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Abstract: In this work, an active-set method is used to transform a general nonlinear programming problem
with bounds on the variables to an equality constrained optimization problem with bound on the variables.
By using a Coleman-Li strategy the iterates which are generated by the proposed algorithm are strictly
feasible. An interior-point Newton method is used and a trust-region globalization strategy is added to the
algorithm to insure global convergence. A reduced Hessian technique is used to overcome the difficulty of
having an infeasible trust-region subproblem. A global convergence analysis for this algorithm is presented
under credible assumptions. Preliminary numerical results are reported.
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Introduction

In this paper, we consider the following general nonlinear programming problem with bounds

on the variables
minimize  f(x)

subject to  h(z) = 0,
oz) < 0 (1.1)
a<z< B,

where a € {RU{—o0}}", 8 € {RU{+0o0}}", and @ < 3. The functions f : R" — R,
h:R" — RP and g : R — R are twice continuously differentiable. We assume that p < n
and no restriction is assumed on m.

In this paper, we use the active-set method in [5] to transform the above problem to an
equality constrained optimization problem with bound variables. The characteristic of the
proposed active set is that it is identified and updated naturally by the step. See ( [9,10,12]).

Motivated by the impressive computational performance of the primal dual interior-point
method for linear programming, authors in [6,22] using the Coleman-Li scaling matrix [2],
proposed a primal interior-point algorithm for solving nonlinear programming problems
having a special structure. In particular, their algorithm is designed for solving a special
nonlinear programming where the vector of primal variables x is naturally divided into
a vector of state variables and a vector of control variables. They proved several global
and local convergence results for their algorithm. In this paper, we use the Coleman-Li
scaling matrix [2] to propose the interior-point trust-region algorithm for solving nonlinear
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programming Problem (1.1). The Coleman-Li scaling matrix was first introduced by [2] for
unconstrained optimization problem and used by [6,8] for equality constrained optimization
problem.

As we know a trust-region method is a well-accepted technique in nonlinear optimization
to assure global convergence and is more robust when they deal with rounding errors, so
we used it in this paper. One of the advantages of trust-region method is that it does not
require the objective function of the model to be convex. However, in traditional trust-
region method, after solving a trust-region subproblem, we need to use some criterion to
check if the trial step is acceptable. If not, the subproblem must be resolved with a reduced
trust-region radius. For more details see ( [11,16,19,23,24,26]).

If the trust-region constraint is simply added to the sequential quadratic subproblem of
the equality constrained optimization problem, the resulting trust-region subproblem may be
infeasible, because there may be no intersecting points between the trust-region constraint
and the hyperplane of the linearized constraints. Even if they intersect, there is no guarantee
that this will remain true if the trust-region radius is decreased. For more details see [6].

A reduced Hessian is a successful approach to overcoming the difficulty of having an infea-
sible trust-region subproblem. The approach was suggested by [1,17] and used by [4,17-19],
[27]. In this approach, the trial step is decomposed into two orthogonal components; the
tangential component and the normal component. Each component is computed by solving
a trust-region subproblem. One of the advantages of this approaches, the two subproblems
are similar to the trust-region subproblem for the unconstrained case. Under credible as-
sumptions, a convergence theory for the proposed interior-point trust-region algorithm is
introduced.

In this paper, we use the symbol fi = f(zx), hi = h(xk), gr = g(xr), b = (g, pr),
Vil = Vi l(zk, pi), and so on. We use the notation x,(;') to denote the ith component of
the vector zj, and so on. Finally, all the norms used in this paper are fo-norms.

The paper is organized as follows. Active-set and Newton’s method are described in in
Section 2. A detailed description of the main steps of the algorithm are presented in Section
3. Section 4 is devoted to analysis of the global convergence of the proposed algorithm. In
Section 5, numerical results are reported. Finally, Section 6 contains concluding remarks.

An Active-Set and Newton’s Method

Following the active set method in [5], we define a 0-1 diagonal matrix V (z) € R™*™, whose
diagonal entries are

1 if gi(x) >0,

vil@) = { 0 if gi(a) < 0. @1)

Using the above matrix, Problem (1.1) is converted to the following equality constrained
optimization problem
minimize f(z)

subject to h(z) =0,
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Using penalty method, the above problem can be written as follows
minimize  f(x) + 2|V ()g(2)|
subject to h(zx) =0, (2.2)
a<z<p,

where p is a positive parameter. Let

E(m,u) = f(.T) + /’LTh(x)a (23)

and
Ua, i p) = Lo, )+ NIV (@)g()]%. (2.4)

where p is a Lagrange multiplier vector associated with equality constraint h(x).
The Lagrangian function associated with Problem (2.2) is defined as follows

L(x?ll'a)‘ou )‘B) = €<$aM;P) - )‘g(x - a) - )‘g(ﬁ - m)? (25)

where the vectors A, and Ag are Lagrange multiplier vectors associated with inequality
constraints (z — a) and (8 — x) respectively.

The first-order necessary conditions for a point z, to be a local minimizer of Prob-
lem (2.2) are the existence of multipliers p, € R, A\, € R}, and A\g, € RN, such that
(@, facs Ao, A3, ) satisfies

Vaol(ZTus o pi) — Aax + A, = 0, (2.6)
h(z,) = O, (2.7)
a<z, < B, (2.8)

and for all e corresponding to (¢} with finite bound, we have

)\aie)(:vff) —al?) = 0, (2.9)
A0 (8) —2l) = o, (2.10)
where
Vo l(@, fha; pi) = Vil (2, ) + pu V(@) V(22) g (24, (2.11)
and
Val(Zw, pn) = V(xe) + VR(2,) fh. (2.12)

Motivated by the Coleman-Li scaling matrix [8], we define a diagonal matrix A(x) whose
diagonal elements are

V(@@ — o), if (Vl(z, 15 p)© >0 and al®) > —co,
(@) = § V(B —2), if (Vol(x, 13 p)) < 0 and B < +oc , (2.13)

1, otherwise.

Let F={z:a <z <g}andint(F)={x:a <z < f}. Using the scaling matrix A(x), the
first-order necessary conditions for the point z, to be a local minimizer of Problem (1.1) are
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that z. € F and there exists a Lagrange multiplier vector pu., such that (z., u) solves the
following nonlinear system

A @)V l(z, psp) = 0, (2.14)
h(z) = 0. (2.15)
Any point (x., p.) that satisfies the conditions (2.14)-(2.15) is called a Karush-Kuhn-Tucker
point or a KKT point. For more details see [13].
System (2.14)-(2.15) is continuous but not everywhere differentiable. The non-differentiability
occurs at two cases:
i) If a(®)(z) = 0, then these points are avoided by restricting = € intF.

i) If a variable 2(¢) has a finite lower bound and an infinite upper bound (or vice-verse)
and (V,£(z, 11;p))(® = 0. But these points are not significant. So, we define a vector

9(a)(2))?
(e) - )
n (1") - 333(6) )
such that n(®)(z) = 0 when (V,£(z, i1; p))(®) = 0. This is equivalent to

1, if (Vil(z, ;)@ >0 and al® > —oo,
nx) =<1, if (Vaol(z,p:p)@ <0 and B© < oo, (2.16)

0, otherwise.
Applying Newton’s method on the nonlinear system (2.14)-(2.15), then we have

[A%(2)V3l(x, 5 p) + diag(Val(z, p; p))diag(n(z))] Az

A2 (@) Vh(2) A = —A2(@)V o, i ), (2.17)
Vh(z)T Az = —h(z), (2.18)

where
Vil(x, p;p) = H + pVg(2)V (2)Vg(z)", (2.19)

and H is the Hessian of the Lagrangian function (2.3) or an approximation to it.

Restricting x € int(F) makes A(x) necessarily nonsingular. Therefore, multiplying both
side of Equation (2.17) by A~(x), and put Az = A(z)s in both Equation (2.17)and (2.18),
we have

[A(a)V3e(x, 15 p) A(x) + diag(V.L(z, u; p))diag(n(w))]s
T A V() Ap = —A@)V o, i ), (2.20)
(A(z)Vh(z))Ts = —h(z). (2.21)

The above system shares the advantages and the disadvantages of Newton’s method. From
the good side of Newton’s method, it converges quadratically to stationary point (2., fu)
under reasonable assumptions. From the bade side of Newton’s method, it may not converge
at all if the starting point is far away from the solution. Trust-region approach is a very
successful approach to ensure global convergence from any starting point. To add trust
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region constraint we have to rewrite the above system as a minimization problem. An
equivalent problem is the following quadratically programming problem

1
minimize  £(x, ;5 p) + (A(2) Vil (z, 13 0)) s + §STBS

(2.22)
subject to h(z) 4 (A(x)Vh(z))Ts = 0,
where
B = G(x)+ pA(x)Vg(x)V(2)Vg(z)T A(z), (2.23)
and
G(z) = A(x)H(z)A(z)+ diag(Val(z, p; p))diag(n(z)). (2.24)

That is, the point (z., 1) that satisfies the first order necessary conditions of Problem (2.22)
will satisfy the first order necessary conditions of Problem (1.1).

In the following section, we present main steps of the proposed interior-point trust-region
algorithm for solving Problem (1.1).

Outline of the Proposed Algorithm

This section is devoted to presenting the outline for the main steps of interior-point trust-
region algorithm.

Evaluating s;

Consider the following trust-region sub problem

1
minimize  £(xy, pr; pr) + (A Vol (Tr, pr; pr))Ts + §STB]€8

subject to i + (AxVhy)Ts = 0, (3.1)

HS” < 0,

where §; is the radius of the trust-region. To evaluate the step s, a reduced Hessian
method is used for overcoming the difficulty of having an infeasible trust-region subproblem
(3.1). In this method, the step s is decomposed into two orthogonal components; the
normal component s} and the tangential component s} = Z; 5% where Zj, is a matrix whose
columns form an orthonormal basis for the null space of (A;Vhi)T. The step s, has the
form s, = s} + Zy5k.

To compute the normal component s}, we solve the following trust-region subproblem

minimize %Hhk + (A Vhy)Ts™|?

(3.2)
subject to Is™]] < o,
for some ¢ € (0,1).
It is not necessary to obtain a very accurate approximation to the solution of subproblem
(3.2). Instead any approximation to the solution of subproblem (3.2) can be used as long
as the normal predicted decrease obtained by the normal component s} is greater than or
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equal to a fraction of the normal predicted decrease obtained by the normal Cauchy step
" That is
Sk
1Bkl = 1w + (AN )32 > 01 {[|g]1? = [|he + (AR Vhg) T2}, (3.3)

ncp

for some ¥, € (0,1]. The normal Cauchy step s, is defined as
SZCP = —tZCpAthkhk, (3.4)

where the parameter ¢;” is given by

| AxVhyhi|? ¢ | AxVhghi|? s
[(ARVhi)T AV hychie||? (AR Vhi)T A Vhihy) |2~
£er — and [|(AxVhi)T A, Vhihy)| > 0, (3.5)
Ok
MA 2 2 11 h . )
(| Ak V hychy | otherwise

Let q(Ags) be the quadratic form of the function (2.4) and defined as follows
1
q(Ags) = L(xg, pi; pre) + (Ap Vil (wg, s pr)) ' s + §8TBkS. (3.6)

Then Vi (Arsy) = ApVol(wg, pr; pr) + Brsy.
Given s}, we compute the tangential component si = Z;st by solving the following
trust-region subproblem

1
minimize  [Z;Vqr(Ags}) + Besil]"s' + §§tT ZT By Zy 5" .
subject to 125" < A,

where A = /67 — ||s?[2.

A tangential predicted decrease which is obtained by the tangential component s} is
given by
Tpredy(5},) = au(Arsy) — au(Ax(s + Z13}))- (3.8)

To solve subproblem (3.7), any method can be used as long as T'predy(s,) is greater than
or equal to a fraction of the tangential predicted decrease Tpredk(éf:p ) which is obtained
by the tangential Cauchy step 5,7. That is

Tpredy,(54) > 0o Tpredy(5,7), (3.9)
for some 92 € (0,1]. The tangential Cauchy step 5,7 is defined as follows
57 = P ZEV g (Asy), (3.10)

where the parameter ¢, is given by

e : 12 Ve Aus) N
(ZIVa(Aes)) T B2 Var(Axsh) (2] Vau(Ars))T BeZ] Var(Ags) —
pler — and (ZTVae(Arst)T Be ZT Vi (Aps?) > 0,
Ay
1ZEV i (Arsp)|| therwi
125 Var(Axsy) || otherwise,

(3.11)
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such that Bk = ZZBka.

A generalized dogleg algorithm can be used to compute the two components of the trial
step. This algorithm produces the double fraction of the Cauchy decrease on the tangential
and the normal predicted decrease. A convergence theory of the proposed algorithm is based
on the fraction of cauchy decrease condition. For more details see [20] and [21].

Once sy is computed, we set zp+1 = xf + Arsg. To ensure that xi41 € intF, we need
to compute the damping parameter ¢, at every iteration k. The damping parameter ¢y is
computed as follows:

b = min{mljn{c,(ci),wl(ci)}, 1}, (3.12)
where 4
a® — ‘ () (3)
(@) _ oo i > —coand 4)7s” <0
C, = Akz Skz
1, otherwise,
and o
() _ L\ , o
G %7 if 3() < 0o and Agj)sgj) >0
Wy, = Akz Skz
1, otherwise.

Another damping parameter oy, in the step may be needed to satisfy zpy1 € intF, where
oy is defined as follows. If (zp + YpArsg) € intF, we set o = 1. Otherwise, we set
Tpt1 = Tk + opYrAgsg, such that o € [1 — 0||Agsk||, 1] and 6 > 0 is a pre-specified fixed
constant. It is easy to see that 1 — o, = O(|| Agsk]])-

Accepting the step and Updating

Once the scaled step oY A sk, is computed, it needs to be tested to determine whether it
will be accepted. To do that, a merit function is needed. We use the following augmented
Lagrangian function

Oz, s pir) = fla) + p" h(z) + gIIV(:C)g(fﬂ)H2 +r|h@)]?, (3.13)

as a merit function, where r is the penalty parameter.
To test the scaled step, we need to estimate the Lagrange multiplier ;1. To estimate
the Lagrange multiplier p;+1 we use the following scheme

minimize ||ka+1 + Vhir1pt + pe Vi1 Vi+19k+1 ||2 (3.14)

Let pgy1 be an estimate of the Lagrange multiplier vector. We test whether the point
(Zg+1, tk+1) Will be taken as a next iterate.

The actual reduction in the merit function in moving from (xy, ug) to (g + Sk, tk41) is
defined as

Aredi = (s, e, s i k) — P(k + U ArSk, k15 P )

where @ij = opYr. The actual reduction Aredy can be written as,

Aredy = 0w, p) = L(@pgr, i) — A, i
Pk
+?[91{ngk — ki1 Vir1grr1] + relllel? = [[Pral®], (3.15)

where Apy, = (pg+1 — fik)-
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The predicted reduction in the merit function is defined to be
Pred, = —(ApVol(zy, )  Yrsi — %iistksk — ApF (hg + (A hi) Tresi)
Jr%k[||Vlc9k||2 — [IVi(gx + (AxVgr)"drsi)|1%]

+rilllnl® = 17w + (A Vhr) T Ppsy %] (3.16)
The predicted reduction can be written as

Pred, = q1(0) — qr(Axthsi) — Apf (hy, + (AxVhi) " dysy)
A7l = 1he + (AR Vhi) T desi ], (3.17)

where B _
ak(Artrsk) = xp, pr) + (Ae Vol (Tr, k) sk

1- : (3.18)
+ §¢%S£Gk8k + %kHVk(Qk + (AkVar) s ||

After computing the scaled step and updating the Lagrange multiplier, the penalty param-
eter is updated to ensure that Pred; > 0. To update 7, we use a scheme prossed [7]. We
tentatively set
_ 2
Tp1 = max(ry, pi), (3.19)

and if Pred; < %‘[HthQ — ||hr + (Athk)TQ;kSkHQ], then we set

= 2[qr(Arrsi) — qe(0) + Apl (hy, + (AxVhy) Tdgsy)]
1Akl = [k + (ArVhg) Tebysy ||?

+ bo, (3.20)

where by > 0 is a small fixed constant. This scheme is described in Step 7 of Algorithm 3.1
below.

The scaled step is tested by comparing Pred, against Ared; to know whether it is
accepted. Our way of testing the scaled step and updating the trust-region radius are
presented in Step 8 of Algorithm 3.1 below.

To update pi, we use a scheme prossed in [25]. In this scheme, if

1 ~ .
§TPT€dk(¢k§Z) > [|AxVgx Viegr || min{|| Ax Vi Vige ||, Ak}, (3.21)

we set prr1 = pr. Otherwise, we set prr1 = 2pk.
Finally, the algorithm is terminated when either || ZT Ax V. 0(zk, px)| + | Ak Vi Vigr|l +
[[he|l < e1 or ||sg]| < e, for some e1,e2 > 0.

The master algorithm

A formal description of our an active-set interior-point trust-region algorithm is presented
in the following algorithm.

Algorithm 3.1. (An active-set interior-point trust-region algorithm)

Step 0. Given xy € intF. Compute Vp, Ag, no, and pg. Set po =1, ro = 1, and by = 0.1.
Choose # > 0, 1 > 0, g5 > 0. Choose d,min, Omaz, and dg such that d,,;, < do < dmaz-
Choose aq, ag, 11, and 75 such that 0 < a3 <1 < ag,and 0 < 71 <79 < 1. Set k =0.
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Step 1. If HZ,Z"A;CVxé(xk, ,Uk:)H + ||Angka.gk|| + ||th < €1, then stop the algorithm.

Step 2.
a) Compute the normal component s} by solving subproblem (3.2).
b) Compute 5% by solving subproblem (3.7).

c) Set sp = si + Z;5k.
Step 3. If ||sg|| < e2, then stop the algorithm.

Step 4.
a) Compute the damping parameter v, using (3.12).

b) Set xx4+1 = x + Aprsg.
c) If 41 € intF, then go to Step 5.

Else, set xy+1 = @k + oxtr Agsk, where oy, € [1 — 0| Agsill, 1].
End if.

Step 5. Compute Vi1 given by (2.1).
Step 6. Compute pgy1 by solving

minimize ||V fi11 + Vhggap+ ok Ve Virrgrra |-

Step 7.
a) Set ri1 = max(ry, p3).

b) If Predy < 2 [||hg|?> — |he + (A Vhi)Tpsi]|?], then set

- 2[qr(Artrsr) — qe(0) + Ap (hy, + (AxVhy) Tdgsy)]
Akl = Ak + (ArVhg) Tebrsi||?

+ bo.

End if.

Step 8. If Aredy, < 71 Predy. Set 6 = a1]|sx|| and go to Step 2.
Else, if 71 Pred), < Ared), < 1oPredy, then accept the step and set ;41 = max (g, Omin)-
Else, accept the step and set 0x41 = min{dmaz, max{dmin, 20y }}.
End if.

Step 9.
a) Set ppt+1 = prk-
b) If %Tp’l“edk(&kgi) < AV g Viegr || min{|| A Vg Vigr |, Ak}, then set pr1 = 2p.

End if.

Step 10. Compute Ay given by (2.13) and 141 given by (2.16).

Step 11. Set £ =k + 1 and go to Step 1.
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Global Convergence Analysis

Let {(zk, pux)} be the sequence of points generated by Algorithm 3.1 and let © be a convex
subset of R" that contains all iterates z; € int(F) and xy, + z/;kAksk € int(F), for all trial
steps si. On the set §2, we state the following problem assumptions under which our global
convergence theory is proved.

Problem Assumptions:

PA;. The functions f, h, and g are twice continuously differentiable for all x € Q.
PAs. The matrix A(z)Vh(z) has full column rank.

PAs. All of f(z), Vf(x), V2f(x), h(z), Vh(z), V2h;(z) for i = 1,2,...,p, g(x),
Vy(z), V3gi(x) fori = 1,2,...,m, and (Vh(z)T"Vh(z))~! are uniformly bounded
in Q.

PA,. The sequence {u} is bounded.

PAg. If an approximation to the Hessian of the Lagrangian is used, then the sequence
of approximated Hessian matrices {H}} is bounded.

In the above problem assumptions, even though we assume that AVh(z) has full column
rank for all z € Q, we do not require AVg(x) has full column rank for all € Q. So, we may
have other kinds of stationary points. They are presented in the following two definitions.

Definition 4.1. ( Fritz John Point) A point z, € Q is called a Fritz John point if there
exist vx, t«, and vy, not all zeros, such that

YV A(x )V f(24) + A2 ) Vh(zs) e + A(zy)Vg(z)ve = 0, (4.1)
h(z.) = 0, (4.2)

Vig(z.) 0, (4.3)

(ve)igi(z) = 0, i=1,2,....,m, (4.4)

Yo, (We); > 0, 1=1,2,...,m. (4.5)

Equations (4.1)-(4.1) are called a Fritz John conditions. More details see [15].

If . # 0, then the point (., 1, %, %) is called a KKT point and the Fritz John condi-
tions are called the KKT conditions.
Definition 4.2. (Infeasible Fritz John Point) A point x,. € § is called an infeasible Fritz
John point if there exist 7., p«, and v, such that

VA )V f () + Al ) Vh(za) e + A(22) V(v = 0, (4.6)
hz,) = 0, (4.7)

A )Vg(e)Vaglz) = 0 but [Vag(z)| > 0,(48)

(ve)igi(ze) > 0, i=1,2,...,m, (4.9)

Yoy (Ue); > 0, i=1,2,....m. (4.10)

Equations (4.6)-(4.10) are called an infeasible Fritz John conditions.
If v« # 0, then the point (z., 1, %, %= ) is called an infeasible KK'T point and the infeasible
Fritz John conditions are called the infeasible KKT conditions.
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Lemma 4.3. Assume PA,-PAs. A subsequence {xy,} of the iteration sequence asymptoti-
cally satisfies the infeasible Fritz John conditions if it satisfies:

1) limy, o0 h(zg,) = 0.

2) limyp, 00 || Vi, 9(zk, )| > 0.

3) hmkiﬁoo {minseﬂ?"_f’nvki (gki + (Akvgki)TZki/(Zki gt)”?} = limkiﬁoo ||Vkigki 2

Proof. Let the subsequence {k;} be renamed to {k} to simplify the notations avoiding double

indices. The minimizer 8, of minimizes:||Vi(gr + (AxVgr)T Zpthrst)||? satisfies
ZgAngkagszk + ZEAngkaVg{Aka@Z,%ék =0. (411)
From Condition 3, we have
. T A T 5T 72~ T 7T T a _
leH;O{Q’gkak Z AV gk Viegr + ik Zi, AkV ViV, AxZr8r} = 0. (4.12)

We will consider two cases: ~

1) If limg 00 8% = 0, then from (4.11) we have limy_, o Yr ZF Ar Vi Viegr, = 0.

2) If limg—oo 8 # 0, multiply Equation (4.11) from the left by 237 and subtract
from the limit (4.12), we have limg_; oo ||Vk(Angk)TZkz/~Jk§k||2 = 0. But this implies
limy, oo z/;ngAngkagk = 0. Hence, in either case, we have

lim Z,fAngkagk = 0. (4.13)
k— o0

Take (vk)i = (Vegr)i, ¢ = 1,...,m. Since limg_,o0 ||Vkgr| > 0, then limg_,o (v); > 0, for
i=1,...,m and limg_, o (vg); > 0, for some i. Therefore limy_, Z,CTAngka = 0. But
this implies the existence of a sequence {u} such that limg_y oo { A Vhrur + ArVarvg } = 0.
Thus the infeasible Fritz John conditions are hold in the limit with ~, = 0. [

From the following lemma, we can easily see that, for any subsequence of the iteration
sequence that asymptotically satisfies the Fritz John conditions, the corresponding subse-
quence of smallest singular values of {ZF A;Vg;Vi} is not bounded away from zero. This
means that asymptotically the gradient of the active constraints are linearly dependent.

Lemma 4.4. Assume PA;-PAs. A subsequence {k;} of the iteration sequence asymptoti-
cally satisfies Fritz John conditions if it satisfies:

2) For all ki, ||Vk, 9k,

> 0 and limg, o0 Vi, g%, = 0.

. . Vi, (gr; +(AxVar )T Zr, ¥r, 59|12
3) limy, o0 {mmseﬁnw Ve, (g, (H};/'k,ggk;z,)H? P SOIF ) 1.
k2 k3

Proof. Let the subsequence {k;} be renamed to {k} to simplify the notations avoiding double
indices. The limit in Condition 3 is equivalent to

lim { min {HUk +Vk(Angk)TZkz/3kd||2}} =1, (4.14)

k—oo | depn—»

§t

Vegrll

where Uy, is a unit vector in the direction of Vi g, d= Consider the problem

min {HUk + Vk(Akvgk)TZMMHQ} . (4.15)
degn—»
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Let dj, be a minimizer to the above problem. Then, from the optimality conditions
Zg(AkVQk)Vk(AkVQk)TZkJIH/;;% + Z;?(Akvgk)VkUM/NJk =0. (4.16)

We consider two cases: ~

i) If limy,_, 0o Zxds, = 0 in the above equation, then we have, limy_,o0 Z} (A Vi) ViUrthy =
0.

ii)If limy_ 00 Zxdy # 0, then from (4.14) and the fact that dj, is a solution to the mini-
mization Problem (4.15), we have

kILI&{JkTZg(AkVQk)Vk(AkVQk)TZkaQZJI% + 2U Vi (Ax Vi) T Zdybi } = 0.

Multiplying (4.16) from the left by 2d;” and subtract it from the above limit, we have

i A Z (AV gr) Vi (AxVgr) " Zidyalf, = 0.

This implies limy_, {ZkAngkaUk@ZN)k} = 0. Hence in both cases, we have

lim {ZkAngkaUk} = O, (417)
k—o0
where limy_, @k = 1. The rest of the proof follows using arguments similar to those in the
above lemma. O

In the following subsection, we present some important lemmas needed in the proof of
our main global convergence results.

Important Lemmas

We present some important lemmas needed in the subsequent proofs.
Lemma 4.5. Let PA1-PAs hold, then at any iteration k

sl < Kbl (4.18)
where K1 > 0 is a constant independent of k.
Proof. See Lemma (7.1) of [4]. O
Lemma 4.6. Assume PA; and PAs. Then V(z)g(x) is Lipschitz continuous in .
Proof. See Lemma (4.1) of [5]. O

From the above lemma, we conclude that g(x)TV(x)g(z) is differentiable and
Vg(x)V(z)g(x) is Lipschitz continuous in Q.

The following lemma shows that, at any iteration k, the normal predicted reduction is
at least equal to the decrease in the 2-norm of the linearized constraints obtained by the
Cauchy step.

Lemma 4.7. Assume PA,-PAs. Then there exists a positive constant Ko independent of
the iterates such that the predicted decrease obtained by the normal component s} of the trial
step satisfies

1l = [l + (AxV )T sRI? > K| || min{S, [} (4.19)
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Proof. See Lemma (4.6) of [9].
From the above lemma and the fact that

1hkl® = 1w + (AVhe) " Prsi|1* = Plllhell® = o + (AVhe) s3],
then we have
Ikl = |1k + (ArVhi)  ispl? > Koty ||l min{dk, [|hel[}- (4.20)

From the way of updating the penalty parameter r; given in Step 7 of Algorithm 3.1 and
Inequality (4.20), we have, for all £,

T 5 .
Predy, > §K2¢k|\hk|\ min{ g, |||} (4.21)

O

The following lemma gives a lower bound to the tangential predicted decrease which is
obtained by st .

Lemma 4.8. Assume PA;-PAs. The tangential predicted decrease obtained by s}, satisfies

1 ZEV g (Agsy)|| }

1 .
Tpredu(s}) = 5 Kal| 2 Var(Axsi) | min { A, B

where Ay, = /67 — ||s7||%.

Proof. See Lemma (4.7) of [9].
From (3.8), we have

Tpredy(Vist) = qu(Apthrsy) — qr(Arn(sE + Zi5th)). (4.23)
From (4.23) and the fact that

ax(Axtnsy) — au(Axtn (s + Zi5L)) > blan(Arsy) — ar(Ar (s + Zy5}))],

(4.22)

then we have R R
Tpredy (¥rsh) > i Tpredy(sL,). (4.24)

From inequalities (4.22) and (4.24), we have

M}. (4.25)

~ 1. - )
Tpredi(nsh) 2 5 Katnl 21 Far(Aks)l| min { A, ===

O

Lemma 4.9. At any iteration k, let D(xy) € R™*™ be a diagonal matriz whose diagonal

entries are ‘
1 if (9x)i <0 and (gr+1)i > 0,

(dp)i=q =1 if(gx)i =0 and (gk+1)i <0, (4.26)
0 otherwise,

where i =1,2,...,m. Then
V41 = Vi + Dy. (4.27)
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Proof. See Lemma (6.2) of [10]. O

Lemma 4.10. Assume PAy and PAs. At any iteration k, there exists a positive constant
K, independent of k, such that
[ Drgill < Kallsell, (4.28)

where Dy, € R™*™ s the diagonal matriz whose diagonal entries are defined in (4.26).

Proof. The proof is similar to the proof of lemma (6.3) of [10]. O

The following lemma shows how accurate our definition of Predy is as an approximation
to Ared,.

Lemma 4.11. Assume PA1-PAs, then there exists a constant K5 > 0 that does not depend
on k, such that
| Aredy, — Predy |< Ksriy| sl?. (4.29)

Proof. From (3.15) and using (4.27), we have

Aredy, = U(wp, pi) — U Tpsr, pir) — A Py

+%[9£ngk = g1 (Vi + Di)giesa] + rllhll® = i |°]-

From the above equation and (3.16) and using Cauchy-Schwarz inequality, we have
| Aredy — Predy | < | (g, ) + (A @k, ) sy — O@prrs i) |
+ | Api [ b+ (ApVhe) " Prs — by | |
Pk "
+5 HIVi(ge + (ArVgr) " Vksi)|1* = gi 1 (Ve + Di)gra |
1 | e+ (AeV i) skl = [[hega |l | -

Hence,
|Aredy, — Predy|
< | ST A~ VM + 6 Axuss, ) Anse|
+%§ | st diag(Vol(k, i ))diag(n(z)) sy, |

+%’2€ | st AR[V2h(xy, + &2 Apthrsic) A Arsy, |

+%k7;1% | sk AR[VarViVal — Va(zr + &aAetese) ViVg(ar + & Arbrsi)” | Agsy, |
+%k1;1% | st diag(VgxVigr) diag(n(zk))sk |

+%k1;1% | sk ARV g(zk + & Arbrsi) Vig(an + EaArbrsi) Arsy |

+p2l1;k||Dk lg + Vg(ar, + Es Apirsr) T Arsi ||

+r0? | st ARV VRE — Vh(zy, + E6 Arbrsk) Vh(zy + EsArrse) | Axsy |
+rep | st ARV h(zs, + EsArnsk)h(Ty + o Axbrsk) Agsy |
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for some &, &, &3, 4, &5, and & € (0,1). Hence, by using the problem assumptions, the
fact that 12 < 4y, 7 > pg, 7% > 1, and Inequality (4.28), we have

| Aredy, — Predy |< ¥u[Kg| skl + Krrillsel el + Ksrillse ], (4.30)

where Kg, K7, and Kg are positive constants independent of k. From the above inequality,
the fact that r, > 1, and ||sx|| and ||k are uniformly bound. The proof follows.

The j*" trial iterate of iteration k is denoted by k7.

The following lemma shows that if at any iteration k, the point x; is not feasible, then
the algorithm can not loop infinitely without finding an acceptable step. O

Lemma 4.12. Assume PA;-PAs. If ||hi|| > € where € is any positive constant, then the
" Ared, ;
condition Wdi;

Proof. Since ||hy| > ¢, then from (4.21) and (4.29), we have

> 11 will be satisfied for some finite j.

‘Aredk B 1‘ | Aredy, — Predy, | < 2K5z/~1k5,%
Predy, Predy, = Kyfpemin{e, 6}
Now as the trial step s, gets rejected, d;; becomes small and eventually we will have

ATedkj _1 < 2K5(5kj
Pred,,; Koe

This inequality implies that after a finite number of trials, (i.e., for j finite), the acceptance
rule will be met. This completes the proof. O

Lemma 4.13. Assume PA,-PAs. If at a given iteration k, the jt* trial step satisfies

(1 - T1)K2

s | < min { =2

3|l (431)

then it must be accepted.

Proof. We prove this lemma by contradiction. Assume that the step sj; is rejected and
Inequality (4.31) holds. Then, from (4.21), (4.29), and (4.31), we have

| Aredy; — Predy, | < 2K |5 |12 cd=n)

(1 —T1) < 7 -
Pred,; Kz’l/%j“thHSij 2

This gives a contradiction and proves the lemma.

Lemma 4.14. Assume PA,-PAs. For all trial steps j of any iteration k generated by the
algorithm, 0y; satisfies

(S i Oél(]. — Tl)KQ
Ss > {m" }h 432
o 2 min { P, EZTUE2 oy, (432
where by is a positive constant independent of k or j.
Proof. Consider any iterate k7. If the previous step was accepted; i.e. if 5 = 1, then
Ok > Omin. Take by = sup,cq ||hi||, we can write
5.
Ok > Omin = 7;)”" 17|l (4.33)
1

Therefore, (4.32) holds in this case. O
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Now assume that j > 1, then there exists at least one rejected trial step. For all rejected
trial steps, we have from Lemma (4.13)

. (1 - T1)K2
> min { 70K
e > min { S 2252
forall 4 =1,2,...,7 — 1. Since s;: is a rejected trial step, then from the way of updating

the radius of trust region (see Algorithm 3.1) and using the above inequality, we have

. 1—7m)K
Sur = anlspior | > o min { TR g
From Inequality (4.33) and the above inequality, Inequality (4.32) holds. O

The following lemma says that as long as [|h|| is bound away from zero, the trust-region
radius is bound away from zero.

Lemma 4.15. Assume PA;-PAs. If |hi|| > €, where e > 0, then there exists a positive
constant Ky that depends on € but does not depend on k such that

Ops > K.

Proof. Using (4.32) and taking

Omin 041(1*71)K2,0é1}7 (4.34)

ngsmin{ by 1K,

the proof follows directly. O

Convergence When p;, is Unbound

In this section, we study the convergence of the iteration sequence when the parameter py
goes to infinity. Notice that, from the way of updating the penalty parameter ry, the penalty
parameter 7, is increased at a given iteration k, because of the rule (3.19) or (3.20).

Lemma 4.16. Assume PA1-PAs. Let k be the index of an iteration at which the penalty
parameter ry is increased. Then there exists a positive constant Ko that does not depend
on k, such that R

prdi || ||? < Ko (4.35)

Proof. Since 1y, is increased using the rule (3.20), then

%[Hhkﬂz — [l + (AxVhi) "drsil’] = lae(Ardhrsi) — qu(0) + Apf (hx + (AxVhi) T Ppsy)]
il — s+ (Ax TR s

By using (3.18), (4.20), and (4.33) in the above equality, we have

Omin 041(1 _Tl)K2
by’ 4K5

_ 1-
,041} < (ApV ol i) resie + 5%35{6%81@-

+ A,uz(hk + (Athk)TJ}kSk)

+ B IVilge + (AeV ) Tdesi)ll? = [ Vigi

T ~ .
% Koy g2 min {
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b ~
+ §O[||hk|\2 — lhk + (AVhi) "hpesi?].

Since 7 > p2, then we can write the above inequality as follows

Omin al(l _Tl)KZ
by 4K

2
~ . _ 1-
%K2¢k||hk”2 mln{ 7a1} < (ApVail(zy, pi)) T sk + §¢133£Gk8k
+ Aug(hk + (Athk)TTszk)
+ %[HVk(gk + (AVae) " nse) |12
bo .\ o
+ 5||hk|| .

Hence,

Omin o1(1—11) K> }
, Q1

Pk - 7 2. {
—K h
9 2¢k|| k?“ min bl ) 4K5

1 - 1-~
< o [(Akvzﬁ(xk, i) sk + §¢1%S£Gk8k

- b

+ Auf (e + (AeVhe) esi) + 11
1 -

+ 5 IVi(g + (Ax V)" desi) I

1 1
< ﬁ |<AkV;p£(mk7Mk))T3k| + §|S£Gksk\

~ b
1A (i (AxVhe) )] + 7 2]
1 ~
+ 5 Vilgw + (ArVgr) drsi) |12,

where QZJk < 1. Using the Cauchy-Schwarz inequality, problem assumptions PA3z — P A5, and
the fact that ||sg|| < dmaz the proof is completed. O

Lemma 4.17. Assume PA,-PAs. If pix is unbound and if there exists an infinite subse-
quence {k;} of the iteration sequence at which the penalty parameter ry, is increased, then

lim ||hy,| = 0. (4.36)
k;—o00

Proof. The proof follows directly from Lemma (4.16),limg, 1/~)k =1, and the assumption
that pj is unbound. O

Theorem 4.18. Assume PAi-PAs. If p — 0o as k — oo, then the sequence of iterates
generated by the algorithm satisfies
lim Al = 0. (4.37)
k—o0
Proof. Assume that limsup,_, . ||hx|| > € > 0. This implies the existence of an infinite
subsequence of indices {k;} indexing iterates that satisfy ||hy,|| > §. We prove contradiction
by showing that £ must be zero.
Using (3.19), then ry — oo such that pp — 0o as k — oo. We consider two cases.
i) If there exists an infinite subsequence {k;} of the iteration sequence at which the
penalty parameter is increased by the rule (3.20), then from Lemma (4.17), we have

lim ||hg,|| = 0. (4.38)
ki*)OO
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Therefore, for k sufficiently large, there are no common elements between the two sequences
{k:} and {k;}. We have, for all k£ € {k;},

Ared; Pred; - eK. -~ eKy
"% >7 "% _lek%min{g,éé} 27’11&];54 mln{2 Kg}

7’]; 7’]%
where Ky is as Ky in (4.34), with ¢ is replaced by §. Hence for all acceptable steps, we have

[§

b =4 pellVigil? = Vi1 954117 e
i 41 n {H E9k H k+1 k+1|| }+||h,;||2— ||hl%+1||2 27'1@/1;; len{ Kg}
T Tt 4
> 0.

Let k; and k;_; be two elements of the sequence {; } such that there exists an iterate indexed

ke {k } between k; and k;_ ;. From above inequality we have

7 1 1 11
i 1 k+1}_|_ i pk{IIV,;g,;IlzfIIV;;+1g,;+1H2}+

Tk

— gy 112

> 11y,

1 mln{2 Kg} > 0.
Assume that there exists k, iterations between the iterates indexed k; and k; , where the
penalty parameter is increased. Because there is no iteration between the iterates indexed k;
and k; , with a penalty parameter that was increased using the rule (3.20), all the penalty
parameters of the k, iterations are increased using the rule (3.19). If we notice that for all
k,rp > p% and if the value of py is increased, it is increased by two times its previous value,
we can write

i {4 - k+1} S8 o {IVigel = 1V 9417}

+ -
_ ky—1 g ky—1

< 2supxen{|f(w)l + pllh()|} 3 L | 2supscallg(@)] 3 1

— P2 22i Ok Qi’
k; i=0 d i=0

where [ is the upper bound on the sequence {,uk} Since the two infinite series Y :° ) 5k

and > ;2 & converge, the two series Zi:o 55 and Zi:o 5 are bound for any k.. Since
pr. — 00, then for k; sufficiently large, we can write

k-, —1
RS s Voaill? = Vi1 94112 - eK .
’ Z { k+1}_|_ Z Pk{” kgk” ” k+1gk+1H }‘ Sle’;é‘ Qmin{g,Kg}.

T T 8

k=k- k=k-

Therefore,
E A
g lI? = [lhzy, |I? > ﬁwk mm{i,Kg}.

But this contradicts (4.38). Thus the supposition is not correct and the theorem is proved
in this case.
ii) Consider the case where there exist finite number of iterates where the penalty parameter
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r) is increased using the rule (3.20). This implies the existence of an integer k such that

there exists no iterate indexed k for all k > k where the penalty parameter is increased using

the rule (3.20). Hence, for all k > k, if the penalty parameter is increased, then it will be

increased because of the rule (3.19). Without loss of generality, we assume that k=1
From Inequality (4.21), we can write for any acceptable iteration index k,

Aredy, Pred,
> T
Tk Tk

T ~ .
> 7 Eszil)thkH min{dg, ||hx|}-

Let ko, and k,, be two consecutive iterates of {k;}. Summing over all acceptable iterates
indexed k such that k,, <k < k,,, we have

Kay—1
Ared - eK N
> S e g S min S K |
Tk 4 2

k=kq,

Hence

Koy —1
{fk fk+1} —~ pedlVigrll® = | Vir1ges1l}
23 + > ; ot 12 = 1P, 12
k=ka, k=ka, k
~eKy | (e 4
> 711/%742 m1n{§,K9}.

Using an argument similar to the first case, we can conclude that, for k,, sufficiently large

Tk

kq, —1
by — ¢ e Vi 2 IV 2 - eKy
‘ Z {k k+1} Z il Vagr | Vit19r+1l }’ < T2 s mm{ Kg}

Therefore,
~eKy . e
a2 = a2 = 710602 min { =, Ko |.

But this implies that the sequence {||h,[|} is unbound. This contradicts assumption PAs.
Thus the supposition is not correct and the theorem is proved. O

From the way of updating the parameter p, we notice that the sequence {px} is un-
bounded only when there exist an infinite subsequence of indices {k;}, at which

1 ~ .
iTpredk(wkEZ) < ||Angkagk|| mm{||Angkagk||, Ak}. (4.39)

The following lemma shows that if pr — oo and limsup,_, o [|Vikgk| > 0 as k — oo,
then the iteration sequence generated by the algorithm has a subsequence that satisfies the
infeasible Fritz John conditions in the limit.

Lemma 4.19. Assume PA;-PAs. If pp — 00, as k — oo and there exists a subsequence
{k;} of indices indexing iterates that satisfy ||Vigrl| > € > 0 for all k € {k;}, then a sub-
sequence of the iteration sequence indexed {k;} satisfies the infeasible Fritz John conditions
in the limit.
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Proof. Let the subsequence {k;} be renamed to {k} to simplify the notations avoiding double
indices. The proof is by contradiction. Suppose there exists no subsequence of the sequence
of iterates that satisfies the infeasible Fritz John conditions in the limit. Using Lemma (4.3),
we have for all k, [||[Vigr|> — |Vi(gx + (AxVar)T Zriby5t)|2| > 1 for some &, > 0. From
(4.13), we have || Z; AxVgrVigr| > €2, for some g5 > 0, hence

1ZE AV geViegr + ZF [AeV iV AV gl + diag(Vgr Viegr )diag(ne)]s? |
> |12 AV g Viegell — |1 ZE [ARV 91 Vi Ak V g + diag(Vgr Viegr )diag(me )] |57
> &2 = Kul|Zi [AkV Vi AV g + diag(VgxVige) diag ()] [
Since {||hg||} convergence to zero and || Z][AxVgrViArVgl + diag(VgrVigr)diag(ne)]||
is bounded, then we can write |[|[ZFArVoVigr + [ZL AxVarViArVgl+
ZF diag(V gy Vigr)diag(ne)]s|| > <. Therefore
1ZEV ae(Aesi)I| = pell Zi AuVgeVige + Zi [AxV g Vi ArV gic + diag(VgrVigr)diag(m)]si|
— 128 AeV ol + Z [ApHi Ay, + diag(V i )diag(me)] sy |
€ : . n
> iy = 125 Ak Valic + Z [AcHy Ay + diag(V o) diag ()]s
g2 _
2

1 . . n
= L AT ol o+ 2] LA Hi A + ding(Vly)diag(m)ls I]-

From (4.25), we have

€2

N 1 -
Tpredy,(Yrs;,) > §K31/)k,0k [ 5

1 -

p?||zg[Akvmek + Hst|

| {A 2 — L 2T [AxVali + Hys}| H

min < Ay, i i L 7
1 ZF[AkV g, Vil A Vgl + diag(Vgr Vigr)diag(ne)| Zk || + LHZ’CTH]“Z’“”

Pk

where Hy, = Ay Hy, Ay, + diag(V £y )diag(ny). For k sufficiently large we have

Tpredk(zzk%)
€2 5 . €2
> 2K min { Ay, - - .
— 4 SV { g 2| ZE ARV i Vi AV gl + diag(Vgr Viegr ) diag(ne)] Zi | }

Since pp — oo there exists infinite number of acceptable iterates at which (4.39) hold.
From the way of updating the parameter py, as k goes to infinity, pr — oco. This gives a
contradiction unless pr Ay is bounded. Hence Ay — 0 and therefore ||sg|| — 0. We consider
two cases:

) If [ Vigel|® = Vi gk + (AxVgr)T Zitesy )2 > €1, we have
Pl Vgl = [ Vie(gx + (A Vi) Zithis}) 11} > prer — 0. (4.40)
From (4.23), Tpredy,(¢15%) can be written as follows
N N N 1-
Tpredy,(y5;,) = — [ZkT(fok + Biisi)] i), — QiﬁﬁngZkTGkagZ
+ S IVigel = IVion + (AxV90)™ Zethish)|12)- (4.41)

Using (4.41), (4.40), and under problem assumptions PAz — PAs, we have Tpredk(iﬁk 5t) —
oo. Hence , the left hand side of Inequality (4.39) tends to infinity while the right hand side
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goes to zero. This gives a contradiction in this case.
ii) If HVkaHQ — ||Vk(gk + (Angk)TdeJkEZ)HQ < —e¢1, then

Pl IViegnl|® = [IVie(gr + (Ax V)" Zihnsh) 121} < —prer — —oo,

where pr, — oo as k — oo. Similar to the above case, Tpredk(zﬁk?}ﬂ) — —oo. This gives a
contradiction with T'predy(¢x5t) > 0. This two contradictions prove the lemma. O

The following lemma shows that if pr, — oo and liminfy_, ||Vkgr| = 0 as k — oo, then
the iteration sequence generated by the algorithm has a subsequence that satisfies the Fritz
John conditions in the limit.

Lemma 4.20. Assume PA1-PAs. If pp — o0, as k — oo, and there exists a subsequence
indexed {k;} of iterates that satisfy ||Vi,gr;|l limg o [|Ar|l = 0, and there exists a subse-
quence {k;} of iterates that satisfies ||Vi.gr|| > 0 for all k € {k;} and limy, oo ||Vi, gk, || = 0,
then a subsequence of the sequence of iterates indexed {k;} satisfies Fritz John conditions in
the limit.

Proof. Let the subsequence {k;} be renamed to {k} to simplify the notations avoiding double
indices. The proof is by contradiction. Assume there exists no subsequence that satisfies the
feasible Fritz John’s conditions in the limit. By using Lemma (4.4), there exists a constant
g3 such that for all k sufficiently large,

| IVagell* = Vi (g + (A V)" Ziwsy) || |
2 > ey (4.42)
1Vigel
We consider three cases;
i) If limin fk_mo% = 0, the above inequality gives a contradiction.
7=t
i) If lim supkﬁoc% = oco. From the way of computing the tangential component of

the trial step, we have
ZIVq(Aps?) = —ZF (B + vi ) Z,58,

where vy > 0 is the Lagrange multiplier of the trust region constraint. Using the above
equation, then Inequality (4.25) can be written in the form

Tpredy, (1/;;c 52)

123 |-G+ (321 + AV g Vi Vgl Ax) 235 | }

K3 7 T .
> — || Z; Var (Agsy)|| min < Ay,
> 200l ZE Van(Avsp) || min { A, T Ie s AV T T A A

(4.43)

Because p, — o0, as k — 0o, there exists an infinite number of acceptable steps such that
Inequality (4.39) holds. But Inequality (4.39) can be written as

1 _
iTPTedk(?ﬁkg};) < ||ZkAngkH2||ngkH2. (444)

From Inequalities (4.43) and (4.44), we have

||Zg[pika + (%’z[ + AngkaVggAk)]Z;cgin }

Ks - 1 ;
2l ZE Vi (Ags?)|| min § Ay,
5 k1 Ze Vae(Axsy) || { k ||ZkT(pika+Akvgkv,€vg,{Ak)ZkH
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< 203||Vigee ||,

where by = supyeqll Zk Ak V|| Hence, if we divided the above inequality by ||[Vigkl|, we
obtain

Ay ||Zg[pika + (%:I + AngkaVg,fAk)]ZﬁiH }
Viegrll” N1 ZF (.- Gr + AV gV Vgl Ax) Zi ||| Viegr|
< 2b5||Viegr |l (4.45)

Ks -~ .
S20lZE Var(Ars) | min {

The right hand side of the above mequahty goes to zero as k — oco. This implies that along
wk Sk

——i- = 00, we have
Vi, gr; |l ’

the subsequence {k;} where limg, o

I1ZF [ -G, +(“k71+Ak Vi, Vies Vi A Zi, b, 58|
Z ( Gk + Ak, Ve Vi, Vb Ar) Zi | Vi, g1 |

m lies in the null space of ZT( i I n

Akngkinng,{iAki)ZkTi or ||Z;€7¢qui(Ak.s,c )| — 0.

is bounded. Therefore, asymptotically, either

7 —t
The first possibility occurs only when Z L — 0 as k; — oo and ”1‘1; H lies in the null

space of the matrix ZkTZ_Akngki Vkng,?iAkiZ;ci which contradicts Assumptlon (4.42) and
implies that a subsequence of the iteration sequence satisfies the Fritz John conditions in the
limit. The second possibility implies as k; — oo, || Z,Z:, (Valy, +Gr, s +pr, Ak, Var, Vi, (gr, +
(Ak,Vgr,)"sit)) Il= 0. Hence as k; — 00, pi, | Z Ak, Var, Vi, (g, + (A, Vgr,)T s} )| must
be bounded. Also, || Z] Vg, (A, si)|l — 0, implies that ||5} || — 0. Using the fact that
Ak, || — 0O, implies [|s3. || — 0, we have

V fr, + Vhi, i, + Vg, vk, = 0,

for some fig,, and 7k,. This implies that a subsequence of the iteration sequence satisfies the
Fritz John COIldlthIlSt in the limit.
i) If lim supg— 00 ”1‘/; o < and lim inf,_, o, 2 ”V - ” > 0. Therefore |5t | — 0 and ||s?|| = 0
because ||hg|| — 0, sp — 0.

Hence, as in the second case, the right hand side of (4.45) goes to zero as k — co. This
implies that

HZT(U” + AV ViVl Ay) Zeyst |

ZEV i (Ags?
126V (A 27 2,5 6o ViV gT An) Zal [ Vegrl

But this implies that asymptotically, either [ZFVqi(Ags?)| — 0, or
HZkT(%I-FAngkaVggAk)Zk&kgiH
1Z] AV g ViVl Aw) Zi ||| Vigrl
subsequence of the iteration sequence satisfies the Fritz John conditions in the limit. This
completes the proof. O

— 0. As the second case, the two possibilities imply that a

Convergence When p; is bounded

We continue our analysis assuming that the parameter py is bounded. This means that, we
assume the existence of an integer k such that for all k£ > k, pr = p < 0o, and

1 ~ .
§Tpredk(¢k§2) > [|AxVgr Viegr || min{[| Ax Vi Vige ||, Ax}- (4.46)
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Without loss of generality we take k = 1.
From assumptions PAsz, PAs, and Assumption (4.46), we can say that there exists a
positive constant b3 such that for all &

| Bell < bs, ||1Zf Byl < bs, and ||Z] BrZy| < bs, (4.47)
where By, = ApHp Ay, + pApV g ViVl Ar + diag(Vol(xk, px; p))diag(n).

Lemma 4.21. Assume PA{-PAs. Then there exists a constant K11 > 0 that does not
depend on k such that

0e(0) — qr(Arthisy) — Api (hi + (ArVhi) "esk) > — K| - (4.48)
Proof. From (3.18), we have

0(0) — 0u (Axties) = — (AT ol ) s — SRsE sl
+ 21IVagn P = 1Vion + (44 ¥g0) ")
= —(ApVal(@, pr) + PARNV gk Viegi) T rsi
= %@,ﬁng(Gk + pARV g Vi Vgl Ag)sy
= —(ApVal(@, ) + PARV gk Viegi) T hrsi
— SO Bt
Hence,
6 (0) — q(Ax¥isy) — Apd (hie + (ArVhi) " Yrsi) = —(AuVal(@k, i) + pAV 9k Viegr) T iy
- %@iSZTBkSZ — Apif (hg + (AxVhy) "y sy,)
> — k| ARV ol (@, ) 1571 = Pkl Ak g Vigrlll skl — D21 Bl [ls7 11
— | Apk [ on + (AxVhi) T Prsi|

> — (|| AV l(@r, )| + Al AV e Viegi | + 1| Billllsy 1]l syl
— || Ape || Ak Vhae|[[| s |

where 71/3,% > —4)y,. Using Inequality (4.18), we obtain

ar(0) — qi(Axtrsy) — Apf (hy, + (A Vi) "disy)
> —i[([ ARVl (@r, i) || + Pl ARV gk Viegr |
+ 1IBrlllsill + 1Ak [ AeV o [ ) K1 ]| e |
Under Assumptions PAs, PAy, and PAs, the facts that ||s}|| < dpmas, and using (4.47),

there exists K717 > 0 which is independent of k, such that Inequality (4.48) hold. This
completes the proof. O

Lemma 4.22. Assume PA1-PAs, then for all k,

L. - . ZTV g1 (Aps?
Pred;, > ngl/)kHZquk(AkSZ)Hmm{Ak’w}

2 (| Bl
+Ax Vg Vigr | min{|| Ax Vgr Vige ||, Ar}

— K10l ||| + il = e + (Ae Vi) s 7). (4.49)
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Proof. From (3.17), we have
Predy, = [Qk(AM/NJkSZ) - Qk(AMZ)kSk)] + [qx(0) — Qk(Aki/;ksﬁ — Apg (he + (Athk)TlZ’kSk)]
+ )|kl = [k + (Ak Vi) esi) ).

Using (4.23), the above equation can be written in the form

1 ~ 1 -
Pred;, = §Tpred;€(1/)k§2)+iTpredk(wkE’,é)

+qk(0) — g (Axthpsy) — Auf(f}k + (AxVhy) " rsk)]
+rll[hl® = lhe + (ArVhe)  rsi?].

Using Inequalities (4.25), (4.46), and (4.48), we have

Lo : ZIVqi(Ags}
Pred, > *Kg?l)kHZquk(AksZ)Hmm{Ak,w}
2 | Bl

+[[ Ak V i Viegr || min{[| A Vg Viegr ||, Ax }
=Kyl ||| + rall| Pl = e 4+ (Ae Vi) drsi )]

This completes the proof. O

Lemma 4.23. Assume PA,-PAs. Let k be the index of an iteration at which ry, is increased.
Then there exists a constant K15 > 0 that does not depend on k, such that

et min{ || ||, 6} < Kio. (4.50)

Proof. Since 7y, is increased at the k' iteration and since pp = p is bounded, then from
(3.20), we can write

%[Hhkﬂ2 — (1 + (ARVhi) T rsi|®] = [ (Axtrsi) — au(Artosi)] + [ax(Arbisy) — q(0)]
+ ApF (hi + (AR V) Tdysi)
2kl = W+ (AT R) Bl
= —%Tpredk(%gi) - %Tpredk@kgi)
+ gk (Akrsy) — ar(0) + Apf (hk + (Ax Vi) "pesy)]
il s+ (AT A s ).

Applying Inequality (4.20) to the left hand side and Inequalities (4.25), (4.46), and (4.48)
to the right hand side, we obtain

EAMEE I
1Bl

— | Ak V i Vige | min{ || Vg Vigrll, A} + K119l

T ~ . Ks -~ .
ngwthkH min{dy, |||} < —731/)k||Z;§FVQk(Ak82)H min {Ak,

bo 2
—|lh
+ 5 Nl
~ b
< Kuatllall + 5 [l .

The rest of the proof follows using the fact that z/zk < 1 and assumption PAj. O
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Lemma 4.24. Assume PA;-PAs. At any given iteration k at which ||hy| < $6) and
| ZE(AkV bk, ) + pPANV G Viegi) || + | AV geVigr| > €, where € > 0 and ¢ is a positive
constant given by

~ . e V3  Kse . 2¢e € . 2e
< oo 1}, {1}t (s
¢ = { 6b3K16ma$ 2I(l 24I(Il i { 36mam 8I(ll i 5maw } ( ’ )

there exists a positive constant K13 that depends on € but does not depend on k, such that

Predy, > K390, + ri[||he]|* = |hn + (Ax Vi) Tdsi 2. (4.52)

Proof. Let || ZL (AxVol(xk, i) + pAV i Vigr)|| = §. Using Inequalities (4.18) and (4.47),
we have
128 (AkN ol(@r, pr) + PARY gk Vigr + Brsi) || > |2 (A V.l (zk, ) + pALV g1 Vg |
— 128 Brsi |
> | Z¢ (ARV ol i) + PARV gk Viegis ) |
— bs K1 ||hi]l-

Since || ZL (AVol(@k, i) + PARV g Vige) |l = 5, ]l < @0y, and ¢ < TR 5 then we
have
5 - €
125 (AxV ol(xy, pr) + pARV gk Vigr + Brsi)|| > 5~ bsKigor > 3 (4.53)

Since Ay = /0x” — [|sg]|2 and [|sp]| < Killhe] < Ki¢x < K132-0, = %205, then we
obtain A? = 67 — ||s}||? > 67 — 367 = 167. Hence,

1
Ak > 5. (4.54)
Since ||hx|| < @0k, Ur < 1, and using Inequalities (4.49), (4.53), and (4.54), then
1 -
Pred, > §K3wk||ZkT(Aszf(xk7 k) + PALNV gk Vigr + Bisy) ||

. i 1
min {||ZkT(Aka€($k, pi) + pPALNV gk Viegi + Bisy)||s 5%}

— K110l ||| + i1l = e + (Ae Vi) s )]

S Ksie
- 12

, 2 - -
pmin { ==, 1} — K1 e + el = 1 + (AcVhi) s )

: 7 Kse : 2e
Since ¢ < 57 min{g5—, 1}, then we have
Ksire

Predy, >
rear = 24

2e -
n{ g5 L+ rulllel® 1+ (AxVhe) s )

Now, consider the case when ||AxVgrVigr|l > 5. Using Inequalities (4.49) and (4.54), we

have

£
5

. 1
Predk 2 ||Angkagk||mm{HAngkang,iék}
— K[l ]| + il Pel® = [lhx + (AxVhi) drsi %]
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Y

N _ 1
DAV gVige | min {4V g Ve, 501 |
— K110 hael| + relll s ]|* = e + (ArVhi) b))

)e . 2e ~~ ~
> %mm{é ,1}5k7K11¢¢5k+rk[||hk||27||hk+(Athk)kaskH2].

. 7 . 2
Since ¢ < gre— min{3=-, 1}, we have

be 2e ~
Predy > %€ min { 2 145 4 rillel? — e + (AT i) Gy 7).

Take K13 = min { 53¢ min{2=—,1} , £ min{;2-,1}}, the result follows. O

From the above lemma, we can easily see that, at any iteration at which either
|1 Z (AR NV ol (g, pir) + pPARV gk Viegi) | > § > 0 or AV grVigrll > § > 0 and ||| < ddy,
where q~5 is given by (4.51), there is no need to increase the value of the penalty parameter.
i.e., 1y is increased only when ||hx|| > $0%.

Lemma 4.25. Assume PA-PAs. If at the j*" trial iterate of any iteration indexed k, the
penalty parameter r; is increased, then there exists a positive constant K14 that does not

depend on k or j, such that R
i Vka [k || < K. (4.55)

Proof. The proof follows directly from Inequalities (4.32) and (4.50). O

Lemma 4.26. Assume PAi-PAs. If ri, — oo, then

lim A, | =0, (4.56)
k;— 00

where {k;} is subsequence indices the iterates at which the penalty parameter is increased.

Proof. The proof follows directly from the above lemma and limy_, 1/~Jk =1. O

Main convergence theory

In this section, we prove our main global convergence results for our trust-region algorithm
for solving Problem (1.1). In the following theorem, we prove that the sequence {||hx||}
converges to zero.

Theorem 4.27. Assume PA1-PAs. Then the sequence of iterates generated by the algo-
rithm satisfies
lim ||Ag|| = 0. (4.57)
k—o0
Proof. Assume that limsup,_, ||hx| > € > 0. This implies the existence of an infinite
subsequence of indices {k;} indexing iterates that satisfy ||Ag,|| > §. From Lemma (4.12),
there exists an infinite sequence of acceptable steps. Without loss of generality, we assume
that all members of the sequence {k;} are acceptable iterates. We consider two cases:
i) If {rg} is unbounded, then there exists an infinite number of iterates {k;} at which the
penalty parameter r is increased. From Lemma (4.26), for k sufficiently large, the two
sequences {k;} and {k;} do not have common elements. Let ko, and k,, be two consecutive
iterates at which the penalty parameter ry is increased and k,, < k < kq,, where k € {k;}.
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The penalty parameter r is the same for all iterates that lie between k,, and k,,. Since all
the iterates of {k;} are acceptable, then for all k € {k;},

Py, — 1 = Aredy, > 7 Predy,.
From Inequality (4.21) and the above inequality, we can write

Oy — Dy S 71 Koty
Tk - 2

([P || i {{| o [, 9 }-

Summing over all acceptable iterates that lie between k,, and k,,, we have

k

ag—1 .
i Pk — Pry1  TKoYRe min{K f}

e 4 2
k=Fa,

where Ky is as Ky in (4.34), with € is replaced by 5. Hence,

Uk, s ko, i) = Tk, s ko D) N
Tk

TiKee . (.5 €
s, 12 = M 17) > D525 min { K, = .

ay

Since 7y — oo, then for k,, sufficiently large, we have

| U@k, s ka3 P) = Tk, s ka3 D) | < T1Ke min {K97 E}
Tk 8 2

ay
Therefore,
T1Kze | s €
e, I = I, | = 252 min { Ko, =}
But this leads to a contradiction with Lemma (4.26) unless € = 0.

i) If {r;,} is bounded, then there exists an integer k such that for all k > k, r, = 7. Hence
from Inequality (4.21), we have for any k € {k;} and k > k

7K.

2151; . 5FK21;,; . €
Predi, > ==yl mingay, g 1} > — mm{%mmﬂ}(s@. (4.58)

Since all the iterates of {k;} are acceptable, then for any k € {k;}, we have

¢, — (I)fc+1 = Ared; > 7 Pred;.

Hence, from Inequality (4.58) and the above inequality we have

T1€fK21;,; . €

Using Lemma (4.15) and the above inequality, we have

TlngQT;I; . g 5
g1 = 1 m1n{26mw,1}K9>0,

where Ky is as above. This gives a contradiction with the fact that {®} is bounded when
{rx} is bounded. Hence, in both cases, we have a contradiction. Thus the supposition is not
correct and the theorem is proved. O

o, -0

k
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Theorem 4.28. Assume PAi-PAs. Then the sequence of iterates generated by the algo-
rithm satisfies

liminf [ 27 AValil + [ AcVaeVigll | = (4.59)

k—oc0

Proof. First, we prove that
lim inf[|| 2 (A Vals + pARV gk Vigi) | + | 4xVgrVige |1 = 0. (4.60)

We prove (4.60) by contradiction. Suppose that, for all k, || ZF Ax(Vale + pV gk Vigr) || +

¢, , where ¢ satisfy (4.51). Since ||| — 0, we have
lim (SkL =0.

k;—o00
Consider any iterate k7 € {k;}. There are two cases to consider.
i) If {ry} is unbounded. For the rejected trial step j — 1 of iteration k, we have [|hx| >
POri = a19||sgi-1]|. Using Inequalities (4.21) and (4.30) and the fact that the trial step
Spi—1 was rejected, we have

|AT‘€dkj—1 - Predk]‘ﬂ |

1-— <
( Tl) - Pred;—
< [2K6||Skj—1 || + 2K7rp5-1 ||Skj—1 || ||hk|| + 2Kgryi—1 ||Skj—1 ||2]
- rri—1 Ko min(ag ¢, 1)||hg||
2Ks 2K7 + 2Kgon ¢
< + [sga-1]-

rri-1Ksaiémin(ard, 1) Koaydmin(aré, 1)

Because {ry} is unbounded, there exists an iterate i sufficiently large such that for all &k > k,

we have
4Kg

Kzozlq’;min(ozlé7 (1 —m) -

Tpi—1 >

This implies that for all k£ > /%,
Kgalémin(al(;l 1)(]. — T1)
4(K7 + Ksa19)
From the way of updating the trust region radius, we have
Kyaigmin(on g, 1)(1 — 1)
4(K7 + Kga19) '
This gives a contradiction. So J; can not go to zero in this case.
ii) If the sequence {ry} is bounded. There exists an integer k and a constant 7 such that for
all k >k, r,, = 7. Let k > k and consider a trial step j of iteration k, such that ||| > ¢dy,.

If j = 1, then from our way of updating the trust-region radius, we have d,; > dmin-
Hence §;,; is bounded in this case. If j > 1, and

e || > e, (4.61)

[[8gi-1[l =

O = oa|[ski-1|| =

for I =1,...,7, then for all rejected trial steps I = 1,...,7 — 1 of iteration k, we have

|Ared: — Predy,| < 2Ks||sp|
Predy;  Kpmin(g, 1)/

(1 —Tl)
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Hence,

a1 Ko min((Z), (1 = 71)|[hll S o1 Ko min(gg, (1 - 7'1)(;3

O0pi = G- > g1
k atl|sgi—1| > 2K = 2K k
S kKo min(¢, 1)(1 —7'1)¢6 _
- 2K5 min-

Hence dy; is bounded in this case too. If j > 1 and (4.61) does not hold for all /, there exists
an integer m; such that (4.61) holds for I =m; +1,...,j and

|| < G, (4.62)
for il =1,...,mq. As in the above case, we can write
a1 Ko min(a, 1)(1 — 1) a1 Ky min(¢, 1)(1 — )¢
Opi > hill > Opmy+1. 4.
o> = e T o (163

But from our way of updating the trust-region radius, we have
(5km1+1 2 (651 ||Skm1 || (464)

Now, using (4.62), Lemma (4.24), and the fact that the trial steps sgm1 is rejected, we can
write

(1 _ 7_1) S |A7“6dkm1 — P’)"edkml | S 2K5f”$km1 || )
Predjm, K3

This implies
K13(1 — T1)

2Ks57 '
This implies that, ||sgm: || is bounded. This fact together with (4.63) and (4.64) imply that
0is 18 bounded in this case too. Hence §; is bounded in all cases.

This contradiction implies that for k7 sufficiently large, all the iterates satisfy ||hx|| <
d~>5kj. This implies using Lemma (4.23) that there is no need to increase the value of the
penalty parameter. So, {r;} is bounded. Letting ¥/ > k and using Lemma (4.23), we have

[[8ma || >

(I)kj — (I)k:jJrl = ATedkj Z Tlpredkj Z ’7'1K135kj.
As k goes to infinity the above inequality implies that
lim 6 = 0. (4.65)
k—o0

This implies that the radius of the trust region is not bounded below. But this leads to
a contradiction because if we consider an iteration k7 > k and if the previous step was
accepted; i.e., j = 1, then 1 > din. Hence dy; is bounded in this case.

Now assume that j > 1. 7.e., there exists at least one rejected trial step. For the rejected
trial step spi—1, using Lemmas (4.11) and (4.23), we must have

7K ||sgi—1 |

1 _
(1=m) < K361

From the way of updating the trust-region radius, we have

a1 Ki3(1 —7)

6kj = Oz1||8kj—1 || > 'fK5
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Hence 6y; is bounded. But this contradicts (4.65). The supposition is wrong. Hence,

1ikn_1)i£f [ ZF Ap(Vuli + pV g Viear) || + || Ak Vg Vigr|| ] = 0.

But this also implies (4.59). This completes the proof of the theorem. O

From the above two theorems, we conclude that, given any € > 0, the algorithm termi-
nates because || ZT AV li|l + | AV gxVigr| + [|hx]| < &, for some finite k.

Numerical Results

In this section, we present the numerical results of the interior-point trust-region Algorithm
3.1 which have been performed on a laptop with Intel Core (TM)i7-2670QM CPU 2.2 GHz
and 8 GB RAM. Algorithm 3.1 was implemented as a MATLAB code and run under MAT-
LAB version 7.10.0.499 (R2010a).

Given a starting point zo € int(F), we choose the initial trust-region radius §y =
maz(||sq P, 6min), where i = 1073, We choose the maximum trust-region radius
Smaz = 10369. The values of the constants that are needed in Step 0 of Algorithm 3.1
were set 7, = .25, 75 = 0.75, a1 = 0.5, ap =2, g1 = 1078, £ = 1071% and 6 = 0.9995.

Successful termination with respect to our trust-region algorithm means that the termi-
nation condition of the algorithm is met with £y = 1078, On the other hand, unsuccessful
termination means that the number of iterations is greater than 300, the number of function
evaluations is greater than 500, or the length of the trial step is less than 5. A flowchart of
Algorithm 3.1 as shown in Figure(6.1)

The results Algorithm 3.1 are reported in Table 1 where the test problems are numbered
in the same way as in [14]. For example, HS53 is the problem 53 in [14]. For comparison,
we have included the corresponding results obtained by a trust-region algorithm combining
line search filter technique for nonlinear constrained optimization in [19] and Lancelot [3].
For all problems, these algorithms achieved the same optimal solution at the same starting
points in [14].

In many of the test problems reported in Table 1, the number of iterations (iter) and
the number of function evaluations (nfunc) of Algorithm 3.1 are better than those obtained
by method [3] or method [19]. This indicates the viability of our approach. However, we
believe that our algorithm needs to be refined with efficiency in mined to be suitable for
bounded large-scale problems.

(6] Concluding Remarks

We described an interior-point active-set trust-region algorithm for solving general non-
linear programming problem with bound on variables. The algorithm handles inequality
constraints in a fashion similar to the approach of [5] for treating the active constraints. In
this algorithm, an active set strategy is used together with a Coleman-Li strategy and a
projected Hessian technique to transform the computation of the trial step at each itera-
tion to two easy trust-region sub-problems similar to the trust region sub-problems of the
unconstrained optimization problem.

We proved that the algorithm is globally convergent under mild conditions and a subse-
quent of the sequence of iterate generated by the algorithm converges to either Fritz John
point, or an infeasible Fritz John point or KKT point.

For future work, there are many question should be answered.
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Although we have implemented the algorithm and tested it, we believe that the imple-
mentation of the algorithm should be refined with efficiency in mined. In particular, a
better way of solving the trust-region subproblems that can handle large-scale bound
constrained optimization problems should be used.

Improving the proposed algorithm to be capable for treating nondifferentiation bound
constrained optimization problem with equality and inequality constraints.

Updating the Lagrange multiplier is another point that needs to be refined. In partic-
ular, an inexpensive way for updating the Lagrange multiplier is needed. This indeed
will reduce the cost of the computation of the steps.

A related important question that has to be looked at is how to use a secant approx-
imation of the Hessian of the Lagrangian matrix in order to produce a more efficient
algorithm.
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BOTHINA EL-SOBKY

Problem name | Method in [3] | Method in [19] | Algorithm 3.1
iter nfunc | iter nfunc | iter nfunc
HS6 49 56 12 21 4 5
HS7 18 19 9 21 7 8
HS8 - - 2 2 5 7
HS9 4 5 7 8 6 8
HS10 17 18 - - 17 20
HS11 15 16 - - 20 23
HS12 22 23 - - 12 15
HS14 12 13 - - 13 14
HS16 15 16 - - 17 20
HS26 - - 20 50 12 13
HS28 - - 5 6 5 6
HS30 7 8 3 4
HS33 12 12 - - 13 14
HS34 19 19 - - 21 23
HS39 20 21 21 66 12 13
HS40 10 11 16 56 5 6
HS41 6 7 - - 8 9
HS42 12 13 9 12 3 4
HS47 - - 19 27 5 6
HS48 - - 7 9 4 5
HS49 - - 32 42 9 10
HS50 - - 11 12 15 20
HS51 - - 4 6 4 5
HS52 - - 7 7 7 14
HS53 6 7 - - 4 5
HS60 15 15 - - 6 7
HS77 22 24 - - 9 10
HS78 11 11 16 59 4 7
HS79 9 10 10 13 6 7
HS80 14 15 - - 5 6
HS81 16 17 - - 5 6

Table 1: Comparison of method in [3] and [19] with Algorithm 3.1 respectively.
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Figure 1: flowchart of Algorithm 3.1




