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Abstract: In this paper, an existence theorem of the strong efficient solutions concerning a class of symmet-
ric vector set-valued quasi-equilibrium problems is established by using Kakutani-Fan-Glicksberg fixed point
theorem and two existence theorems of the efficient solutions and the weakly efficient solutions for the sym-
metric vector set-valued quasi-equilibrium problems are derived by using the scalarization method. Some
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Introduction

Since the vector variational inequality was introduced and studied by Giannessi [15] in
1980, various theoretical results, numerical algorithms and applications have been investi-
gated extensively for vector variational inequalities and vector equilibrium problems with
their generalizations in the literature (see, for example, [1,2,5,8,11,13, 16, 23,24, 27] and
the references therein). Motivations for these come from the fact that these models have
many applications in optimization, control theory, mathematical programming, networks,
operations research, management science, economics and finance.

On the other hand, as a generalization of the equilibrium problem proposed by Blum and
Oettli [4], the symmetric quasi-equilibrium problem was introduced and studied by Noor and
Oettli [26]. Inspired by the study in connection with vector variational inequalities and vector
equilibrium problems, the symmetric quasi-equilibrium problem was extended to the case of
vector-valued bifunctions by Fu [14], known as the symmetric vector quasi-equilibrium prob-
lem (in short SVQEP). Farajzadeh [12] used a particular technique to establish an existence
theorem of weak solutions for SVQEP and answered an open question raised by Fu [14]. Chen
and Gong [9] studied the stability of the set of weak solutions for SVQEP, proved a generic
stability theorem and gave an existence theorem for essentially connected components of the
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set of weak solutions for SVQEP. Gong [18] studied existence conditions for strong solutions
of SVQEP. Chen et al. [6] established an existence theorem for strong solutions of gener-
alized symmetric vector quasi-equilibrium problems. Chen and Huang [7] gave existence
conditions for weak solutions of generalized symmetric vector quasi-equilibrium problems.
Han and Gong [20] obtained characterizations for generalized Levitin-Polyak well-posedness
of SVQEP by closed graph of the approximating solution mapping. However, to the best of
the authors’ knowledge, there is no any papers studying the existence of efficient solutions
for SVQEP.

We note that, if C' is a closed cone in topological vector space Z with intC' # (), then it is
clear that Z\ (—intC) is closed. However, in many cases, the ordering cone C has an empty
interior. For example, in the normed spaces [P and LP(2), where 1 < p < 400, the standard
ordering cone has an empty interior, but the ordering cone has a base. The fact that C\ {0}
is neither closed nor open makes the study concerning the existence of efficient solutions
for SVQEP be more difficult than the study concerning the existences of weak solutions
and strong solutions for SVQEP. Thus, it is important and interesting to investigate the
existence of efficient solutions for SVQEP with its generalization form.

In this paper, we extended SVQEP to the set-valued version, named a symmetric vector
set-valued quasi-equilibrium problem, which provides a unify setting for the study in con-
nection with several generalized (vector) equilibrium problems including symmetric mixed
(vector) quasi-equilibrium problems, symmetric (vector) quasi-equilibrium problems, (vec-
tor) quasi-equilibrium problems and (vector) equilibrium problems. Under some mild condi-
tions, we show an existence theorem for the strong efficient solutions of the symmetric vector
set-valued quasi-equilibrium problem by using Kakutani-Fan-Glicksberg fixed point theorem
and two existence theorems of the efficient solutions and the weakly efficient solutions for the
symmetric vector set-valued quasi-equilibrium problem by using the scalarization method.

The structure of the paper is as follows. In Section 2, we introduce the symmetric vector
set-valued quasi-equilibrium problem and recall some notions and some lemmas. In Section
3, we establish three existence theorems for the strong efficient solutions, the efficient so-
lutions and the weakly efficient solutions of symmetric vector set-valued quasi-equilibrium
problems. In Section 4, we give some applications of the main results to symmetric mixed
vector quasi-equilibrium problems, symmetric vector quasi-equilibrium problems and gener-
alized semi-infinite programs with symmetric vector set-valued equilibrium constraints.

Preliminaries

Throughout this paper, unless otherwise specified, let X, Y and Z be three normed vector
spaces and let £ C X and D C Y be two nonempty, convex, compact subsets. We assume
that C' C Z is a convex, closed, pointed cone. Let S : Ex D — 28, H: Ex D — 2P,
F:ExDxExE —2%and G:ExDxDxD — 2% be four set-valued mappings.
We introduce the following symmetric vector set-valued quasi-equilibrium problem (in short,
SVSQEP) cousisting of finding a point (zg,yo) € E x D such that

{ g € S(Ian0)7 F(Z‘an07x7x0) N (79) = ®7 VxS (IO;yO)v
Yo € H (x()vyO)a G (man()vyayO) N (_Q) = 07 Vy eH (l'OvyO)v

where Q U {0} is a cone in Z.
Let S (F,G) denote the set of all strong efficient solutions of (SVSVEP), i.e. (zo,y0) €
S(F,G). Then

{ To € S(x07y0)a F($07y0a17a370) g Ca YV S S($07y0)7
Yo € H (z0,90), G (20,%0,Y,90) € C, Vy € H (20, ¥0) -
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Let E (F,G) denote the set of all efficient solutions of (SVSQEP), i.e. (xo,y0) € E (F,G).
Then

{ To € S(l‘O)yO)a F (x07y0axa'r0) N (_C\ {0}) = 07 vV S S(any0)7
Yo € H (z0,90), G (x0,%0,¥,%0) N (=C\{0}) =0, Vye H (x0,y0)-

Let W (F,G) denote the set of all weak efficient solutions of (SVSQEP), i.e. (xg,y0) €
W (F,G). Then

Ty € S(anyO)a F(x()vyOaxaxO) N (_lntc) = Q)a Vo € S(x07y0),
Yo eH (IEO, yO) ) G (x07y07 y»yo) N (—th) = (Z)ﬂ Vy eH (anyO) .

It is clear that S (F,G) C E(F,G) C W (F,G).
Let Z* be the topological dual space of Z and C* be defined by

C*={feZ*: f(c)>0,VceC}.
Denote the quasi-interior of C* by C#, i.e.
C* ={feZ :f(c)>0, Vee C\{0}}.

A nonempty convex subset B of C' is said to be a base of C, if C' = cone (B) and 0 ¢ cl(B).
It is easy to see that C# £ () if and only if C' has a base.

Remark 2.1. We can see that if intC # 0, then C*\ {0} # 0. Let f € C*\ {0}. Then it is
easy to see that f (z) < 0 provided =z € —intC.

Definition 2.2. Let A be a nonempty convex subset of X. A set-valued mapping ® : A —
27 is said to be

(1) [19] C-convex if, for any x1,z2 € A and for any ¢ € [0, 1], one has

10 (1) + (1 — 1) ® (22) C @ (try + (1 — 1) a2) + C.

(if) [22] strictly C-convex if, for any 1,22 € A with z1 # x5 and for any ¢ € (0, 1), one
has
t® (r1) + (1 =) P (z2) C @ (tx1 + (1 —t) z2) + intC.

(iii) (Definition 3 of [13]) properly quasi-C-convex if, for any z1,22 € A and for any
t € [0,1], one has
either @ (x1) CP(txy + (1 —t)aza) +C or P (x2) CP(tzg + (1 —1t)x2)+C.
(iv) [22] natural quasi C-convex if, for any x1, 22 € A and for any ¢ € [0, 1], there exists
A € ]0,1] such that

pX (3?1) + (1 —/\)‘I)(JJQ) - @(tml + (1 —t)l‘Q) +C.

(v) [22] natural quasi C-concave if, for any x1, 22 € A and for any ¢ € [0, 1], there exists
A € [0,1] such that

O (twg + (1 — t) 22) CAD (21) + (1 — \) @ (22) + C.
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Remark 2.3. It is clear that if ® is C-convex, then ® is natural quasi C-convex. If ®
is properly quasi-C-convex, then ® is natural quasi C-convex. The class of natural quasi
C-convex mappings is strictly larger than both the class of C-convex mappings and the class
of properly quasi C-convex mappings. We give an example to illustrate it.

Example 2.4. Let Z = R?, C = Ri = {(zl,xg) eR?: 2, >0, 24 20}7 X = R and
A= [0, g] We denote by By the closed unit ball in Z. Let ® : A — 2 be a set-valued
mapping defined as follows

® (z) = (sinz,2 —sinzx) + By.

Then it is easy to check that ® is neither C-convex nor properly quasi-C-convex. But ® is
natural quasi C-convex.

Definition 2.5. Let T and T} be two topological vector spaces. A set-valued mapping
®: T — 2™ is said to be

(i) closed if the set {(z,y) € T xTy:x € T,y € ® (x)} is closed in T x T;.

(ii) upper semicontinuous (u.s.c.) at ug € T if, for any neighborhood V of ® (ug), there
exists a neighborhood U (ug) of ug such that for every u € U (ug), ® (u) C V.

(iii) lower semicontinuous (l.s.c.) at ug € T if, for any = € ® (up) and any neighborhood
V of x, there exists a neighborhood U (ug) of ug such that for every u € U (up),
O (u)NV £ 0.

We say that ® is u.s.c. and ls.c. on T if it is u.s.c. and l.s.c. at each point u € T,
respectively. We say that ® is continuous on 7' if it is both u.s.c. and l.s.c. on T

In the following two lemmas, let 7" and 7T} be two normed vector spaces.

Lemma 2.6 ([3]). A set-valued mapping ® : T — 211 is l.s.c. at ug € T if and only if for
any sequence {u,} C T with u, — ug and for any o € ® (ug), there exists x, € P (uy,)
such that x,, — xg.

Lemma 2.7 ([19]). Let ® : T — 271 be a set-valued mapping. For any given ug € T, if
D (ug) s compact, then ® is u.s.c. at ug € T if and only if for any sequence {u,} C T with
Up — ug and for any x, € O (uy,), there exist xg € ® (ug) and a subsequence {xy, } of {zn}
such that x,, — xo.

Lemma 2.8 (Kakutani-Fan-Glicksberg Fixed Point Theorem [10,17]). Let K be a nonempty
compact convex subset of a locally convex Hausdorff topological vector space X and let F :
K — 2% be an u.s.c. set-valued mapping with nonempty compact convex values. Then there
exists xg € K such that xo € F (x9).

Existence Theorems

In this section, we establish the existence theorem for efficient solutions of (SVQEP) and
give an example to illustrate it. Let X* and Y™ be the topological dual space of X and Y,
respectively.

Lemma 3.1 ([21]). Let K be a nonempty compact convex subset of X and ® : K x K — 2%
be a set-valued mapping. Assume that
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(i) foranyx € K, ®(x,2) C C;
(ii) foranyye K, {x € K :®(z,y) C C} is closed;

(iii) for any x € K, ® (x,-) is properly quasi-C-conve.

Then there exists a point xy € K such that
P (z0,y) €C, Vye K.
Remark 3.2. For any y € K, if ® (-,y) is Ls.c., then {x € K : ® (z,y) C C} is closed.

Theorem 3.3. Assume that the following conditions are satisfied:

(i) S: ExD —2F and H: E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E x D.

(i) F:ExDxEXE—=2% and G: Ex D x D x D — 2% are Ls.c..

(iil) For each (z,y,a) € Ex D x E, F (z,y,a,c) C C, F(x,y,-,a) is properly quasi-C-
convex and F (z,y, a,-) is natural quasi C-concave.

(iv) For each (x,y,8) € Ex D x D, G(x,y,5,8) C C, G(x,y,-,8) is properly quasi-C-
convex and G (x,y, B,-) is natural quasi C-concave.

Then S (F,G) # 0.
Proof. For each (z,y) € E x D, let
A(x,y) ={u€ S(z,y): F(2,y,0,u) CC, Vv e S(z,y)},

and
B(x,y) ={ne€ H(z,y): G(z,y,a,n) CC, Va € H (z,y)} .

It follows from Lemma 3.1 that for any fixed (z,y) € F x D, A(x,y) is nonempty.

We claim that for any fixed (z,y) € E x D, A(x,y) is a closed subset of E. In fact,
for any sequence {u,} C A(x,y) with u, — u € E, since u, € S(z,y) and S (z,y) is
closed, we have u € S(x,y). For any v € S(x,y) and for any z € F(z,y,v,u), since
F:ExDxExFE — 2% is ls.c., by Lemma 2.6, there exists 2, € F (,y,v,u,) such that
zn — z. Noting that {u,} C A (z,y), we have z, € C. It follows from closedness of C that
z € C, and so F (z,y,v,u) C C for any v € S (x,y). Therefore, u € A (x,y).

Now, we claim that for any fixed (z,y) € F x D, A(z,y) is convex. In fact, for any
uy,us € A(x,y) and for any t € [0,1], by the definition of A (z,y) and convexity of S (z,y),
we have

(1 —t)uy +tus € S (x,y),

and
F(x7y7v7ui)gc7 i:1727 V’UES(-’E,y), (31)

Noting that F (x,y,v,) is natural quasi C-concave, for any t € [0, 1], there exists A € [0, 1]
such that

F(x,y,v,tu1+(1—t)u2) Q)\F(x,y,v,ul)+(1—/\)F(x,y,v,u2)+0. (32)
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It follws from (3.1) and (3.2) that
F($7yvvvtul + (1 7t)u2) g )‘F(z7yvvvul) + (1 - )\)F(l’,y,’l},UQ) +C g C

Then (1 —t)uy + tug € A(z,y). Therefore, A (x,y) is convex.

Next, we claim that A isu.s.c. on ExD. Since E is compact, we only have to show that A
is a closed mapping. For any sequence {(zy, yn)} C Ex D with (2, yn) — (2,y) € Ex D, let
Up € A(Zp, yn) with u, — u. We will show that u € A (z,y). It is clear that u,, € S (zy, yn)-
Since S is u.s.c. at (x,y), by Lemma 2.7, there exist ug € S (x,y) and a subsequence {uy, }
of {uy,} such that u,, — uo. Noting that w, — u, we have u = ug € S (z,y). For any
v € S(x,y), since S is Ls.c. at (z,y), by Lemma 2.6, there exists v,, € S (2, y,) such that
vp — v. Since u, € A (zy,,y,), we have

F(anvynavnaun) cC. (33)

For any 2z € F (z,y,v,u), since F : E x D x E x E — 2% is ls.c., by Lemma 2.6, there
exists z, € F (Zn,Yn, Un,u,) such that z, — z. It follows from closedness of C' and (3.3)
that z € C, and so F (z,y,v,u) C C for any v € S (z,y). Therefore, u € A (x,y).

We can see that for any fixed (z,y) € E x D, A(z,y) is nonempty convex closed subset
of F and A is u.s.c. on E x D. Similarly, for any fixed (z,y) € E x D, B (x,y) is nonempty
convex closed subset of D and B is u.s.c. on E x D. We define ¥ : E x D — 2EXP by

U (z,y) = (A(x,y),B(z,y)), forall (x,y) € E x D.

Then for each (z,y) € E x D, ¥ (z,y) is nonempty convex closed subset of E x D, and ¥ is
u.s.con E x D. By Lemma 2.8 (Kakutani-Fan-Gilcksberg fixed point theorem), there exists
(z0,y0) € E x D such that (zg,y0) € ¥ (x0,y0). By the definition of A and B, we have

{ To € S('T'07y0)a F(x07y0a'r7z0) g 07 Va S S(x07y0)a
Yo € H (z0,90), G (x0,y0,9,90) € C, Vy € H (xo,y0).

From Corollary 3.2 of [21] and Remark 2.5 of [21], we can get the following lemma.

Lemma 3.4. Let K be a nonempty compact conver subset of X and ¥ : K x K — 28 be a
set-valued mapping. Assume that

(i) foranyz e K, ¥ (z,z) CRy;
(ii) foranyy € K, {z € K : U (x,y) C Ry} is closed;
(iii) for any x € K, ¥ (x,-) is Ry -conver.
Then there exist xg € K such that
U (z0,y) CRy, Vye€ K.
Remark 3.5. For any y € K, if ¥ (-,y) is l.s.c., then {x € K : ¥ (z,y) C R} is closed.
Similar to the proof of Theorem 3.3, from Lemma 3.4, we can get the following lemma.

Lemma 3.6. Assume that the following conditions are satisfied:
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(i) S: ExD —2F and H: E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E x D.

(i) f:ExDXxExE—=2%andg: ExDx D xD — 2% are Ls.c..

(iii) for each (z,y,a) € ExX DX E, f(z,y,a,a) CRy and f (z,y,-, ) is Ry -convex; for
each (z,y,8) € Ex D x D, g(x,y,5,8) CR; and g (x,y,-,B) is Ry-convex.

(iv) for each (x,y) € E x D, the sets
Az, y) ={ue S(z,y): f(z,y,v,u) SRy, Yo €5 (z,y)}
and
B(z,y) ={ne€H(z,y): g(x,y,a,n) SRy, Vo € H (z,y)}

are convex.

Then there exists (xo,yo) € E X D such that

To € S($0»y0)7 f (x07yo,$,$0) c R+a Vo € S(x(JuyO)v
Yo € H(:L‘07y0> , 9 <x07y03y7y0> - R+7 Vy cH (x[)ayo) .

Theorem 3.7. Let C# # (). Assume that the following conditions are satisfied:

(i) S: ExD — 2% and H : E x D — 2P are continuous, S (z,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E x D.

(i) F:ExDxEXE—2% and G: Ex D x D x D — 27 are Ls.c..

(iii) For each (z,y,a) € Ex D x E, F(z,y,a,c) € C, F (2,y,-,«) is C-convex and
F (z,y,q,) is natural quasi C-concave.

(iv) For each (x,y,8) € E x D x D, G(x,y,58,8) € C, G(z,y,-,8) is C-convex and
G (z,y,0,) is natural quasi C-concave.
Then E (F,G) # 0.

Proof. Since C# # (), let z* € C#. The composite functions z* 0o F : Ex D x E x E — 2R
and z* o G: E x D x D x D — 2% are defined as follows

ZoF(ry,0.8)= |J {W} (@y.0.B) €ExDxExE,
weF (z,y,a,8)
and
2" oG (x,y,a, ) = U {z* ()}, (z,y,a,8) € ExDxDxD.
veG(z,y,a,B)

It is clear that z* o F' and z* o G are Ls.c., and z* o F' and z* o G satisfy condition (iii) of
Lemma 3.6. We claim that the composite functions z* o F' and z* o G satisfy condition (iv)
of Lemma 3.6. We must show that for any fixed (z,y) € E x D, the sets

A(r,y) ={ue S(z,y): 2" o F(x,y,0,u) SRy, Yo € 5(2,y)}

and
B(z,y)={ne€ H(z,y): 2" oG (z,y,a,n) CRy, YVa € H(z,9)}
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are COnvex.
For any uq,us € A (z,y) and for any ¢ € [0, 1], by the definition of A (z,y) and convexity
of S (z,y), we know that (1 —t) uy + tuz € S (x,y) and

(3.4)

z*o F(z,y,v,u1) TRy, YveS(z,y),
z*o F(x,y,v,u2) TRy, YveS(z,y).

Noting that F (x,y,v,) is natural quasi C-concave, for any t € [0, 1], there exists A € [0, 1]
such that

F($7yvvvtul + (1 - t) u2) C AF (z7yvvvul) + (1 - >‘) F (xvyaUaUQ) +C. (35)
It follows from 2* € C#, (3.4) and (3.5) that
2" o F (z,y,v,tuy + (1 —t)uz) CAz* o F (z,y,v,u1)+ (1 = X) 2" o F (z,y,v,uz) + Ry CR,.

Then (1 —t)uy + tuz € A(x,y). Similarly, for any fixed (z,y) € E x D, B (x,y) is convex.
By Lemma 3.6, there exists (xo,y0) € E x D such that

{ xo € S (x[)ay())a z* o F($07y0a$7$0) g R+a Vo € S(x(hyo)a

* 3.6
Yo € H(m()ayo)a FARS G(man07y7y0) c R+7 Vy € H($07340) . ( )

We claim that
F (z0,90,7,70) N (=C\{0}) =0, Vx € S (xo,y0)-

In fact, if not, then there exists 2’ € S (zg, yo) such that
F (z0,%0, 7", z0) N (—C\ {0}) # 0.

Then there exists & € F (z, 0,2, 7o) such that £ € —C\ {0}. Noting that 2* € C#, we
have z* (§) < 0, which contradicts (3.6). Similarly, we have

G (x07y0ay7 yO) N <_C\ {0}) = (2)7 VZU €EH (x07y0) .
Therefore, (zo,y0) € E (F, G). O

Similar to the proof of Theorem 3.7, from Remark 2.1, we can get the following theorem.
We do not need the assumption of C# = ().

Theorem 3.8. Assume that the following conditions are satisfied:

(i) S: ExD —2F and H: E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E x D.

(i) F:ExDXxEXE—2% and G: Ex D x D x D — 2% are Ls.c..

(iii) For each (z,y,a) € Ex D x E, F(z,y,a,c) C C, F (z,y,-,«) is C-conver and
F (z,y,q,-) is natural quasi C-concave.

(iv) For each (xz,y,B) € E x D x D, G(z,y,5,8) C C, G(z,y,-,8) is C-convex and
G (z,y,f,-) is natural quasi C-concave.

Then W (F,G) # 0.

Now, we give an example to illustrate Theorems 3.7 and 3.8.
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Example 3.9. Let Z =R?, C = ]R?|r = {(ml,xg) eR?: 21 >0,29 > O} and X =Y = R.
We denote by By the closed unit ball in Z. Let E = D = [~1,1] and S : E x D — 2% be
defined by

S(x,y)={t€R:sin(zy) —0.1 <t <1}, (x,y) € Ex D.

Assume that H : E x D — 2P is defined by
H(z,y)={teR:—-1<t<sin(ay) +0.1}, (x,y) € Ex D.
Let F: E x D x E x E — 2% be defined by

F(x,y,a,ﬁ) = (fl (xayvaaﬁ)an (l’,y,a,ﬂ)) +BZ7

where 1 1
fl (x,y,a,/)’) =$2+y+1—cos <%) -+ cos (—6—; )
and 1
fo(z,y,0,8) =sinz +y* + 2+ o® — cos (ﬁ%> .

Let G: E x D x D x D — 2% be defined by

G(x,y,a,ﬂ) = (gl (:C,y,a,ﬁ),gg (l‘7y7aaﬁ)) +BZ7

1 1
g1 (377:/./,01,,6) = x2 + cosy — sin (%) + sin (%)

where

and .
g2 (z,y,a,B) = cosz +y* +2 — cosa — sin (5%) )

Then it is easy to check that all conditions of Theorems 3.7 and 3.8 are satisfied. Thus,
Theorem 3.7 shows that £ (F,G) # () and Theorem 3.8 implies that W (F, G) # 0.

Applications

In this section, we will give some applications of the main results to symmetric mixed vector
quasi-equilibrium problems, symmetric vector quasi-equilibrium problems and generalized
semi-infinite programs with symmetric vector set-valued equilibrium constraints.

Symmetric mixed vector quasi-equilibrium problems

Let L(X,Z) and L (Y, Z) denote the space of all continuous linear mappings from X into
Z and the space of all continuous linear mappings from Y into Z, respectively. Let f, g :
ExD — Z, T: ExD — L(X,Z)and K : Ex D — L(Y,Z) be four mappings.
We introduce the following symmetric mixed vector quasi-equilibrium problem (in short,
SMVQEP) consisting of finding a point (zg,y0) € F x D such that

{ ZTo € 5(%,:90)7 (T (z0,90) , 7 — 300> + f(z,%0) — f(3307y0) ¢ —Q, Vrc S(xo,yo),
Yo € H (20,%0), (K (zo,%0),¥ — o) + g (xo,y) — g (xo,%0) ¢ —Q, Yy H (zo0,v0),

where QU {0} is a cone in Z.
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Let E(T,K, f,g) denote the set of all efficient solutions of (SMVQEP), i.e. (zg,%0) €
E(T,K, f,g). Then we have

{ zo € S (w0,90), (T (%0,%0),7 —x0) + f(x,90) — [ (w0,90) & —C\ {0}, Va € S (z0,¥0),
Yo € H (z0,90), (K (z0,%0),y — Yo) + g (z0,y) — g (z0,90) ¢ —C\{0}, Vy € H (x0,%0)-

Let W (T, K, f, g) denote the set of all weak efficient solutions of (SMVQEP), i.e. (zg,%0) €
W (T,K, f,g). Then
{ To € S(x07y0)’ <T (IO,ZJO) y L — x0> + f (I,yo) - f (anyO) % —iIltC, Ve esS (anyO) )
Yo € H (v0,90), (K (z0,Y0),Y — v0) + g (0,y) — g (w0,90) ¢ —intC, Vy € H (20, Y0) -

From Theorem 3.7, we can get the following theorem.

Theorem 4.1. Let C# # (). Assume that the following conditions are satisfied:

(i) S: ExD —2F and H: E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E x D.

(ii) f,g9: ExD — Z are continuous, andT : ExD — L(X,Z) and K : ExD — L(Y,Z)
are continuous.

(iii) For anyy € D, f(-,y) is C-convex; for any x € E, g (x,-) is C-convex.

Th’en E(T5K7f7g) 7& @
From Theorem 3.8, we can get the following theorem.

Theorem 4.2. Assume that the following conditions are satisfied:

(i) S: ExD —2F and H: E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E X D.

(ii) f,9: ExD — Z are continuous, andT : ExD — L(X,Z) and K : ExD — L(Y, Z)
are continuous.

(iii) For anyy € D, f(-,y) is C-convex; for any x € E, g (x,-) is C-conver.
Then W (T, K, f,g) # 0.

Symmetric vector quasi-equilibrium problems

Let f,g: E x D — Z be two mappings. We consider the following symmetric vector quasi-
equilibrium problem (in short, SVQEP) consisting of finding a point (xg,yo) € E X D such
that

{ zo € S (xo,y0), [f(z,y0) — f(20,90) ¢ —Q, VaeS(xo,yo),
Yo € H (z0,90), g (x0,y) —9g(xo,y0) ¢ =, Yy € H (x0,y0),

where QU {0} is a cone in Z.
Let S (f,g) denote the set of all strong efficient solutions of (SVQEP), i.e. (xo,yo) €
S (f,g). Then one has

{ xo € S(wo,y0), f(x,90) — f(xo,90) € C, Vae S (x0,%),
Yo € H (z0,%0), 9(x0,y) —9g(x0,%0) € C, Vy & H (x0,%0)-
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Let E (f,g) denote the set of all efficient solutions of (SVQEP), i.e. (zo,%0) € E (f,9).
Then

{ To € S(Z‘o,yo)7 f (.Ii,y()) - f (9507240) ¢ _C\ {0}7 Vr € S(l‘o,yo),
Yo € H (z0,%0), 9 (x0,y) — g (x0,9%0) ¢ —C\{0}, Vy € H (20,%0)-

Let W (f,g) denote the set of all weak efficient solutions of (SVQEP), i.e. (xo,%0) €
W (f,g). Then we have

{ zo € S (xo,y0), [(x,90) — f(x0,90) ¢ —intC, Va € S (xo,y0),
Yo € H (x0,%0), 9 (x0,y) — g (x0,y0) ¢ —intC, Vy € H (x0,y0)-

From Theorem 3.3, we can get the following theorem.
Theorem 4.3 ([18]). Assume that the following conditions are satisfied:
(i) S: ExD — 2P and T : E x D — 2P are continuous, S (z,y) and T (x,y) are
nonempty closed convex subsets for each (x,y) € E x D.
(ii)) f,g: E x D — Z are continuous.
(iil) For anyy € D, f(-,y) is properly quasi-C-convez; for any x € E, g (z,-) is properly
quasi-C'-conver.
Then S (f,qg) # 0.
Let T'=0 and K = 0. By Theorem 4.1, we can get the following theorem.
Theorem 4.4. Let C% # (). Assume that the following conditions are satisfied:
(i) S: ExD — 2P and T : E x D — 2P are continuous, S (z,y) and T (x,y) are
nonempty closed convex subsets for each (x,y) € E x D.
(ii) f,g: E x D — Z are continuous.

(iil) For anyy € D, f(-,y) is C-convex; for any x € E, g (x,-) is C-conver.

Then E (f,g) # 0.
From Theorem 4.2, we can get the following theorem.
Theorem 4.5. Assume that the following conditions are satisfied:

(i) S: ExD —2F and T : E x D — 2P are continuous, S (z,y) and T (z,y) are
nonempty closed convex subsets for each (x,y) € E x D.

(ii) f,g: E x D — Z are continuous.

(iil) For anyy € D, f(-,y) is C-convex; for any x € E, g (x,-) is C-convet.

Then W (f,g) # 0.

In fact, we can obtain E (f,g) # 0 and W (f,g) # 0 under weaker conditions. We give
the following lemma.
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Lemma 4.6. Assume that the following conditions are satisfied:

(i) S: ExD —2F and H: E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E x D.

(ii) ¢,8: E x D — R are continuous.

(iii) for each (x,y) € E x D, the sets

A(z,y) ={u € S(z,y) : p(u,y) =min{p (v,y) :v € S (x,y)}}

and
B(z,y)={n€H(z,y):B(z,n) =min{B(z,a): a € H(z,y)}}

are conver.

Then there exists (xo,yo) € E X D such that

95065(5507%), Sﬁ(l',yo) Zw(Z'anO)v Vl’eS(xo,yo),
Yo EH($07yO)7 B(m07y) 25(x07y0)7 VyEH(CUanO)

Proof. Since S (x,y) is nonempty and compact, it is clear that for any fixed (z,y) € E x D,
A (x,y) is nonempty.

We claim that for any fixed (z,y) € E x D, A(x,y) is closed subset of E. In fact, for
any sequence {u,} C A(z,y) with v, — u € E, since u,, € S (x,y) and S (z,y) is closed,
u € S(x,y). It follows from ¢ (un,y) < ¢ (v,y) for all v € S (z,y) and the continuity of ¢
that ¢ (u,y) < ¢ (v,y) for all v € S (x,y). Thus u € A (z,y).

Next, we claim that A is u.s.c on E x D. Since E is compact, we only have to show that
A is a closed mapping. For any sequence {(2,,¥yn)} C Ex D with (z,,yn) = (z,y) € Ex D,
let w, € A(zy,y,) and u,, — u. We will show that u € A (z,y). By Lemma 2.7, there exist
ug € S (z,y) and a subsequence {uy, } of {u,} such that u,, — ug. Noting that u, — u,
we have u = ug € S(z,y). For any v € S (z,y), it follows from lower semicontinuity of S
and Lemma 2.6 that there exists a sequence {v,} with v, € S (zn,y,) such that v, — v.
Since u, € A (Xp,yn), we have @ (Un,Yn) < @ (Un,yn). It follows from continuity of ¢ that
o (u,y) <@ (v,y). Thus ¢ (u,y) < ¢ (v,y) for all v € S (x,y). Therefore, u € A (z,y).

Similar to the proof of Theorem 3.3, we can see that there exists (xg,yo) € E x D such
that

{ To € S(x07y0)7

@ (z,90) > ¢ (w0,90), Vo€ S(vo,y0),
Yo € H (z0,%0), B(x0,y) >

B (ro,y0), Yy € H (xo,y0)-

Theorem 4.7. Let C# # (). Assume that the following conditions are satisfied:
(i) S: ExD — 2P and T : E x D — 2P are continuous, S (z,y) and T (z,y) are
nonempty closed convex subsets for each (x,y) € E x D.
(ii) f,g9: E x D — Z are continuous.

(iii) For any y € D, f(-,y) is natural quasi C-convex; for any x € E, g(z,-) is natural
quasi C-conver.
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Then E (f,g) # 0.

Proof. Since C# # (), let z* € C#. We only prove that the continuous composite functions
z* o f and z* o g satisfy condition (iii) of Lemma 4.6. We show that, for any fixed (z,y) €
FE x D, the sets

A(z,y) ={u e S(z,y): 2" o f(u,y) =min{z" o f (v,y) : v € S (x,y)}}
and
B(z,y)={neT(z,y):2"og(z,n) =min{z" og(z,a): a €T (z,y)}}

are convex.
For any uy,us € A(z,y) and for any ¢ € [0, 1], by the definition of A (x,y) and convexity
of S(z,y), we have
(1 —t)uy +tug € S (x,y),

and

2% o f(u,y) = 2" o f (ug,y) = min{z" o f (v,y) : v € §(x,9)}.
Noting that f (-,y) is natural quasi C-convex and z* € C#, there exists A € [0, 1] such that
2o f((1 = t)uy + tus,y)

(L=XA)2"o f (u1,y) + Az" o f (u2,y)
min{z*o f (v,y):v € S (z,9)}.

min{z* o f (v,y) : v € S (x,y)}

IAIA

Then (1 — t) uy+tus € A (z,y). Similarly, for any fixed (z,y) € ExD, B (z,y) is convex. [

Theorem 4.8 ([12]). Assume that the following conditions are satisfied:

(i) S: ExD —2F and T : E x D — 2P are continuous, S (z,y) and T (z,y) are
nonempty closed convex subsets for each (x,y) € E x D.

(ii) f,g: E x D — Z are continuous.

(iii) For anyy € D, f(-,y) is natural quasi C-convex; for any x € E, g(x,-) is natural
quasi C'-convex.

Then W (f,g) # 0.
Next, we give an example to illustrate Theorems 4.7 and 4.8.

Example 4.9. Let Z = R? C = R% = {(z1,22) € R? 121 > 0,25 >0} and X =Y =R.
Let E=D=[-1,1] and S: E x D — 2F be defined by

S(z,y)={teR:sin(zy) —01<t <1}, (x,y) € ExD.
Assume that H : E x D — 2P is defined by

H(z,y)={teR:-1<t<sin(zy)+0.1}, (z,y) €ExD
and f: E x D — Z is defined by

f(z,y) = ((:z:—y)2+2(x—y)+y2603y+y+1,x2+3zy—y2siny+2y>.
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Let g: E x D — Z be defined by
g(z,y) = (22° cosz — 2y + y* +sinx — 3,32 + 2°y + 2y° + cosz + 2) .

Then we know that S : ExD — 2F and H : ExD — 2P are continuous, for every (x,y) €
E x D, S(x,y) and H (z,y) are nonempty closed convex subsets, and f,g: E x D — Z are
continuous. Thus, it is easy to observe that, for any y € D, f (-, y) is natural quasi C-convex;
for any z € E, g(z,-) is natural quasi C-convex. Theorem 4.7 shows that E (f,g) # 0 and
Theorem 4.8 implies that W (£, g) # 0.

Generalized semi-infinite programs

In this subsection, we give some existence theorems of solutions to generalized semi-infinite
programs. Let A be a normed vector space ordered by a closed convex pointed cone P C A
with intP # ) and ¥ : E x D — 2% be a u.s.c. mapping with nonempty compact values.

Definition 4.10. Let K C A be a nonempty set and the set of all weak minimal points of
K with respect to the ordering cone P be defined as

wMinp (K)={z € K: (z — K) N (intP) = 0}.

We consider the following generalized semi-infinite programs.
(GSIP1) Generalized semi-infinite program with constraint K = S (F,G):

wMinp¥ (K),

where S (F, G) is the set of all strong efficient solutions for (SVSQEP).
(GSIP2) Generalized semi-infinite program with constraint K = W (F,G):

wMinp¥ (K),

where W (F, Q) is the set of all weak efficient solutions for (SVSQEP).
(GSIP3) Generalized semi-infinite program with constraint K = E (F,G):

wMinp¥ (K),
where E (F, G) is the set of all efficient solutions for (SVSQEP).

Lemma 4.11 ([25]). Assume that A is a nonempty compact subset of a real topological
vector space V and D is a closed convex cone in V with D # V. Then wMinp (A) # 0.

Lemma 4.12. Assume that the following conditions are satisfied:

(i) S: ExD — 28 and H : E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E X D;

(i) F:ExDxExE—2% and G: Ex D x D x D — 2% are two l.s.c. set-valued
mappings.

Then S (F,G) is closed. Moreover, W (F, Q) is closed.
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Proof. For any sequence {(zn,yn)} C S (F,G) with (z,,yn) — (z,y), we have

{ xnes(wn;yn)v F(wnaynvxvxn)gca vxes(xn;yn)v (4 1)

Yn € H(xmyn)v G(mn,ymy,yn) cC, VyeH (xn,yn) .

Noting that x,, € S (x4, yn), since S isu.s.c. at (z,y), by Lemma 2.7, there exist xg € S (z,y)
and a subsequence {z,,} of {x,} such that z,, — zo. It follows from x, — x that
x =uz9 € S(x,y). For any v € S (z,y), since S is L.s.c. at (z,y), Lemma 2.6 shows that
there exists v, € S (xy, yn) such that v, — v. By (4.1), we have

F (T, Yny Un, zn) C C. (4.2)

For any 2z € F (x,y,v,7), since F : E x D x E x E — 2% is ls.c., by Lemma 2.6, there
exists z, € F (n,Yn,Vn,Ty) such that z, — z. It follows from closedness of C' and (4.2)
that z € C, and so F (x,y,v,2) C C for any v € S (x,y). Therefore, one has

x e S(x,y), F(x,y,v,2) CC, Yve S (z,y).
By the similar arguments, we have
y€ H(z,y), Gx,y,uy) CC, Yue H(z,y).

Thus, (z,y) € S(F,G) and so S (F,G) is closed. Similarly, we can show that W (F,G) is
closed. O

Lemma 4.13. Assume that the following conditions are satisfied:

(i) For each (z,y) € E x D, S(x,y) and H (x,y) are nonempty convexr subsets;
(ii) For each (x,y,a) € Ex D x E, F(x,y,a,a) CC, 0€ F (2,y,,a) and F (z,y,-, @)

is strictly C'-convex;

is strictly C'-convex.

Then E(F,G) =W (F,G).

Proof. Tt suffices to prove that W (F,G) C E (F,G). Suppose that W (F,G) ¢ E(F,G).
Then there exists (zo,y0) € W (F, G) such that (zo,y0) ¢ E (F,G). Thus,

{ o € S (.’1,'07y0)7 F ($07y07$a IO) N (—th) = (Z)’ VresS ($07y0) ’ (43)

Yo eH ($0, ZUO) 5 G (-r07y05 yvyO) N (_lntc) = (Z)a Vy eH (x07 yO) .

Noting that (xo,y0) ¢ E (F,G), without loss of generality, we can assume that there exists
Z € S (x0,y0) such that

F (0, 40,7, 20) N (_C\ {0}) # 0.

Then there exists
zg € F (.1‘07 Yo, T, 370) (44)

such that
zo € —C\ {0}. (4.5)
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We claim that z
F (‘TOa Yo, T, IO) c
(4.5).

Since F' (x,yo, ", xo) is strictly C-convex, for any ¢ € (0,1), we have

# xo. In fact, if not, by (4.4) and condition (ii), we know that z, €
C. Tt follows from (4.5) that zg € C N (—C) = {0}, which contradicts

tF (x0,%0, T, 20) + (1 — t) F (0, Y0, o, o) C F (z0, y0,tT + (1 — t) zg, zo) + intC.  (4.6)

It clear that tZ+ (1 — t) zg € S (x0,y0). It follows from (4.4), (4.6) and 0 € F (xq, Yo, To, o)
that there exist z; € F (g, yo,tZ + (1 — t) xo,x0) and ¢g € intC such that

tzo+ (1 —1t)0 = 2z + co.
Noting that (4.5) and ¢g € intC, we have z; € —intC. Thus,
zt € F (20, Y0,tT 4+ (1 — t) 2o, x0) N (—intC) ,
which contradicts (4.3). O

Theorem 4.14. Assume that the following conditions are satisfied:

(i) S: ExD —2F and H: E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E x D;

(i) F:ExDxEXxE—2% and G: Ex D x D x D — 2% are two l.s.c. set-valued
mappings;

(111) For each (l’,y,O&) € Ex D x E} F (ZL’,y,O&,O&) g C; F(:L'aya ~,O[) is pT’Op(ET’ly quaSi'C_
convex and F (z,y,«,-) is natural quasi C-concave;

(IV) For each (Qj,y’ﬂ) € EXx D x D7 G(‘T7y7ﬂ76) g 07 G(iﬂ,y,',ﬂ) is pmperly q’U,CLSZ'—C—
convezx and G (z,y, B,-) is natural quasi C-concave.

Then (GSIP1) has a solution.

Proof. Theorem 3.3 shows that S (F,G) # 0. It follows from Lemma 4.12 that S (F,G) is
closed. Noting that S(F,G) C E x D and FE x D is compact, we can see that S (F,G) is
compact. Since ¥ : E x D — 2% be a u.s.c. mapping with nonempty compact values, we
can see that ¥ (S (F, @)) is nonempty and compact (see [3] P. 112). It follows from Lemma
4.11 that wMinp W (S (F, G)) # 0. Therefore, (GSIP1) has a solution. O

Similar to the proof of Theorem 4.14, from Theorem 3.8 and Lemma 4.12, we can get
the following theorem.

Theorem 4.15. Assume that the following conditions are satisfied:

(i) S: ExD — 2% and H : E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E X D;

(ii) F:EXDXEXE =22 and G: Ex D x D xD — 2% are two l.s.c. set-valued
mappings;

(iii) For each (x,y,a) € Ex D x E, F(x,y,a,a) C C, F(x,y,-,«) is C-convexr and
F (z,y,a,-) is natural quasi C-concave;



SYMMETRIC VECTOR SET-VALUED QUASI-EQUILIBRIUM PROBLEMS 47

(iv) For each (x,y,8) € E x D x D, G(x,y,58,8) € C, G(z,y,-,8) is C-convex and

G (z,y,0,) is natural quasi C-concave.

Then (GSIP2) has a solution.

Similar to the proof of Theorem 4.14, by Theorem 3.7, Lemmas 4.12 and 4.13, we can
get the following theorem.

Theorem 4.16. Let C# # (). Assume that the following conditions are satisfied:

(i) S: ExD — 28 and H : E x D — 2P are continuous, S (x,y) and H (z,y) are
nonempty closed convex subsets for each (x,y) € E x D;

(i) F:ExDxExE—2% and G: Ex D x D x D — 2% are two l.s.c. set-valued
mappings;

(iii) For each (x,y,a) € Ex D x E, F (z,y,a,a) CC, 0 € F(z,y,a,), F(z,y,-,a) is
strictly C-convex and F (z,y, «, ) is natural quasi C-concave;

strictly C-convex and G (z,y, 3,-) is natural quasi C-concave.

Then (GSIP3) has a solution.
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