃ks̄tk)∥2 > ε1, we have

ρk{∥Vkgk∥2 − ∥Vk(gk + (Ak∇gk)TZkψ̃ks̄tk)∥2|} > ρkε1 → ∞. (4.40)

From (4.23), Tpredk(ψ̃ks̄
t
k) can be written as follows

Tpredk(ψ̃ks̄
t
k) = −

[
ZTk (∇xℓk +Bkψ̃ks

n
k )]

T ψ̃ks̄
t
k −

1

2
ψ̃2
ks̄
tT

k Z
T
k GkZks̄

t
k

+
ρk
2
[∥Vkgk∥2 − ∥Vk(gk + (Ak∇gk)TZkψ̃ks̄tk)∥2

]
. (4.41)

Using (4.41), (4.40), and under problem assumptions PA3−PA5, we have Tpredk(ψ̃ks̄
t
k) →

∞. Hence , the left hand side of Inequality (4.39) tends to infinity while the right hand side
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goes to zero. This gives a contradiction in this case.
ii) If ∥Vkgk∥2 − ∥Vk(gk + (Ak∇gk)TZkψ̃ks̄tk)∥2 < −ε1, then

ρk{∥Vkgk∥2 − ∥Vk(gk + (Ak∇gk)TZkψ̃ks̄tk)∥2|} < −ρkε1 → −∞,

where ρk → ∞ as k → ∞. Similar to the above case, Tpredk(ψ̃ks̄
t
k) → −∞. This gives a

contradiction with Tpredk(ψ̃ks̄
t
k) > 0. This two contradictions prove the lemma.

The following lemma shows that if ρk → ∞ and lim infk→∞ ∥Vkgk∥ = 0 as k → ∞, then
the iteration sequence generated by the algorithm has a subsequence that satisfies the Fritz
John conditions in the limit.

Lemma 4.20. Assume PA1-PA5. If ρk → ∞, as k → ∞, and there exists a subsequence
indexed {kj} of iterates that satisfy ∥Vkjgkj∥ limk→∞ ∥hk∥ = 0, and there exists a subse-
quence {kj} of iterates that satisfies ∥Vkgk∥ > 0 for all k ∈ {kj} and limkj→∞ ∥Vkjgkj∥ = 0,
then a subsequence of the sequence of iterates indexed {kj} satisfies Fritz John conditions in
the limit.

Proof. Let the subsequence {kj} be renamed to {k} to simplify the notations avoiding double
indices. The proof is by contradiction. Assume there exists no subsequence that satisfies the
feasible Fritz John’s conditions in the limit. By using Lemma (4.4), there exists a constant
ε3 such that for all k sufficiently large,

| ∥Vkgk∥2 − ∥Vk(gk + (Ak∇gk)TZkψ̃ks̄tk)∥2 |
∥Vkgk∥2

≥ ε3. (4.42)

We consider three cases:
i) If lim infk→∞

ψ̃k s̄
t
k

∥Vkgk∥ = 0, the above inequality gives a contradiction.

ii) If lim supk→∞
ψ̃k s̄

t
k

∥Vkgk∥ = ∞. From the way of computing the tangential component of

the trial step, we have

ZTk ∇qk(Aksnk ) = −ZTk (Bk + υkI)Zks̄
t
k,

where υk ≥ 0 is the Lagrange multiplier of the trust region constraint. Using the above
equation, then Inequality (4.25) can be written in the form

Tpredk(ψ̃ks̄
t
k)

≥ K3

2
ψ̃k∥ZTk ∇qk(Aksnk )∥min

{
∆k,

∥ZTk [ 1
ρk
Gk + (υkρk I +Ak∇gkVk∇gTk Ak)]Zks̄tk∥

∥ZTk (
1
ρk
Gk +Ak∇gkVk∇gTk Ak)Zk∥

}
.

(4.43)

Because ρk → ∞, as k → ∞, there exists an infinite number of acceptable steps such that
Inequality (4.39) holds. But Inequality (4.39) can be written as

1

2
Tpredk(ψ̃ks̄

t
k) < ∥ZkAk∇gk∥2∥Vkgk∥2. (4.44)

From Inequalities (4.43) and (4.44), we have

K3

2
ψ̃k∥ZTk ∇qk(Aksnk )∥min

{
∆k,

∥ZTk [ 1
ρk
Gk + (υkρk I +Ak∇gkVk∇gTk Ak)]Zks̄tk∥

∥ZTk (
1
ρk
Gk +Ak∇gkVk∇gTk Ak)Zk∥

}
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< 2b22∥Vkgk∥2,

where b2 = supx∈Ω∥ZkAk∇gk∥. Hence, if we divided the above inequality by ∥Vkgk∥, we
obtain

K3

2
ψ̃k∥ZTk ∇qk(Aksnk )∥min

{ ∆k

∥Vkgk∥
,
∥ZTk [ 1

ρk
Gk + (υkρk I +Ak∇gkVk∇gTk Ak)]Zks̄tk∥

∥ZTk (
1
ρk
Gk +Ak∇gkVk∇gTk Ak)Zk∥∥Vkgk∥

}
< 2b22∥Vkgk∥. (4.45)

The right hand side of the above inequality goes to zero as k → ∞. This implies that along

the subsequence {ki} where limki→∞
ψ̃ki

s̄tki

∥Vki
gki

∥ = ∞, we have

∥ZTki∇qki(Akis
n
ki)∥

∥ZTki [
1
ρki
Gki + (

υki

ρki
I +Aki∇gkiVki∇gTkiAki)]Zki ψ̃ki s̄

t
ki
∥

∥ZTki(
1
ρki
Gki +Aki∇gkiVki∇gTkiAki)Zki∥∥Vkigki∥

,

is bounded. Therefore, asymptotically, either
ψ̃ki

s̄tki

∥Vki
gki

∥ lies in the null space of ZTki(
υki

ρki
I +

Aki∇gkiVki∇gTkiAki)Z
T
ki

or ∥Zki∇qki(Akisnki)∥ → 0.

The first possibility occurs only when
υki

ρki
→ 0 as ki → ∞ and

ψ̃ki
s̄tki

∥Vki
gki

∥ lies in the null

space of the matrix ZTkiAki∇gkiVki∇g
T
ki
AkiZki which contradicts Assumption (4.42) and

implies that a subsequence of the iteration sequence satisfies the Fritz John conditions in the
limit. The second possibility implies as ki → ∞, ∥ ZTki(∇xℓki+Gkis

n
ki
+ρkiAki∇gkiVki(gki+

(Aki∇gki)T snki)) ∥→ 0. Hence as ki → ∞, ρki∥ZTkiAki∇gkiVki(gki + (Aki∇gki)T snki)∥ must

be bounded. Also, ∥ZTki∇qki(Akis
n
ki
)∥ → 0, implies that ∥s̄tki∥ → 0. Using the fact that

∥hki∥ → 0, implies ∥snki∥ → 0, we have

∇fki +∇hki µ̄ki +∇gki ν̄ki = 0,

for some µ̄ki and ν̄ki . This implies that a subsequence of the iteration sequence satisfies the
Fritz John conditions in the limit.
iii)If lim supk→∞

ψ̃k s̄
t
k

∥Vkgk∥ <∞ and lim infk→∞
ψ̃k s̄

t
k

∥Vkgk∥ > 0. Therefore ∥s̄tk∥ → 0 and ∥snk∥ → 0

because ∥hk∥ → 0, sk → 0.
Hence, as in the second case, the right hand side of (4.45) goes to zero as k → ∞. This

implies that

∥ZTk ∇qk(Aksnk )∥
∥ZTk (

υk
ρk
I +Ak∇gkVk∇gTk Ak)Zkψ̃ks̄tk∥

∥ZTk Ak∇gkVk∇gTk Ak)Zk∥∥Vkgk∥
→ 0.

But this implies that asymptotically, either ∥ZTk ∇qk(Aksnk )∥ → 0, or
∥ZT

k (
υk
ρk
I+Ak∇gkVk∇gTk Ak)Zkψ̃k s̄

t
k∥

∥ZT
k Ak∇gkVk∇gTk Ak)Zk∥∥Vkgk∥

→ 0. As the second case, the two possibilities imply that a

subsequence of the iteration sequence satisfies the Fritz John conditions in the limit. This
completes the proof.

4.3 Convergence When ρk is bounded

We continue our analysis assuming that the parameter ρk is bounded. This means that, we
assume the existence of an integer k̄ such that for all k ≥ k̄, ρk = ρ̄ <∞, and

1

2
Tpredk(ψ̃ks̄

t
k) ≥ ∥Ak∇gkVkgk∥min{∥Ak∇gkVkgk∥,∆k}. (4.46)
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Without loss of generality we take k̄ = 1.
From assumptions PA3, PA5, and Assumption (4.46), we can say that there exists a

positive constant b3 such that for all k

∥Bk∥ ≤ b3, ∥ZTk Bk∥ ≤ b3, and ∥ZTk BkZk∥ ≤ b3, (4.47)

where Bk = AkHkAk + ρ̄Ak∇gkVk∇gTk Ak + diag(∇xℓ(xk, µk; ρ̄))diag(ηk).

Lemma 4.21. Assume PA1-PA5. Then there exists a constant K11 > 0 that does not
depend on k such that

qk(0)− qk(Akψ̃ks
n
k )−∆µTk (hk + (Ak∇hk)T ψ̃ksk) ≥ −K11ψ̃k∥hk∥. (4.48)

Proof. From (3.18), we have

qk(0)− qk(Akψ̃ks
n
k ) = −(Ak∇xℓ(xk, µk))

T ψ̃ks
n
k − 1

2
ψ̃2
ks
nT

k Gks
n
k

+
ρ̄

2
[∥Vkgk∥2 − ∥Vk(gk + (Ak∇gk)T ψ̃ksnk )∥2]

= −(Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk)T ψ̃ksnk

− 1

2
ψ̃2
ks
n
k
T (Gk + ρ̄Ak∇gkVk∇gTk Ak)snk

= −(Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk)T ψ̃ksnk

− 1

2
ψ̃2
ks
n
k
TBks

n
k .

Hence,

qk(0)− qk(Akψ̃ks
n
k )−∆µTk (hk + (Ak∇hk)T ψ̃ksk) = −(Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk)T ψ̃ksnk

− 1

2
ψ̃2
ks
n
k
TBks

n
k −∆µTk (hk + (Ak∇hk)T ψ̃ksk)

≥ −ψ̃k∥Ak∇xℓ(xk, µk)∥∥snk∥ − ρ̄ψ̃k∥Ak∇gkVkgk∥∥snk∥ − ψ̃2
k∥Bk∥∥snk∥2

− ∥∆µk∥∥hk + (Ak∇hk)T ψ̃ksk∥
≥ −ψ̃k[∥Ak∇xℓ(xk, µk)∥+ ρ̄∥Ak∇gkVkgk∥+ ∥Bk∥∥snk∥]∥snk∥
− ψ̃k∥∆µk∥∥Ak∇hk∥∥snk∥,

where −ψ̃2
k ≥ −ψ̃k. Using Inequality (4.18), we obtain

qk(0)− qk(Akψ̃ks
n
k )−∆µTk (hk + (Ak∇hk)T ψ̃ksk)

≥ −ψ̃k[(∥Ak∇xℓ(xk, µk)∥+ ρ̄∥Ak∇gkVkgk∥
+ ∥Bk∥∥snk∥+ ∥∆µk∥∥Ak∇hk∥)K1]∥hk∥.

Under Assumptions PA3, PA4, and PA5, the facts that ∥snk∥ ≤ δmax, and using (4.47),
there exists K11 > 0 which is independent of k, such that Inequality (4.48) hold. This
completes the proof.

Lemma 4.22. Assume PA1-PA5, then for all k,

Predk ≥ 1

2
K3ψ̃k∥ZTk ∇qk(Aksnk )∥min

{
∆k,

∥ZTk ∇qk(Aksnk )∥
∥B̄k∥

}
+∥Ak∇gkVkgk∥min{∥Ak∇gkVkgk∥,∆k}
−K11ψ̃k∥hk∥+ rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2]. (4.49)
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Proof. From (3.17), we have

Predk = [qk(Akψ̃ks
n
k )− qk(Akψ̃ksk)] + [qk(0)− qk(Akψ̃ks

n
k )−∆µTk (hk + (Ak∇hk)T ψ̃ksk)]

+ rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

Using (4.23), the above equation can be written in the form

Predk =
1

2
Tpredk(ψ̃ks̄

t
k) +

1

2
Tpredk(ψ̃ks̄

t
k)

+[qk(0)− qk(Akψ̃ks
n
k )−∆µTk (hk + (Ak∇hk)T ψ̃ksk)]

+rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

Using Inequalities (4.25), (4.46), and (4.48), we have

Predk ≥ 1

2
K3ψ̃k∥ZTk ∇qk(Aksnk )∥min

{
∆k,

∥ZTk ∇qk(Aksnk )∥
∥B̄k∥

}
+∥Ak∇gkVkgk∥min{∥Ak∇gkVkgk∥,∆k}
−K11ψ̃k∥hk∥+ rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

This completes the proof.

Lemma 4.23. Assume PA1-PA5. Let k be the index of an iteration at which rk is increased.
Then there exists a constant K12 > 0 that does not depend on k, such that

rkψ̃kmin{∥hk∥, δk} ≤ K12. (4.50)

Proof. Since rk is increased at the kth iteration and since ρk = ρ̄ is bounded, then from
(3.20), we can write

rk
2
[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2] = [qk(Akψ̃ksk)− qk(Akψ̃ks

n
k )] + [qk(Akψ̃ks

n
k )− qk(0)]

+ ∆µTk (hk + (Ak∇hk)T ψ̃ksk)

+
b0
2
[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2]

= −1

2
Tpredk(ψ̃ks̄

t
k)−

1

2
Tpredk(ψ̃ks̄

t
k)

+ [qk(Akψ̃ks
n
k )− qk(0) + ∆µTk (hk + (Ak∇hk)T ψ̃ksk)]

+
b0
2
[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

Applying Inequality (4.20) to the left hand side and Inequalities (4.25), (4.46), and (4.48)
to the right hand side, we obtain

rk
2
K2ψ̃k∥hk∥min{δk, ∥hk∥} ≤ −K3

2
ψ̃k∥ZTk ∇qk(Aksnk )∥min

{
∆k,

∥ZTk ∇qk(Aksnk )∥
∥B̄k∥

}
− ∥Ak∇gkVkgk∥min{∥∇gkVkgk∥,∆k}+K11ψ̃k∥hk∥

+
b0
2
∥hk∥2

≤ K11ψ̃k∥hk∥+
b0
2
∥hk∥2.

The rest of the proof follows using the fact that ψ̃k ≤ 1 and assumption PA3.
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Lemma 4.24. Assume PA1-PA5. At any given iteration k at which ∥hk∥ ≤ ϕ̃δk and
∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk)∥+ ∥Ak∇gkVkgk∥ ≥ ε, where ε > 0 and ϕ̃ is a positive
constant given by

ϕ̃ ≤ min

{
ε

6b3K1δmax
,

√
3

2K1
,
K3ε

24K11
min

{ 2ε

3δmax
, 1
}
,

ε

8K11
min

{ 2ε

δmax
, 1
}}

, (4.51)

there exists a positive constant K13 that depends on ε but does not depend on k, such that

Predk ≥ K13ψ̃δk + rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃sk∥2]. (4.52)

Proof. Let ∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk)∥ ≥ ε
2 . Using Inequalities (4.18) and (4.47),

we have

∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk +Bks
n
k )∥ ≥ ∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk)∥

− ∥ZTk Bksnk∥
≥ ∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk)∥
− b3K1∥hk∥.

Since ∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk)∥ ≥ ε
2 , ∥hk∥ ≤ ϕ̃δk, and ϕ̃ ≤ ε

6b3K1δmax
, then we

have
∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk +Bks

n
k )∥ ≥ ε

2
− b3K1ϕ̃δk ≥ ε

3
. (4.53)

Since ∆k =
√
δk

2 − ∥snk∥2 and ∥snk∥ ≤ K1∥hk∥ ≤ K1ϕ̃δk ≤ K1

√
3

2K1
δk =

√
3
2 δk, then we

obtain ∆2
k = δ2k − ∥snk∥2 ≥ δ2k − 3

4δ
2
k = 1

4δ
2
k. Hence,

∆k ≥ 1

2
δk. (4.54)

Since ∥hk∥ ≤ ϕ̃δk, ψ̃k ≤ 1, and using Inequalities (4.49), (4.53), and (4.54), then

Predk ≥ 1

2
K3ψ̃k∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk +Bks

n
k )∥

min
{
∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk +Bks

n
k )∥,

1

2
δk

}
−K11ψ̃k∥hk∥+ rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃sk∥2]

≥ K3ψ̃kε

12
δkmin

{ 2ε

3δmax
, 1
}
−K11ϕ̃ψ̃kδk + rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

Since ϕ̃ ≤ K3ε
24K11

min{ 2ε
3δmax

, 1}, then we have

Predk ≥ K3ψ̃kε

24
min

{ 2ε

3δmax
, 1
}
δk + rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

Now, consider the case when ∥Ak∇gkVkgk∥ ≥ ε
2 . Using Inequalities (4.49) and (4.54), we

have

Predk ≥ ∥Ak∇gkVkgk∥min
{
∥Ak∇gkVkgk∥,

1

2
δk

}
−K11ψ̃∥hk∥+ rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2]



150 BOTHINA EL-SOBKY

≥ ψ̃∥Ak∇gkVkgk∥min
{
∥Ak∇gkVkgk∥,

1

2
δk

}
−K11ψ̃∥hk∥+ rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2]

≥ ψ̃ε

4
min

{ 2ε

δmax
, 1
}
δk −K11ψ̃ϕ̃δk + rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

Since ϕ̃ ≤ ε
8K11

min{ 2ε
δmax

, 1}, we have

Predk ≥ ψ̃ε

8
min

{ 2ε

δmax
, 1
}
δk + rk[∥hk∥2 − ∥hk + (Ak∇hk)T ψ̃ksk∥2].

Take K13 = min
{
K3ε
24 min{ 2ε

3δmax
, 1} , ε

8 min{ 2ε
δmax

, 1}
}
, the result follows.

From the above lemma, we can easily see that, at any iteration at which either
∥ZTk (Ak∇xℓ(xk, µk) + ρ̄Ak∇gkVkgk)∥ ≥ ε

2 > 0 or ∥Ak∇gkVkgk∥ ≥ ε
2 > 0 and ∥hk∥ ≤ ϕ̃δk,

where ϕ̃ is given by (4.51), there is no need to increase the value of the penalty parameter.
i.e., rk is increased only when ∥hk∥ ≥ ϕ̃δk.

Lemma 4.25. Assume PA1-PA5. If at the jth trial iterate of any iteration indexed k, the
penalty parameter rkj is increased, then there exists a positive constant K14 that does not
depend on k or j, such that

rkj ψ̃kj∥hk∥ ≤ K14. (4.55)

Proof. The proof follows directly from Inequalities (4.32) and (4.50).

Lemma 4.26. Assume PA1-PA5. If rk → ∞, then

lim
ki→∞

∥hki∥ = 0, (4.56)

where {ki} is subsequence indices the iterates at which the penalty parameter is increased.

Proof. The proof follows directly from the above lemma and limk→∞ ψ̃k = 1.

4.4 Main convergence theory

In this section, we prove our main global convergence results for our trust-region algorithm
for solving Problem (1.1). In the following theorem, we prove that the sequence {∥hk∥}
converges to zero.

Theorem 4.27. Assume PA1-PA5. Then the sequence of iterates generated by the algo-
rithm satisfies

lim
k→∞

∥hk∥ = 0. (4.57)

Proof. Assume that lim supk→∞ ∥hk∥ ≥ ε > 0. This implies the existence of an infinite
subsequence of indices {kj} indexing iterates that satisfy ∥hkj∥ ≥ ε

2 . From Lemma (4.12),
there exists an infinite sequence of acceptable steps. Without loss of generality, we assume
that all members of the sequence {kj} are acceptable iterates. We consider two cases:
i) If {rk} is unbounded, then there exists an infinite number of iterates {ki} at which the
penalty parameter rk is increased. From Lemma (4.26), for k sufficiently large, the two
sequences {ki} and {kj} do not have common elements. Let ka1 and ka2 be two consecutive
iterates at which the penalty parameter rk is increased and ka1 < k < ka2 , where k ∈ {kj}.
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The penalty parameter rk is the same for all iterates that lie between ka1 and ka2 . Since all
the iterates of {kj} are acceptable, then for all k ∈ {kj},

Φk − Φk+1 = Aredk ≥ τ1Predk.

From Inequality (4.21) and the above inequality, we can write

Φk − Φk+1

rk
≥ τ1K2ψ̃k

2
∥hk∥min{∥hk∥, δk}.

Summing over all acceptable iterates that lie between ka1 and ka2 , we have

ka2−1∑
k=ka1

Φk − Φk+1

rk
≥ τ1K2ψ̃kε

4
min

{
K̂9,

ε

2

}
,

where K̂9 is as K9 in (4.34), with ε is replaced by ε
2 . Hence,

ℓ(xka1
, µka1

; ρ̄)− ℓ(xka2
, µka2

; ρ̄)

rka1

+ [∥hka1
∥2 − ∥hka2

∥2] ≥ τ1K2ε

4
min

{
K̂9,

ε

2

}
.

Since rk → ∞, then for ka1 sufficiently large, we have

| ℓ(xka1
, µka1

; ρ̄)− ℓ(xka2
, µka2

; ρ̄) |
rka1

<
τ1K2ε

8
min

{
K̂9,

ε

2

}
.

Therefore,

∥hka1
∥2 − ∥hka2

∥2 ≥ τ1K2ε

8
min

{
K̂9,

ε

2

}
.

But this leads to a contradiction with Lemma (4.26) unless ε = 0.
ii) If {rk} is bounded, then there exists an integer k̃ such that for all k ≥ k̃, rk = r̃. Hence

from Inequality (4.21), we have for any k̂ ∈ {kj} and k̂ ≥ k̃

P redk̂ ≥
r̃K2ψ̃k̂

2
∥hk̂∥min{δk̂, ∥hk̂∥} ≥

εr̃K2ψ̃k̂
4

min
{ ε

2δmax
, 1
}
δk̂. (4.58)

Since all the iterates of {kj} are acceptable, then for any k̂ ∈ {kj}, we have

Φk̂ − Φk̂+1 = Aredk̂ ≥ τ1Predk̂.

Hence, from Inequality (4.58) and the above inequality we have

Φk̂ − Φk̂+1 ≥
τ1εr̃K2ψ̃k̂

4
min

{ ε

2δmax
, 1
}
δk̂.

Using Lemma (4.15) and the above inequality, we have

Φk̂ − Φk̂+1 ≥
τ1εr̃K2ψ̃k̂

4
min

{ ε

2δmax
, 1
}
K̂9 > 0,

where K̂9 is as above. This gives a contradiction with the fact that {Φk} is bounded when
{rk} is bounded. Hence, in both cases, we have a contradiction. Thus the supposition is not
correct and the theorem is proved.
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Theorem 4.28. Assume PA1-PA5. Then the sequence of iterates generated by the algo-
rithm satisfies

lim inf
k→∞

[ ∥ZTk Ak∇xℓk∥+ ∥Ak∇gkVkgk∥ ] = 0. (4.59)

Proof. First, we prove that

lim inf
k→∞

[∥ZTk (Ak∇xℓk + ρ̄Ak∇gkVkgk)∥+ ∥Ak∇gkVkgk ∥ ] = 0. (4.60)

We prove (4.60) by contradiction. Suppose that, for all k, ∥ ZTk Ak(∇xℓk + ρ̄∇gkVkgk) ∥ +
∥Ak∇gkVkgk∥ > ε. Assume that there exists an infinite subsequence {ki} such that ∥hki∥ >
ϕ̃δki , where ϕ̃ satisfy (4.51). Since ∥hk∥ → 0, we have

lim
ki→∞

δki = 0.

Consider any iterate kj ∈ {ki}. There are two cases to consider.
i) If {rk} is unbounded. For the rejected trial step j − 1 of iteration k, we have ∥hk∥ >
ϕ̃δkj = α1ϕ̃∥skj−1∥. Using Inequalities (4.21) and (4.30) and the fact that the trial step
skj−1 was rejected, we have

(1− τ1) ≤ |Aredkj−1 − Predkj−1 |
Predkj−1

≤ [2K6∥skj−1∥+ 2K7rkj−1∥skj−1∥∥hk∥+ 2K8rkj−1∥skj−1∥2]
rkj−1K2 min(α1ϕ̃, 1)∥hk∥

≤ 2K6

rkj−1K2α1ϕ̃min(α1ϕ̃, 1)
+

2K7 + 2K8α1ϕ̃

K2α1ϕ̃min(α1ϕ̃, 1)
∥skj−1∥.

Because {rk} is unbounded, there exists an iterate k̂ sufficiently large such that for all k ≥ k̂,
we have

rkj−1 >
4K6

K2α1ϕ̃min(α1ϕ̃, 1)(1− τ1)
.

This implies that for all k ≥ k̂,

∥skj−1∥ ≥ K2α1ϕ̃min(α1ϕ̃, 1)(1− τ1)

4(K7 +K8α1ϕ̃)
.

From the way of updating the trust region radius, we have

δkj = α1∥skj−1∥ ≥ K2α
2
1ϕ̃min(α1ϕ̃, 1)(1− τ1)

4(K7 +K8α1ϕ̃)
.

This gives a contradiction. So δkj can not go to zero in this case.
ii) If the sequence {rk} is bounded. There exists an integer k̄ and a constant r̄ such that for
all k ≥ k̄, rk = r̄. Let k ≥ k̄ and consider a trial step j of iteration k, such that ∥hk∥ > ϕ̃δkj .

If j = 1, then from our way of updating the trust-region radius, we have δkj ≥ δmin.
Hence δkj is bounded in this case. If j > 1, and

∥hkl∥ > ϕ̃δkl , (4.61)

for l = 1, . . . , j, then for all rejected trial steps l = 1, . . . , j − 1 of iteration k, we have

(1− τ1) ≤
|Aredkl − Predkl |

Predkl
≤ 2K5∥skl∥
K2 min(ϕ̃, 1)∥hk∥

.
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Hence,

δkj = α1∥skj−1∥ ≥ α1K2 min(ϕ̃, 1)(1− τ1)∥hk∥
2K5

≥ α1K2 min(ϕ̃, 1)(1− τ1)ϕ̃

2K5
δk1

≥ α1K2 min(ϕ̃, 1)(1− τ1)ϕ̃

2K5
δmin.

Hence δkj is bounded in this case too. If j > 1 and (4.61) does not hold for all l, there exists
an integer m1 such that (4.61) holds for l = m1 + 1, . . . , j and

∥hkl∥ ≤ ϕ̃δkl , (4.62)

for l = 1, . . . ,m1. As in the above case, we can write

δkj ≥ α1K2 min(α, 1)(1− τ1)

2K5
∥hk∥ ≥ α1K2 min(ϕ̃, 1)(1− τ1)ϕ̃

2K5
δkm1+1 . (4.63)

But from our way of updating the trust-region radius, we have

δkm1+1 ≥ α1∥skm1∥. (4.64)

Now, using (4.62), Lemma (4.24), and the fact that the trial steps skm1 is rejected, we can
write

(1− τ1) ≤
|Aredkm1 − Predkm1 |

Predkm1

≤ 2K5r̄∥skm1 ∥
K13

.

This implies

∥skm1∥ ≥ K13(1− τ1)

2K5r̄
.

This implies that, ∥skm1∥ is bounded. This fact together with (4.63) and (4.64) imply that
δkj is bounded in this case too. Hence δkj is bounded in all cases.

This contradiction implies that for kj sufficiently large, all the iterates satisfy ∥hk∥ ≤
ϕ̃δkj . This implies using Lemma (4.23) that there is no need to increase the value of the
penalty parameter. So, {rk} is bounded. Letting kj ≥ k̄ and using Lemma (4.23), we have

Φkj − Φkj+1 = Aredkj ≥ τ1Predkj ≥ τ1K13δkj .

As k goes to infinity the above inequality implies that

lim
k→∞

δkj = 0. (4.65)

This implies that the radius of the trust region is not bounded below. But this leads to
a contradiction because if we consider an iteration kj > k̄ and if the previous step was
accepted; i.e., j = 1, then δk1 ≥ δmin. Hence δkj is bounded in this case.

Now assume that j > 1. i.e., there exists at least one rejected trial step. For the rejected
trial step skj−1 , using Lemmas (4.11) and (4.23), we must have

(1− τ1) <
r̄K5∥skj−1∥2

K13δkj−1

.

From the way of updating the trust-region radius, we have

δkj = α1∥skj−1∥ > α1K13(1− τ1)

r̄K5
.



154 BOTHINA EL-SOBKY

Hence δkj is bounded. But this contradicts (4.65). The supposition is wrong. Hence,

lim inf
k→∞

[ ∥ZTk Ak(∇xℓk + ρ̄∇gkVkgk)∥+ ∥Ak∇gkVkgk∥ ] = 0.

But this also implies (4.59). This completes the proof of the theorem.

From the above two theorems, we conclude that, given any ε > 0, the algorithm termi-
nates because ∥ZTk Ak∇xℓk∥+ ∥Ak∇gkVkgk∥+ ∥hk∥ < ε, for some finite k.

5 Numerical Results

In this section, we present the numerical results of the interior-point trust-region Algorithm
3.1 which have been performed on a laptop with Intel Core (TM)i7-2670QM CPU 2.2 GHz
and 8 GB RAM. Algorithm 3.1 was implemented as a MATLAB code and run under MAT-
LAB version 7.10.0.499 (R2010a).

Given a starting point x0 ∈ int(F), we choose the initial trust-region radius δ0 =
max(∥sncp0 ∥, δmin), where δmin = 10−3. We choose the maximum trust-region radius
δmax = 103δ0. The values of the constants that are needed in Step 0 of Algorithm 3.1
were set τ1 = .25, τ2 = 0.75, α1 = 0.5, α2 = 2, ε1 = 10−8, ε2 = 10−10 and θ = 0.9995.

Successful termination with respect to our trust-region algorithm means that the termi-
nation condition of the algorithm is met with ε1 = 10−8. On the other hand, unsuccessful
termination means that the number of iterations is greater than 300, the number of function
evaluations is greater than 500, or the length of the trial step is less than ε2. A flowchart of
Algorithm 3.1 as shown in Figure(6.1)

The results Algorithm 3.1 are reported in Table 1 where the test problems are numbered
in the same way as in [14]. For example, HS53 is the problem 53 in [14]. For comparison,
we have included the corresponding results obtained by a trust-region algorithm combining
line search filter technique for nonlinear constrained optimization in [19] and Lancelot [3].
For all problems, these algorithms achieved the same optimal solution at the same starting
points in [14].

In many of the test problems reported in Table 1, the number of iterations (iter) and
the number of function evaluations (nfunc) of Algorithm 3.1 are better than those obtained
by method [3] or method [19]. This indicates the viability of our approach. However, we
believe that our algorithm needs to be refined with efficiency in mined to be suitable for
bounded large-scale problems.

6 Concluding Remarks

We described an interior-point active-set trust-region algorithm for solving general non-
linear programming problem with bound on variables. The algorithm handles inequality
constraints in a fashion similar to the approach of [5] for treating the active constraints. In
this algorithm, an active set strategy is used together with a Coleman-Li strategy and a
projected Hessian technique to transform the computation of the trial step at each itera-
tion to two easy trust-region sub-problems similar to the trust region sub-problems of the
unconstrained optimization problem.

We proved that the algorithm is globally convergent under mild conditions and a subse-
quent of the sequence of iterate generated by the algorithm converges to either Fritz John
point, or an infeasible Fritz John point or KKT point.

For future work, there are many question should be answered.
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• Although we have implemented the algorithm and tested it, we believe that the imple-
mentation of the algorithm should be refined with efficiency in mined. In particular, a
better way of solving the trust-region subproblems that can handle large-scale bound
constrained optimization problems should be used.

• Improving the proposed algorithm to be capable for treating nondifferentiation bound
constrained optimization problem with equality and inequality constraints.

• Updating the Lagrange multiplier is another point that needs to be refined. In partic-
ular, an inexpensive way for updating the Lagrange multiplier is needed. This indeed
will reduce the cost of the computation of the steps.

• A related important question that has to be looked at is how to use a secant approx-
imation of the Hessian of the Lagrangian matrix in order to produce a more efficient
algorithm.
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Problem name Method in [3] Method in [19] Algorithm 3.1

iter nfunc iter nfunc iter nfunc

HS6 49 56 12 21 4 5
HS7 18 19 9 21 7 8
HS8 - - 2 2 5 7
HS9 4 5 7 8 6 8
HS10 17 18 - - 17 20
HS11 15 16 - - 20 23
HS12 22 23 - - 12 15
HS14 12 13 - - 13 14
HS16 15 16 - - 17 20
HS26 - - 20 50 12 13
HS28 - - 5 6 5 6
HS30 7 8 - - 3 4
HS33 12 12 - - 13 14
HS34 19 19 - - 21 23
HS39 20 21 21 66 12 13
HS40 10 11 16 56 5 6
HS41 6 7 - - 8 9
HS42 12 13 9 12 3 4
HS47 - - 19 27 5 6
HS48 - - 7 9 4 5
HS49 - - 32 42 9 10
HS50 - - 11 12 15 20
HS51 - - 4 6 4 5
HS52 - - 7 7 7 14
HS53 6 7 - - 4 5
HS60 15 15 - - 6 7
HS77 22 24 - - 9 10
HS78 11 11 16 59 4 7
HS79 9 10 10 13 6 7
HS80 14 15 - - 5 6
HS81 16 17 - - 5 6

Table 1: Comparison of method in [3] and [19] with Algorithm 3.1 respectively.
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Figure 1: flowchart of Algorithm 3.1


