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DISTRIBUTED MAXIMUM LIKELITHOOD ESTIMATION FOR
CENSORED DEPENDENT QUANTIZED DATA

HONGZENG WANG, QINGLING ZHANG* AND JIAN WU

Abstract: In wireless sensor networks, dependent quantized data are widely studied. We consider the
problem of parameters estimation for dependent quantized communication data where some of the data are
censored to the Fusion Center (FC). We propose a distributed imputation method to fill in the censored
values, and introduce a two-step maximum likelihood estimation (MLE) method to estimate the unknown
parameters of the sensor system. The lower bound of the variance of the estimator is discussed to show
the asymptotic efficiency. Numerical example of the constant false alarm rate (CFAR) detection system
demonstrate the effectiveness of the proposed scheme.
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Introduction

Dependent quantized data are often encountered in wireless sensor networks (WSNs) when
the communication bandwidth and the power are limited. One application of WSNs is in
radar and satellite-based remote-sensing systems to sonar and seismology [6]. More examples
can be found in [15] and [17], such as air-traffic control, military command and control and
weather prediction. System identification is a primary problem in WSNs, and parameter
estimation based on dependent quantized data is wildly applied to identify these systems.
Several methods have been suggested in the literature of the system identification and es-
timation in recent years, some of the methods were based on dependent quantized data. For
example, In [3], the authors reviewed the estimating methods applied to the quantized data,
and studied the problem of dithering noise at the sensors. In [4], an expectation maximiza-
tion algorithm and Quasi-Newton optimization method were suggested to solve the problem
of estimating the parameter of a linear system, including the single input single output
(SISO) case and multiple input multiple output (MIMO) case. The authors in [13] studied
an MLE based approach for the local estimation problem assuming that the distributed sen-
sors are not independent and the problem of Copula selection was also considered. In [16],
the authors suggested a quadratic programming-based method for identification of finite
impulse response (FIR) system from quantized data. In [18], the authors presented a two-
stage distributed algorithm with the running average technique achieving the centralized
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sample mean estimate in a distributed manner. Parallel sensors with multiple groups of
quantizers is a better design of the networks than with single quantizer. For the reason
that estimating the parameters with single quantizer is sensitive to the choice of thresholds
due to the uncertainty of probability density function(PDF) of the networks [16]. So the
work [11] proposed a robust distributed MLE approach with multiple groups of quantizers
for the quantized data.

Prior researches on the system identification with quantized data often focused on com-
plete data to estimate the unknown parameters of the system. But in some extremely
adverse working conditions, such as in high temperature, high pressure or electromagnetic
interference surroundings, the quantizers will be broken or become no response. Then the
FC will receive censored quantized communication data, which will lead to greater bias and
variance of the estimator of the unknown parameter, and the system will be identified by
mistake. In [2,7,9] and [12] authors discussed the problem of distribution estimation using
auxiliary information in survey data or complex survey data. Motivated by the complex
data analysis in practice, we investigate the problem of parameter estimation in parallel
sensor network system with multiply groups of quantizers, with which dependent quantized
data are censored.

Censored data is a kind of missing data, in this case the mechanism leading to missing
data may not be under control of the system. The analysis of the data needs to take account
of this information to avoid biased result [5]. Our main contribution is that we propose a
two-step MLE of censored dependent quantized data by filling in the missing values. We
analytically derive the asymptotic efficiency of the estimator. Numerical example shows that
the estimator based on our method has less mean-square error (MSE) than those obtained
by the censored data.

The outline of the paper is as follows: in Section 2 the problem formulation is given, in
Section 3 the method of imputation and procedure of two-step estimation are proposed, in
Section 4 a numerical example of distributed CFAR detection system is discussed, in Section
5 conclusions are made, in Section 6 lemmas and regulation conditions to be used to prove
theorem 3.1 are listed.

Problem Formulation

We focus on the problem of the parallel sensor network system. Suppose the total of L
sensors have a joint observation population (Xi,..., Xz)T, which has a given family of a
joint PDF:

{p(z1,...,2L|0)}ococr:, (2.1)

where 6 is the unknown s-dimensional deterministic parameter vector including not only the
marginal parameters but the dependence parameters as well. Let Xy« denote the total of
L sensors with the IV observation samples:

X =(X4,...,Xn),

where X; = (X14,...,Xni)%, i=1,...,L, denote the N observation samples of the ith
Sensor.

In many practical situation, Xy«z needed to be typically quantized to minimize the
utilization of communication resource of the sensor network system [8]. In this paper we
consider the binary modulation. Let (Q1,...,Qr)T denote the quantized population, we
have

(Q1,...,Q)T = (IL(X1),..., I (X)), (2.2)
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where I;(X;) : X; — {0,1} for ¢« = 1,..., L is the indicator quantized function of the ith
sensor.
Based on (2.1) and (2.2), (Q1,...,Qz)T has a joint probability mass function (PMF),

folar,...,qul0) = / . o/p(xl, .o,xp|0)dxy - - drg, (2.3)
and we have the total of L sensors with the N quantized observation samples,
(Qé (Qla"'aQL)a
where
Qi £ (Qlia"'7QNi)T7i = 17"'7La
and

Qni éIZ(an),Z = ].,...,L,TL = ].,...,N.
By (2.3), we obtain the log likelihood function of the parameter 6 given Q,

N
9|Q é H inu"'?Q’ﬂL|9)‘

Thus, the MLE method can be adopted to obtain the estimator 6 by

0 = arg meaxl(9|Q).

It can be proved that 0 is a consistent and asymptotically efficient estimator of the unknown
parameter 6° [1], [14].

Let Ii(J)(Xi) : X; = {0,1}, i=1,...,L, j=1,...,J denote the J groups of different in-
dicator quantized functions. The quantized observation samples are {(QSJ )1, ceey ng) L)},]:[] np
where N; is sample size of the jth quantizer.

The ML estimator of the parameter 6 is given by

1 = argmax|log H H QYL ....QY, 1), (2.4)
j=1n;=1
where f(J)( |0),5 =1,...,J are the joint PMF of the quantized population (foj)l, el lejj)L),

obtained similarly to (2.3). The robust estimator fr is a consistent and asymptotically
efficient estimator of the unknown parameter 6° [11].

MLE for Censored Dependent Quantized Data

In this section, we consider the problem of the censored data with multiple groups of quan-
tizers. In some extreme conditions, the quantizers will be broken or receive nonresponse,
and the FC will receive the quantized data with censoring. As known the mechanism of the
censored data, we suppose an imputation (fill in the missing values) procedure to estimate
the unknown parameter 6°.

The idea of imputation comes from the mechanism that the J — groups of quantizers
are not independence. If not all of the quantizers receive nonresponse at the same time, we
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can fill in the censored values by using the dependent distribution of the quantizers. There
are some basic methods of imputation, known as mean imputation, Hot deck imputation,
substitution imputation (see e.g. [5]), all of them suggest to fill in the censored values by the
observed data. In this problem, the quantizers may have a high probability of nonresponse,
thus the observed data will be too little for imputation by applying above methods. We
suppose a distributed imputation method as follows.

We write Q1 = (Qops, Qeen ), Wwhere Q,ps denotes the observed values, and Qg.,, denotes
the censored values. Based on (2.3), let fo(gc|0) = fo(gobs, Geen|8) denotes the joint PMF
of Qups and Qcer,. We can obtain the marginal PMF of Qs by

fobs(QObs|9) - /fQ(QOb57 qcenw)d‘kmr

Suppose N(;),j = 1,...,J denote the sample size of the jth nonresponse quantizer. We
have 0 < N(l) < N(Q) < ... N(j. We can obtain the first step estimator with the observed
values by the MLE method. The log likelihood function of the observed values is

J Ny

L(0lgons) =1og [ TT #3260, a7 10),
Jj=1ln;=1
where f ( |#) are the marginal PMF of the observed population (Qn Lreeos fo;)L). Let Oyps

denote the solution of MLE with the observed values. According to [11], éobs is a consistent
and asymptotically efficient estimator of the unknown parameter °.

Let feen(qeen|d) denote the marginal PMF of the censored values. The PMF of fec (Geen|6)
can be obtained by integrating out the observed data,

fcen(QCen|9) :/fQ(QObs;QCenW)dqobs- (31)

Then, we have an approximate marginal PMF of Q. as Qeen~ fcen(qcen|éobs)- Based on
the mechanism of censored data and the discussion above, we fill in the missing values by
the following algorithm,

Algorithm:
1: Input: 0,45, Qops, I
2: OQutput: Q;n,
3: Generate random numbers with parameter éobs,
X ~ F(x|éobs)
4: Compute the quantized data QU) = 19)(X),j=1,...,J
5: Check @
if QYY) == Q(bs,]in obs(1,...,J)
then ngn =QY, jincen(l,...,J)
6: end

We write Q2 = (Qops; Qim ) , where Q;,,, denotes the imputed values based on the suggest
algorithm. The log likelihood function of the sample, which are combined by observed values
together with the imputed values is,

J Ny

LO1Q2) =log [T [I #& qnjl,...,anL|9) (3.2)

Jj=1n;=1
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where fg G )( |0) is the joint PMF of the jth quantizer with the complete samples. We can
obtain the second step estimator by maximum the log likelihood function. We have the
following theorem.

Theorem 3.1. Assume that I(j)(x),j = 1,...,J are the quantizers of different sensor,
fg)( |0) is the joint PMF of the jth quantizer, which satisfy the regularity conditions listed
in the appendiz of section 6, 6° is the unknown deterministic parameter vector, 0 is the
solution of MLE with (3.2). Then,

-1

J
VNG-) 5N | o, % 21(90; 9] |, (3.3)

where N = J - Ny, and (0%, 1Y) (y)) is the Fisher information matriz for one quantized
sample. That is, 0 is a consistent and asymptotically efficient estimator of 6°.

Proof. We use Taylor expansion on first derivative of the log likelihood function around the
true value 6°.

9@(1) s 152

= DI(E) + DAY - 6) + S D0 - %600 —¢),  (34)

where,
Dl(e()) _ al(ﬂa(l)? . aa(J))
B a0 ’
90
D0y PUUEY., )
002
60
and
P10/ 3W,.... GV
39 _ 0. p*\ — 0 )
D? (0 — 6°;0%) <(9 6”) [ 893 ) .

with 6% between 6 and 6°.
As 0, is the solution of (3.4), we have

9@(1) 6“)

— DY(6°) + D2(6°)(6 — 6°) + %D?’(é — 0% 0% (-0, (35)

then,
-1

VN
Firstly, for D*(6°), we have

. [mogf“)(@‘”, el

00

VN —6°) = —=D'(¢°) [ND2(90) + —D3(9 0°; 9*)]_1 (3.6)

2N

‘| - 0’
90

] = N;Z(6°,19).
90

and

d1og (G, GVjo)
80

A
BJQVJ_ =Cov
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By applying Lindeberg’s central limit theorem and lemma 6.3, we have,
1 L
——D*(#") 3 N(0, B2 3.7
D0 & (0.5 (3.7

.

92 ) (G 0)]99) 1 (0£9(@9)00) 1 ?
00° FO(Q6)]g0) 00 FO (G 6)]90)
oD@ 1 ’
- -E
00 FO(Q0)]g0)
= —N;Z(6°, 1Y) (3.8)

where, B2 = ijl B,
Secondly, for every j =1,...,J,

o [62 log 9 (39)

062

By the properties of the law of large number,

1 8A(013Y)

5 _7(6°, 1V)(y)),

N(j) 892 60
then
J .
1 peggoy Ny 1 0|9
N SN Ngy |,
Pl 0 )
-7 (0", 1V (y))
j=1

Thirdly, based on Theorem 4.17 in [10] p290, 0 LR 6°, and Regularity Condition (A6), that
the three times differentiation of the log likelihood functions are bounded by integrable
functions. Noticed that * is between § and 6°, we have

1 P
—D*0—6%6*) =0 3.10
Finally, applying Slutsky’s lemma and (3.6), (3.7), (3.9), (3.10),we have
-1

J
VNG 5N | o, %;z(et’;ﬂ”(y))

O

-1

Remark 3.2. The covariance matrix (% Z‘j]:lI(QO,I(j)(y))) is the Cramer-Rao lower
bound. By the suggested technology of imputation, we obtain complete values and the
estimator in (3.3). The asymptotic covariance matrix is greater than that of complete
values and less than that of censored values.
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Numerical Example

In this section, we consider the problem of estimating the parameters in the distributed
CFAR detection system [15]. We assume the two-sensor system has a joint PDF,

(X1, X2) ~ p(x1,22]0),
where
p(z1,22|0) = c(Fi(21]01), Fa(22]02)|00)p1(21]01)p2(22]02),

and
—1/60
c(vy,v2|6p) = max{vl_e" + 1)2_9“"’1; 0}

is the Clayton copula density function with unknown parameters 8y. Assume X;,7 = 1,2 has
the marginal distribution of Gamma(0;, 8),i = 1,2 with an unknown shape parameter 6;,i =
1,2, and a rate parameter 8 = 4, F;(x;]0;) and p;(z;,|0;) are the cumulative distribution
function(CDF) and PDF of X;. We write 8 = (6,01, 62), which is the parameter to be
estimated. Moreover, there are four groups of quantizers in each sensor, denote as

I9(@) = (I (@), Iy (22)) = (Llar =y, Twa = hy)).§ = 1,2,3,4,
where h; will be chosen by the prior information of the sensors.

Table 1: MEAN, MSE of 6§,

0o = 1.076 p=0.001 p=001 p=005 p=0.1
ORACLE MEAN 1.078 1.115 1.430 2.359
MSE .0072 .0041 5.944 45.18

NAIVE MEAN 1.112 1.212 2.268 4.774
MSE .1095 .4985 60.46 436.4

IMPUTE MEAN 1.094 1.167 2.178 4.611
MSE .0360 3877 36.22 366.5

Table 2: MEAN, MSE of 6,

0, =4 p=0.001 p=001 p=0.05 p=0.1
ORACLE MEAN 4.000 4.001 4.008 4.012
MSE 2.5x107° .0286 1384 .2800
NAIVE MEAN 3.999 3.997 4.012 4.024
MSE .0279 .0930 3411 5874
IMPUTE MEAN 4.000 4.003 4.009 4.021
MSE .0066 .0450 .2145 4242

Table 3: MEAN, MSE of 6,

0> =5 p=000L p=00L p=005 p=01
ORACLE MEAN  5.001 5.001 5019  5.032
MSE .0037 .0350 1751 .3316
NAIVE MEAN  5.002 5.002 5040  5.072
MSE 0139 1170 4411 4861

IMPUTE MEAN 5.002 5.001 5.031 5.062
BIAS .0081 .0581 .2819 .5441
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Table 1 - Table 3 present the MEAN and MSE of the parameter 6, based on 5000 Monte
Carlo runs. Let § = (1.076,4,5), where 6y = 1.076 corresponds to Spearman’s p = 0.5, which
is a dependence measurement of (X1, X2). If X has Gamma distribution X ~ Gamma(a, ),
the expected value of X is E(X) = af. According to the assumption that the two sensors
have different marginal distributions X; ~ Gamma(4,4) and Xy ~ Gamma(5,4), we have
E(X1) =16, E(X5) = 20. The thresholds of quantizers h = (hy, ho, h3, hy) should be chosen
by prior information of the censors, so we assume that h = (25, 20, 15, 10).

Let p denote measurement of the nonresponse probability of the quantizes, and p =
(0.001,0.01,0.05,0.1) simulate the four different conditions that cause the quantizers do not
work. Because of the mechanism of the censored data, the sample size N(;),7 = 1,2,3,4
of each quantizer are (1000, 100, 20, 10) in average. Without loss of generality, let the non-
response probability of the quantizes be equal. In Table 1 - Table 3, ORACLE denote the
complete sample data of size N( ) of each quantizer, NAIVE denote the observed censored
data and IMPUTE denote the observed data together with the imputed data also at size
N(J).

The result in Table 1 - Table 3 illustrate that (1) By proposed method, the bias of the
ML estimators based on 5000 M. C. runs are going down together with the nonresponse
probability of quantizes becoming small, for the estimator 6 is asymptotically efficient. (2)
In the same level of nonresponse probability of the quantizes, MSE of IMPUTE data is
greater than the value of ORACLE and less than the value of NAIVE, which is consistent
to the discussion in Remark 3.2.

Conclusion

In this paper, we have investigated the problem of parameter estimate in system identifica-
tion by the censored dependent quantized data. According to the knowledge of mechanism
of censored data, we have considered a technology of distribution imputation named as dis-
tribution imputation to fill in the censored quantized values. Then we have proposed a
two-step MLE method to estimate the unknown parameter of the system. We have also
discussed the asymptotical efficient of the ML estimator. Simulation results of the CFAR
detection system showed that both the bias and variance of the estimator became smaller
than those of the censored data.
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Appendix

In this appendix we list the lemmas and regularity conditions, that applied in the proof of
Theorem 3.1.

L

Lemma 6.1 (Slutsky). Let X,,, X and Y,, random vectors or variables, if X,, = X and

P . I o P
Y, = ¢ (cis a constant). Where” =7 means convergence in distribution, and” =7 means
convergence in probability. Then

1) Xo+Y, 5 X+¢
2) X,Y, 5 cX;
(3) Xn/Yn 5 X/c (c#0).



60 H. WANG, Q. ZHANG AND J. WU

Lemma 6.2 (Lindeberg’s Central Limit Theorem). Suppose X, is a sequence of independent
random vectors with finite variances. Let a; = E(X;),b? = Cov(X;), B2 = Y. b?, if for
every vector € > (0

nlLII;O?ZE ai)l(IXi—aiDE/Bn)] :0, (61)

then,
> (X —a;) B N(0, BY). (6.2)
In Lemma 6.2, the equation (6.1) is known as Lindeberg’s condition, and 1. is the
indicator function.

Lemma 6.3. Let X,, are the independent random wvectors in Lemma 6.2, if there exist
constants K,,, such that

max |X;| < K, (6.3)
1<i<n
and K
lim =" =0 (6.4)
n—oo

n

then (6.2) is satisfied.

Proof. (Proof of Lemma 6.3) For any € > 0, if n is sufficiently large , we have 2K,, < &'B,,
and
(Xi—ai) S QKTL,’L: 1,...,n

thus
{(X;—a;) <K,}=Qi=1,...,n

where ) is the sample space of population X. Suppose F;(z) is the CDF of X;, we have

NS R
lim B2 Z E[(Xi — ai)(Xi — i) 1(1x,~as|<='B,)]

n— oo

= hm— / i—ai’mi—aidFix
n—oo B} Z (|X;—ai|<e'B, ) 2 JaFs(z)

Thus, Lindeberg’s condition is satisfied, and we have > | (X; — a;) 5 N(0, B2). O

Regularity Conditions: For every j =1,...,J.

(A1) The quantized data Q) j = 1,...,.J of different sensors are independent. The
joint PMF of the jth quantizer is f(])( 0), and QU) ~ fg)(q|9).

(A2) The parameter is identifiable, that is, if  # ', then (])(q|0) £ f (J)(q|9’).

(A3) The densities fg)(q\ﬁ) have common support, and fg)(q|9) is differentiable in 6.
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(A4) The parameter space O contains an open set, of which the true parameter value 6*

is an interior point.

(A5) The density fg) (q|6) is three times differentiable with respect to 6, and [ fg) (q|9)dq
can be differentiated three times under the integral sign.

(A6) For all 6 € ©, there exists a function Ml(gl) (g) such that

3
00,;00,,00,
with Ep,[MY)(Q)] < oo, for all i, k, 1.

log £5(al0)| < M$)(a),
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