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applications which has non-strictly convex objective functions. One application considered
here is beamformer design. Beamforming is a spatial filtering technique to enhance the
required signal via a sensor array for directional signal transmission or reception [2, 10].
With a fixed configuration, the steering vectors of the desired signals can be estimated
together with their direction-of-arrivals [20]. More elaborated physical signal propagation
models have also be employed to describe complicated wave phenomena [11]. As a result,
the beamformer design problem can be formulated as an optimization problem similar to
the design of multidimensional digital filters; various optimization methods, such as linear
programming techniques [13], quadratic programming techniques [12] and second-order cone
programming [3] have been applied. If the beamformers are applied in the near-field of
the speaker, it becomes a broadband design problem and several optimization methods
have been developed; these include the use of quadratic programming [17], multicriteria
formulation [23], linear programming [24], and semi-definite programming [4, 6]. We have
also investigated analytically the performance limit of the optimization when the filter length
is long and the number of microphone is large [7]. As the filter length and the number of
microphone of the beamformer increase, the optimization problems become large-scale and
are difficult to handle even with the state-of-arts optimization software. Also, the complexity
of the beamforming system is becoming very high. Thus we need an efficient algorithm to
reduce the complexity.

In view of this, for the semi-infinite programming problem which has non-strictly convex
objective functions, in order to make use of the low complexity nature of the exchange
method proposed in [26], a perturbation exchange algorithm is proposed to tackle problems
with non-strictly convex objective function. The idea is to add a small perturbation to the
objective function, making it strictly convex. We show that, under certain assumptions,
the solution can be obtained in a finite of iterations, giving an approximate solution to
the original problem. We prove that the approximate solution of the perturbed problem
converges to the true solution as the perturbation diminishes.

We demonstrate the method by tackling the sparse beamformer design problem. In
designing beamformers, it is advantageous to have filters with many zeroes. In this way,
the implementation complexity can be reduced significantly. Therefore, the design of sparse
beamforming filters is of great interest. In solving this l0-norm problem [18], an often
subproblem is to employ l1-norm as a linear relaxation of the original problem, and iterate on
the number of zero via a successive thinning technique [1,9]. When the l1-norm is employed,
the problem becomes a non-strictly convex semi-infinite programming problem. For fast
convergence and at the same time reducing the magnitudes of unnecessary filter coefficients,
a perturbation exchange algorithm is proposed. The idea is to add a small perturbation
to the objective function, making the problem strictly convex. Under the influence of a
small perturbation to the objective function, we obtain similar frequency response to the
traditional method [24]. Numerical results have shown that it is possible to have a region
of approximately equal performance in terms of the maximum stopband error when the
sparsity increases. Therefore, the proposed methods can indeed reduce the complexity of
the filters significantly.

In the following sections, the perturbation exchange algorithm is described in Section
2. Then, the convergence property of the proposed perturbation exchange algorithm is
established in Section 3. In Section 4, the sparse broadband beamformer design problem is
studied and the algorithm is described. Finally, numerical results are given in Section 5.
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2 Perturbation Exchange Algorithm

For the convex semi-infinite programming (CSIP) problem{
min f(x)

s.t. g(x, s) ≤ 0 for any s ∈ Ω,
(P )

where f : Rn → R and g(·, s) : Rn → R are continuous convex functions, and Ω is a given
nonempty compact set in Rp (or in Cp). Associated with each finite set R = {sj , j =
1, . . . ,m} ⊂ Ω, the finitely constrained convex programming problem is define by{

min f(x)

s.t. g(x, sj) ≤ 0 for any j = 1, . . . ,m.
(P (R))

Similar to [26], we also assume:
(i) f is convex and continuously differentiable on Rn;
(ii) For any s ∈ Ω, g(·, s) is convex and ∇xg(x, s) exists and is continuous on Rn;
(iii) There exists x̂ ∈ Rn such that g(x̂, s) < 0 for all s ∈ Ω (Slater constraint qualifica-

tion);
(iv) There exists a finite subset Ω0 of Ω such that f is level bounded on the feasible set

of (P (Ω0)), i.e., for every a ∈ R, the set

L0
a := {x ∈ Rn : f(x) ≤ a and g(x, s) ≤ 0 for all s ∈ Ω0}

is bounded when it is nonempty.
In order to make the function f(x) strictly convex, we consider a perturbation of the

problem (P ) as follows: {
min fϵ(x)

s.t. g(x, s) ≤ 0 for any s ∈ Ω,
(Pϵ)

where
fϵ(x) = f(x) + ϵ∥x∥2. (2.1)

For a given finite set R = {sj , j = 1, . . . ,m} ⊂ Ω, we consider the constrained problem:{
min fϵ(x)

s.t. g(x, sj) ≤ 0 for any j = 1, . . . ,m.
(Pϵ(R))

Remark 2.1. Let x∗ ∈ Rn be a feasible solution of the problem (Pϵ(R)). It is known that
x∗ is optimal if and only if there exist multipliers λ∗ ∈ Rm such that (x∗, λ∗) satisfies the
following Karush-Kuhn-Tucker (KKT) conditions [15]:

∇fϵ(x) +
m∑
j=1

λ(sj)∇xg(x, sj) = 0,

λ(sj) ≥ 0, g(x, sj) ≤ 0, λ(sj)g(x, sj) = 0, j = 1, . . . ,m.

(KKT )

For given a small η ∈ (0, 1/2), choose ϵ = ϵ(η) > 0 small enough such that

ϵ sup
z∈L0

ā

∥z∥2 ≤ η,
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and ā = 1 + f(z̄) for some given z̄ ∈ {x ∈ Rn; g(x, s) ≤ 0, ∀s ∈ Ω}. By applying Algorithm
2.1 in [26] to (Pϵ(R)), we present a perturbation exchange algorithm (PEA) as follows:

Step 0. Choose a finite reference set R0 = {s0j , j = 1, . . . ,m0} ⊂ Ω such that Ω0 ⊂ R0.

Let x0 be an optimal solution to (Pϵ(R0)). Set k = 0.
Step 1. Find a point sknew ∈ Ω such that

g(xk, sknew) > η.

If such a point does not exist, then stop. Otherwise, put

R̄k+1 = Rk ∪ {sknew}.

Step 2. Let xk+1 be an optimal solution to (Pϵ(R̄k+1)) and let {λk+1(s), s ∈ R̄k+1} be
the set of associated multipliers.

Step 3. Let
Rk+1 :=

{
s ∈ R̄k+1 : s ∈ Ω0 or λk+1(s) > 0

}
.

Set k = k + 1, and return to Step 1.

Remark 2.2. It is obvious that the optimal solution xk+1 to (Pϵ(R̄k+1)) also solves
(Pϵ(Rk+1)).

Let xk be an optimal solution to (Pϵ(Rk)) and let vk denote the optimal value of
(Pϵ(Rk)). Let Λk = {λk(sj), j = 1, . . . ,m} be the corresponding Lagrange multiplier. Since
fϵ is strictly convex, by KKT’s condition (KKT), if the algorithm (PEA) does not terminate
in k iterations, then

vk+1 − vk =fϵ(x
k+1)− fϵ(x

k) > ∇fϵ(x
k)T (xk+1 − xk)

=−
∑

sj∈Rk

λk(sj)∇xg(x
k, sj)

T (xk+1 − xk)

≥
∑

sj∈Rk

λk(sj)
(
g(xk, sj)− g(xk+1, sj)

)
=−

∑
sj∈Rk

λk(sj)g(x
k+1, sj) ≥ 0

(2.2)

where the last equality is due to
∑

sj∈Rk λk(sj)g(x
k, sj) = 0. In particular,

vk+1 − vk > 0. (2.3)

3 Convergence

The following result is a consequence of Theorem 3.1 in [26].

Theorem 3.1. The algorithm (PEA) terminates in a finite number of iterations.

Based on the above theorem, our main convergence result can be established by the
following theorem.

Theorem 3.2. For given η > 0, let x∗
η be the point determinated by the algorithm (PEA).

Then
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(1) Every accumulation point of {x∗
η, η → 0} is an optimal solution of (P ).

(2) limη→0 fϵ(η)(x
∗
η) = v∗, where v∗ is the optimal value of (P ).

(3) For any η > 0,

0 ≤ v∗ϵ(η) − fϵ(η)(x
∗
η) ≤ M1(η)dist (F ∩ {f ≤ α},Fη ∩ {f ≤ α+ η}) ,

where v∗ϵ(η) is the optimal value of (Pϵ),

{f ≤ α} = {x : f(x) ≤ α} and {f ≤ α+ η} = {x : f(x) ≤ α+ η} with α ≥ v∗,

Fη := {x : g(x, s) ≤ 0 for all s ∈ Ω0 and g(x, s) ≤ η for all s ∈ Ω} ,
F = {x : g(x, s) ≤ 0 for all s ∈ Ω} ,

M1(η) := sup
x∈Fη∩{f≤α+η}

(∥∇f(x)∥+ 2ϵ(η)∥x∥) .

(4) For any η > 0,

0 ≤ v∗ϵ(η) − fϵ(η)(x
∗
η) ≤

ηM1(η)

η + ρ
∥x∗

η − x̂∥,

where x̂ is a point such that g(x̂, s) < 0 for all s ∈ Ω, ρ := −maxs∈Ω g(x̂, s), and
α ≥ max{v∗ + η, f(x̂)}.

Proof. Since f is level bounded on the feasible set of (P (Ω0)), the set {x∗
η, η > 0} is bounded.

Therefore, there exists at least an accumulation point x∗ of {x∗
η, η → 0}. By g(x∗

η, s) ≤ η
for all s ∈ Ω, we have x∗ ∈ F . It is clear that there exists a finite positive integer N = Nη,
such that x∗

η is an optimal solution of the problem{
min
x∈Rn

fϵ(η)(x)

s.t. g(x, s) ≤ 0 for all s ∈ RN and g(x, s) ≤ η for all s ∈ Ω\RN .

Therefore, if x is such that g(x, s) ≤ 0 for all s ∈ RN and g(x, s) ≤ η for all s ∈ Ω\RN , then

fϵ(η)(x
∗
η) ≤ fϵ(η)(x).

For any subsequence ηn → 0 such that x∗
ηn

→ x∗, Since L0
f(x∗) ⊃ {x; f(x) ≤ f(x∗)}∩F and

{x∗
ηn
} are bounded, we have that as η → 0,

sup
x∈L0

f(x∗)

|fϵ(η)(x)− f(x)| ≤ ϵ(η) sup
x∈L0

f(x∗)

∥x∥2 → 0,

and as n → ∞,

|fϵ(ηn)(x
∗
ηn
)− f(x∗)| ≤ |f(x∗

ηn
)− f(x∗)|+ ϵ(ηn) sup

k≥1
∥x∗

ηk
∥2 → 0.

Hence, fϵ(ηn)(x
∗
ηn
) → f(x∗). Let x̄ be the optimal solution of (P), then f(x̄) ≤ f(x∗), for any

x∗ ∈ F . And we have fϵ(ηn)(x
∗
ηn
) ≤ f(x̄), then f(x∗) ≤ f(x̄). Thus we get f(x∗) = f(x̄).

Therefore, x∗ is an optimal solution of (P ), and limη→0 fϵ(η)(x
∗
η) = v∗. (1) and (2) are valid.

Next, let us show (3). Let x̂∗
η be the orthogonal projection of x∗

η onto F ∩{f ≤ α}. Then
fϵ(η)(x̂

∗
η) ≥ v∗ϵ(η) and

0 ≤ v∗ϵ(η) − fϵ(η)(x
∗
η)



20 M.J. GAO, K.-F. CEDRIC YIU AND S Y. WU

= v∗ϵ(η) − fϵ(η)(x̂
∗
η) + fϵ(η)(x̂

∗
η)− fϵ(η)(x

∗
η)

≤ fϵ(η)(x̂
∗
η)− fϵ(η)(x

∗
η)

= ∇fϵ(η)(x̃
∗
η)(x̂

∗
η − x∗

η)

≤
(
∥∇f(x̃∗

η)∥+ 2ϵ(η)∥x̃∗
η∥
)
∥x̂∗

η − x∗
η∥

where x̃∗
η is a point of the segment determined by x̂∗

η and x∗
η. Noting that f(x∗

η) ≤ fϵ(η)(x
∗
η) ≤

infx∈F∩L0
ā
{f(x) + ϵ(η)∥x∥2} ≤ v∗ + η, , we have that x̃∗

η ∈ Fη ∩ {f ≤ α + η} which is a
compact set. Therefore, (3) is valid.

Finally, we prove (4). It is obvious that

g

(
ρ

η + ρ
x∗
η +

η

η + ρ
x̂, s

)
≤ ρ

η + ρ
g(x∗

η, s) +
η

η + ρ
g(x̂, s)

≤ ρ

η + ρ
× η +

η

η + ρ
× (−ρ) = 0,

and so ẑ∗η := ρ
η+ρx

∗
η +

η
η+ρ x̂ ∈ F . Then

0 ≤ v∗ϵ(η) − fϵ(η)(x
∗
η)

= v∗ϵ(η) − fϵ(η)(ẑ
∗
η) + fϵ(η)(ẑ

∗
η)− fϵ(η)(x

∗
η)

≤ fϵ(η)(ẑ
∗
η)− fϵ(η)(x

∗
η)

= ∇fϵ(η)(z̃
∗
η)(ẑ

∗
η − x∗

η)

≤
(
∥∇f(z̃∗η)∥+ 2ϵ(η)∥z̃∗η∥

)
∥ẑ∗η − x∗

η∥

where z̃∗η is a point of the segment determined by ẑ∗η and x∗
η, and so,

f(z̃∗η) ≤ max{f(ẑ∗η), f(x∗
η)} ≤ max{f(x∗

η), f(x̂)} ≤ max{v∗ + η, f(x̂)}.

Thus, z̃∗η ∈ Fη ∩ {f ≤ α + η} with α ≥ max{v∗ + η, f(x̂)}. Noting that ∥ẑ∗η − x∗
η∥ ≤

η
η+ρ∥x̂− x∗

η∥, we obtain (4).

Remark 3.3. (1) If (P) has a unique optimal solution, denoted by x∗, then by Theorem
3.2 (1), limη→0 x

∗
η = x∗, and limη→0 fη(x

∗
η) = f(x∗). Therefore, the perturbation algorithm

(PEA) provides an approximate solution.
(2) Theorem 3.2 (3) and (4) provide error bounds for the approximate solution x∗

η.
(3) Since

F ∩ {f ≤ α} ⊂ Fη ∩ {f ≤ α+ η} ⊂ L0
α+η,

it is obvious that

dist (F ∩ {f ≤ α},Fη ∩ {f ≤ α+ η}) ≤ sup
x,y∈L0

α+η

∥x− y∥,

and

M1(η) = sup
x∈Fη∩{f≤α+η}

(∥∇f(x)∥+ 2ϵ(η)∥x∥) ≤ sup
x∈L0

α+η

(∥∇f(x)∥+ 2ϵ(η)∥x∥) .

4 Sparse Beamforming Design Problem

In this section, we apply the proposed method to solve a sequence of non-strictly convex semi-
infinite programming problem, namely the sparse broadband beamformer design problem.
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4.1 Formulation

In a typical environment, a beamformer contains a series of microphones placed in pre-
defined locations. Behind each microphone, there is an FIR filter attached for processing
the received sound signals [23]. Let the beamformer have N microphones and let each FIR
filter have L taps. Denote the position vector of the i-th microphone by ri. The transfer
function from the source to the i-th microphone is given by

Ai(r, f) =
1

∥r − ri∥
e−j2πf∥r−ri∥/c. (4.1)

The array response is therefore given by

a(r, f) = (A1(r, f), . . . , AN (r, f))ᵀ, (4.2)

and the beam response is
G(r, f) = wᵀd(r, f)

with
d(r, f) = a(r, f)⊗ d0(f),

where ⊗ is the Kronecker product, and d0(f) =
(
1, e−j2πf/fs , . . . , e−j2πf(L−1)/fs

)
is the

filter response vector. For a given array configuration, this beamforming design problem
can be formulated as a minimax problem:

min
w∈RNL

max
(r,f)∈Ω

|wᵀd(r, f)−Gd(r, f)|, (4.3)

where Gd(r, f) is the specified desired response of the broadband beamformer.
Following [24], we expand the complex functions as

d(r, f) = d1(r, f) + jd2(r, f),

Gd(r, f) = Gd1(r, f) + jGd2(r, f),

and denote
u(r, f) = wᵀd1(r, f)−Gd1(r, f),

v(r, f) = wᵀd2(r, f)−Gd2(r, f).

By introducing a slack variable δ

δ = max
(r,f)∈Ω

|u(r, f) + jv(r, f)|,

the above minimax problem can be further written as min
w∈RNL,δ

δ

s.t. |u(r, f) + jv(r, f)| ≤ δ ∀(r, f) ∈ Ω.
(4.4)

Actually, we can control the real part and the imaginary part separately. Using the l1 norm
as a linear relaxation, and introducing two new variables as

z1 = max
(r,f)∈Ω

|u(r, f)|, z2 = max
(r,f)∈Ω

|v(r, f)|,
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we convert the above problem into the following problem:
min

w∈RNL,z1,z2
z1 + z2

s.t. |u(r, f)| ≤ z1 ∀(r, f) ∈ Ω

|v(r, f)| ≤ z2 ∀(r, f) ∈ Ω

(4.5)

which is equivalent to

min
w∈RNL,z1,z2

z1 + z2

s.t. wᵀd1(r, f)−Gd1(r, f) ≤ z1 ∀(r, f) ∈ Ω

−wᵀd1(r, f) +Gd1(r, f) ≤ z1 ∀(r, f) ∈ Ω

wᵀd2(r, f)−Gd2(r, f) ≤ z2 ∀(r, f) ∈ Ω

−wᵀd2(r, f) +Gd2(r, f) ≤ z2 ∀(r, f) ∈ Ω.

(4.6)

To summarize, the design problem can be formulated as the following semi-infinite program-
ming problem {

min
z∈RNL+2

bᵀz

s.t. H(r, f)z −G(r, f) ≤ 0 ∀(r, f) ∈ Ω
(4.7)

where z = (w, z1, z2)
ᵀ, b = (0, 1, 1)ᵀ,

H(r, f) =


d1(r, f)

ᵀ −1 0
−d1(r, f)

ᵀ −1 0
d2(r, f)

ᵀ 0 −1
−d2(r, f)

ᵀ 0 −1

 , G(r, f) =


Gd1(r, f)
−Gd1(r, f)
Gd2(r, f)
−Gd2(r, f)

 .

Define
g(z, (r, f)) = H(r, f)z −G(r, f).

Then the above problem (4.7) can be represented by{
min
z

bᵀz

s.t. g(z, (r, f)) ≤ 0 ∀(r, f) ∈ Ω.
(4.8)

In order to reduce implementation complexity, the sparsity of filters should be increased.
This can be represented by the constraint ∥w∥0 ≤ q, where q is some integer for controlling
the sparsity of the filter. The beamformer design problem can be formulated as{

min bᵀz + ϵ∥z∥22
s.t. g(z, (r, f)) ≤ 0 ∀(r, f) ∈ Ω.

(4.9)

Note that in the formulation, a small perturbation is added to the objective function, which
helps to drive some filter coefficients to much smaller values. These less important coefficients
could be identified and could be discarded gradually. Another advantage is that the objective
function becomes strictly convex, which enables the use of our perturbation exchange method
with a rather low complexity, even for the multi-dimensional design problem. In the previous
section we have proved when ϵ is sufficiently small, the approximate solution of the perturbed
problem will be converged to the true solution. In the following section, the successive
thinning algorithm is described, which composes of an outer cycle to fix the set of zero filter
coefficients gradually and (4.9) is a subproblem for this thinning algorithm.
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4.2 Algorithm

In the sequential thinning algorithm, it maintains a growing list C(i) ⊂ {1, . . . , NL − q} of
indices, for which wm is constrained to be zero, where m ∈ C(i) and the superscript i denotes
the iteration number. In the first iteration, C(0) is empty and the usual optimal beamformer
will be sought by minimizing the maximum error. In subsequent iterations, one new filter
coefficient is selected from the previous iteration and constrained to be zero in solving the
beamformer design problem (4.8). The major steps of this approach can be summarized as
follows:

(1) Initialize N (0) = {1, 2, . . . , NL} and C(0) = ∅. Solve the following augmented
beamforming design problem{

min bᵀz + ϵ∥z∥22
s.t. g(z, (r, f)) ≤ 0 ∀(r, f) ∈ Ω.

(2) For iteration i = 1, 2, . . . , we use the smallest-coefficient rule to choose the
index p(i) of the filter coefficient

p(i) = arg minm|w(i)
m |.

which should be constrained to zero value in the next iteration. Update

N (i) = N (i−1) − {p(i)}

C(i) = C(i−1) + {p(i)},

and then solve the following problem
min bᵀz + ϵ∥z∥22
s.t. g(z, (r, f)) ≤ 0 ∀(r, f) ∈ Ω

wm = 0 ∀m ∈ C(i).

(4.10)

In solving the sub-problem (4.10), discretization is employed to convert the solution space
into a finite set of points. For a given finite set R = {(rj , fj), j = 1, . . . ,m} ⊂ Ω, we consider
the finite problem denoted by (BPϵ(R(i))):

min bᵀz + ϵ∥z∥22
s.t. g(z, (rj , fj)) ≤ 0 for any j = 1, . . . ,m

wm = 0 ∀m ∈ C(i).

(4.11)

We use exchange algorithm for this subproblem (4.10). The final algorithm can be summa-
rized as follows:

Step 0:

Choose a finite reference set R(0,0) = {(r(0,0)j , f
(0,0)
j ), j = 1, . . . ,m0} ⊂ Ω such

that Ω0 ⊂ R0. Let z(0,0) be an optimal solution to (BPϵ(R(0,0))) and let

{λ(r(0,0)j , f
(0,0)
j ), j = 1, . . . ,m0} ∈ Rm be the set of associated multipliers. Set

C(0) = ∅, k = 0 and i = 0.

Step 1:
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1.1. Find a set {(r(i,k)new , f
(i,k)
new ), new = 1, . . . , n} ⊂ Ω such that

g(z(i,k), (r(i,k)new , f (i,k)
new )) > η.

If such a point does not exist, then stop. Otherwise, put R̄(i,k+1) = R(i,k) ∪
{(r(i,k)new , f

(i,k)
new )}.

1.2. Let z(i,k+1) be an optimal solution to (BPϵ(R̄(i,k+1))) and let
{λ(i,k+1)(r, f), (r, f) ∈ R̄(i,k+1)} be the set of associated multipliers.

1.3. Let
R(i,k+1) :=

{
(r, f) ∈ R̄(i,k+1);λ(i,k+1)(r, f) > 0

}
.

Set k = k + 1, and return to step 1.1.

Step 2:

Let R(i) denote the final reference set and z(i) = (w(i), z
(i)
1 , z

(i)
2 )ᵀ be the optimal

solution found in Step 1. If ∥w∥0 = q, then stop. Otherwise the index p(i) is
chosen to correspond to the smallest of the optimal coefficient wi,

p(i) = arg minm|w(i)
m |.

Put C(i+1) = C(i) ∪ {p(i)}.
Step 3:

Set k = 0. Let R(i+1,k) = R(i), z(i+1,k) be an optimal solution to (BPϵ(R(i+1,k))
and {λ(i+1,k)(r, f), (r, f) ∈ R(i+1,k)} be the set of associated multipliers. Set
i = i+ 1, and return to Step 1.

Note: In step 1.1, we choose multiple points satisfying the adding rule instead of just
choosing one. This will reduce the number of iterations and shorten the computational
time.

5 Numerical Examples

In this section we provide examples to demonstrate the performance of the algorithm which
is implemented in MATLAB. We choose the desired response function as

Gd(r, f) =

{
e−j2πf( ||r−rc||

c +L−1
2 T), if (r, f) is in passband region,

0, if (r, f) is in stopband region,

where rc is the reference central microphone location. In this example, we consider an equi-
spaced linear array with five elements that can be seen in Figure 1, where the diamond point
denotes the speaker position and the circle points denote the microphone array positions.
Here we consider each filter has 7 taps. The passband region is defined as

{(x, f) : −0.4m ≤ x ≤ 0.4m, 0.5kHz ≤ f ≤ 1.5kHz}

while the stopband region is the union of several parts as

{(x, f) : −0.4m ≤ x ≤ 0.4m, 2.5kHz ≤ f ≤ 4kHz},

{(x, f) : 1.5m ≤ |x| ≤ 2.5m, 0.5kHz ≤ f ≤ 1.5kHz},
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Figure 1: Array configuration (Ex1)

{(x, f) : 1.5m ≤ |x| ≤ 2.5m, 2.5kHz ≤ f ≤ 4kHz}.
In this example, we fix ϵ = 0.05, Table 1 shows the advantages of using PEA instead of the
traditional discretization method and the penalty decomposition method [16]. In terms of
computational efficiency, the running time of using PEA is always significantly less than the
discretization method, and also with a much lower complexity in the storage requirement.
Moreover, if the sparseness of the solution is increased, we can achieve better frequency
response functions in even lesser time. This demonstrates the power of the method in
tackling the l0-norm design problem. The amplitude of the actual response G(r, f) using
PEA is shown in Figure 2. It is observed in Figure 3 that the performance is not affected
greatly even when the sparseness increases to about 45% of zero elements.

percentage of zeros PEA SIP PD
0% −14.1175(dB) −14.5075(dB) −12.2093(dB)

4.5623(s) 485.6615(s) 464.9336(s)
25.71% −13.8700(dB) −14.4030(dB) −11.6914(dB)

31.6315(s) 705.8628(s) 1109.1(s)
45.71% −12.7979(dB) −11.9340(dB) −11.7307(dB)

52.8846(s) 853.0882(s) 1286.1(s)
71.43% −10.0506(dB) −8.6308(dB) −6.8706(dB)

79.6834(s) 954.1321(s) 1141(s)

Table 1: Comparison of the stopband ripple and the running times (Ex1)

In the second example, we extend the length of the filters significantly so that each filter
has 26 taps. We continue to fix ϵ = 0.05 and consider the configuration showed in Figure 4
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Figure 2: Amplitude of G(r, f) where N = 5, L = 7, 45.71% of zeroes (Ex1).
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Figure 3: Stopband ripple for filters (Ex1).
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for this example. The passband region is defined as

{(x, f) : −0.4m ≤ x ≤ 0.4m, 0.5kHz ≤ f ≤ 1.5kHz}

while the stopband region is simplified as the union of

{(x, f) : 1.8m ≤ |x| ≤ 3m, 0.5kHz ≤ f ≤ 1.5kHz},

{(x, f) : −3m ≤ |x| ≤ 3m, 2kHz ≤ f ≤ 4, kHz}

with fewer transition regions. The amplitude of the actual response G(r, f) using PEA is
shown in Figure 5. We can also observe a region of approximately equal performance for
this example as shown in Figure 6.
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Figure 4: Array configuration (Ex2)

6 Conclusions

In this paper, a new method has been proposed for solving semi-infinite problems with
functions not strictly convex. The convergence of the method has been established and
a multiple exchange algorithm has been developed for finding the solutions. The method
is then employed for designing sparse beamforming system with the successful thinning
technique. We have studied the performance of the optimized designs with several examples.
Overall, the method has the advantages of having a finite termination and economizing on
the storage requirement during iterations. In this way, it has the potential to be extended
to other applications as well such as configuration optimization [5]. Furthermore, it would
be of interest to study the convergence of the overall successive thinning algorithm as an
extension.
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Figure 5: Amplitude of G(r, f) where N = 5, L = 26, 61.54% of zeroes (Ex2).
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Figure 6: Stopband ripple for filters (Ex2).
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