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where q ∈ (0, 1]. In particular, as q = 1 the ℓ1-minimization is referred to as basis pursuit
[5]. However, ℓq-minimization with q ∈ (0, 1) produces exact reconstruction with fewer
measurements [4], and increases robustness to noise and image non-sparsity [13].

An alternative approach to solve (1.2) is to consider the following sparsity-constrained
least squares problem,

min
x∈Rn

m∑
i=1

(bTi x− yi)
2 subject to ∥x∥0 ≤ s, (1.3)

where s is a positive integer. Obviously, the well-know LASSO, i.e.,

min
x∈Rn

m∑
i=1

(bTi x− yi)
2 subject to ∥x∥1 ≤ r,

can be regard as a convex relaxation of the above minimization. Another is the following
non-convex relaxation,

min
x∈Rn

m∑
i=1

(bTi x− yi)
2 subject to ∥x∥q ≤ r,

where q ∈ (0, 1) and r > 0. To solve the latter, the q-regularized method has attracted many
research efforts in the field of optimization, including optimality conditions and algorithms,
see, e.g., [6, 8, 16], and references therein. By considering the ℓq-constrained least square
problems in the framework of Compressive Sensing,

min
x∈Rn

m∑
i=1

(bTi x− yi)
2 subject to ∥x∥q ≤ R∗,

where 0 ≤ q ≤ 1 and R∗ = ∥x∗∥q is given, [1] studied the performance of the Projected
Gradient Descent(PGD) algorithm and provided its convergence guarantees, that include
and generalize the existing results for the Iterative Hard Thresholding algorithm and provide
a new accuracy guarantee for the Iterative Soft Thresholding algorithm as special cases.
[9] investigated the properties of ℓq norm within a projection framework and used its key
properties to arrive at an algorithm for ℓq norm projection onto the non-negative simplex.

Inspired by their works, we will consider the following ℓq-ball constrained least square
problem to discuss QCS,

min
x∈Rn

f(x), subject to ∥x∥qq ≤ r, (1.4)

where f(x) =
∑m

i=1

(
xTAix + bTi x + ai − yi

)2
and r > 0. Recall that [11] used a lift-

ing technique and the convex surrogate for the ℓ0 norm to relax the problem (1.1) into a
convex semidefinite program. [2] dealt the problem of minimizing a general continuously dif-
ferentiable function subject to sparsity-constraints which includes the sparsity-constrained
least squares problem for QCS. [3] generalized the iterative hard thresholding algorithm for
solving (1.3) to general nonlinear optimization with sparsity-constraint. To the best of our
knowledge, there is no literature to discuss problem (1.4). An important issue is how to
solve the minimization. Here, we present two different optimality criteria which are based
on the notions of normal cone and fixed point theory respectively, and show that the latter
is stronger than the former. Subsequently, we employ the fixed point equation to construct a
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q-ball projected gradient algorithm. It is worth mentioning that we equivalently transform
the q-ball projection into a simply smooth constraint problem and then use the existing
algorithm to solve it.

For convenience, we now give some notation as follows. For any n-dimensional vector

x = (x1, . . . , xn)
T and q ∈ (0, 1), denote |x| = (|x1|, . . . , |xn|)T , |x|

1
q = (|x1|

1
q , . . . , |xn|

1
q )T ,

∥x∥ = (
∑n

i=1 |xi|2)
1
2 and ∥x∥q = (

∑n
i=1 |xi|q)

1
q . For any q ∈ (0, 1) and r > 0, denote

Bq,r = {x ∈ Rn : ∥x∥qq ≤ r} and ∂Bq,r = {x ∈ Rn : ∥x∥qq = r}. Denote φ(x) = ∥x∥qq. For a
set S, we denote its closure by cl(S) and its interior by int(S).

This paper is organized as follows. In section 2, we introduce the projection onto the
ℓq-ball and transform the corresponding optimization into a smooth problem. Subsequently,
we provide two optimality criteria and establish a fixed point equation in Section 3. We
construct the projected gradient algorithm and discuss its convergence in Section 4.

2 Projection onto ℓq ball

For q ∈ (0, 1) and x ∈ Rn, consider

min
1

2
∥x− u∥2 subjec to u ∈ Bq,r. (2.1)

Since the object function is continuous and the constrained set Bq,r is compact, there exists
at least one minimizer of the problem (2.1). As mentioned by [1], one can select one of
the solutions of the minimization problem (2.1) as a projection operator which is denoted
by PBq,r (·). On the other hand, [1] showed that the operator PBq,r (·) satisfies the following
properties.

Lemma 2.1. Let x⊥ = (x⊥
1 , . . . , x

⊥
n )

T be an optimal solution of the problem (2.1). Then,
(i) |x⊥

i | ≤ |xi| for all i = 1, . . . , n while there is at most one i = 1, . . . , n such that |x⊥
i | <

1−q
2−q |xi|,
(ii) if |xi| > |xj | for some i, j = 1, . . . , n then |x⊥

i | ≥ |x⊥
j |, and

(iii) there exists λ ≥ 0 such that

sign(x⊥
i )|x⊥

i |1−q(xi − x⊥
i ) = qλ (2.2)

for all i ∈ Γ⊥ := supp(x⊥).

(iv) for |T | ≥ T0 := (2− q)(λq(1− q)q−1)
1

2−q the equation

sign(t)|t|1−q(T − t) = qλ (2.3)

has two roots tl and tr satisfying |tl| ∈ (0, 1−q
2−qT ] and |tr| ∈ [ 1−q

2−qT,∞).

Moreover, [7] stated that there exists an unique implicit function hλ,q(T ) on (T0,∞)
such that hλ,q(T ) satisfying the equation (2.3) when t ≥ 0 and the properties as follows: the

function hλ,q(T ) is continuous differentiable, h
′

λ,q(T ) =
1

1+λq(q−1)|hλ,q(T )|q−2 and hλ,q(T ) is

strictly increasing. Especially, [16] showed that hλ,1/2(T ) =
2
3T

(
1+ cos

(
2π
3 − 2

3ϕλ(T )
))

and

with ϕλ(T ) = arccos(λ4 (
|T |
3 )−3/2

)
.

Obviously, (iv) of Lemma 2.1 states that x⊥
i = 0 if |xi| < T0. Subsequently, one needs

to analyze the selection of x⊥
i for |xi| ≥ T0. Since the equation (2.2) has two nonzero

roots, one can denote the root with the absolute value beyond 1−q
2−q |xi| by xi+; otherwise,

by xi−. Moreover, [9] proved that the root xi− corresponding to any xi is not part of



66 A. YAN AND J. FAN

the optimization solution for the minimization (2.1) when it has non-negative constraints
u ∈ Rn

+, except possibly for the smallest xi among those with non-zero optimal projection.
In their paper, they also presented an algorithm outline for ℓq(0 < q < 1)-ball projection
onto the non-negative simplex.

In fact, the ℓq-ball projection problem can be equivalently transformed into a simply
smooth constraint optimization problem, which can be solved by many existing optimization
algorithms. In order to give our methods, we first consider the following three minimization
problems

min
1

2
∥|x| − u∥2 subjec to u ∈ Bq,r, u ∈ Rn

+, (2.4)

min
1

2
∥z − u∥2 subjec to u ∈ Bq,r, u ∈ Rn

+ (2.5)

and

min
1

2
∥z − v

1
q ∥2 subjec to ∥v∥1 ≤ r, v ∈ Rn

+ (2.6)

for any given x ∈ Rn and z ∈ Rn
+.

Lemma 2.2. (i) If x⊥ is a minimizer of (2.1), then |x⊥| is a minimizer of (2.4). Conversely,
if |x|⊥+ is a minimizer of (2.4), then, |x|⊥+ ◦ sign(x) is a minimizer of (2.1).
(ii) If û is a minimizer of (2.5), then ûq is a minimizer of (2.6). Conversely, if v̂ is a

minimizer of (2.6), then, v̂
1
q is a minimizer of (2.5).

Proof. (i) Since ∥|x| − |y|∥2 ≤ ∥x − y∥2 for any x, y ∈ Rn, we have for any u ≥ 0 and
∥u∥qq ≤ r,

∥|x| − |x⊥|∥2 ≤ ∥x− x⊥∥2 ≤ ∥x− u ◦ sign(x)∥2 = ∥|x| − u∥2

where the second inequality derives from the assumption that x⊥ is a minimizer of (2.1).
Notice that |x⊥| ≥ 0 and ∥|x⊥|∥qq = ∥x⊥∥qq ≤ r. Then, |x⊥| is a minimizer of (2.4).

Similarly, for any u ∈ Rn satisfying ∥u∥qq ≤ r, we obtain

∥x− |x|⊥+ ◦ sign(x)∥2 = ∥|x| − |x|⊥+∥2 ≤ ∥|x| − |u|∥2 ≤ ∥x− u∥2,

which together with ∥|x|⊥+◦sign(x)∥qq = ∥|x|⊥+∥qq ≤ r implies that |x|⊥+◦sign(x) is a minimizer
of (2.1). Therefore, the first result (i) holds.

(ii) For any v ≥ 0 satisfying ∥v∥1 ≤ r we have v
1
q ≥ 0 and ∥v

1
q ∥qq = ∥v∥1 ≤ r. Since û is

a minimizer of (2.5), we have

∥z − (ûq)
1
q ∥2 = ∥z − û∥2 ≤ ∥z − v

1
q ∥2,

which yields that ûq is a minimizer of (2.6). That is, we obtain the first result of (ii).

Similarly, noting that any u ≥ 0 satisfying ∥u∥qq ≤ r implies that uq ≥ 0 and ∥uq∥1 =
∥u∥qq ≤ r, one can conclude from the assumption v̂ is a minimizer of (2.6) that

∥z − v̂
1
q ∥2 ≤ ∥z − (uq)

1
q ∥2 = ∥z − u∥2,

which yields that v̂
1
q is a minimizer of (2.5). Then, we get the second of (ii)
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Remark 2.3. The above lemma implies that for any x ∈ Rn one can compute its projection

onto ℓq-ball by (v̂(x))
1
q ◦ sign(x) where v̂(x) is a minimizer of the following problem

min
1

2
∥|x| − v

1
q ∥2 subjec to ∥v∥1 ≤ r, v ∈ Rn

+.

It is clear that the above problem is a smooth constraint optimization problem which can
be computed efficiently by many existing algorithm such as active-set method, trust re-
gion method, sequential quadratic programming. Indeed, one can employ the command
”fmincon” to compute the optimization problem (2.6) in Matlab.

3 Optimality conditions

In this section, we will provide some optimality conditions to help us construct an efficient
algorithm. It is well known that the tangent cone and normal cone of a constrained set are
extensively used in optimization and nonlinear analysis. So, we first discuss the Bouligand
tangent cone and normal cone of the ℓq-ball. Recalling that for any nonempty set S ⊆ Rn,
its Bouligand tangent cone TS(x̄) and corresponding normal cone NS(x̄) at the point x̄ ∈ S
are defined as [12]:

TS(x̄) :=
{
d ∈ Rn : ∃{xk} ⊂ S, lim

k→∞
xk = x̄, αk ≥ 0, k ∈ N such that lim

k→∞
αk(x

k − x̄) = d
}

and
NS(x̄) :=

{
d ∈ Rn : ⟨d, z⟩ ≤ 0, ∀z ∈ TS(x̄)

}
.

Proposition 3.1. For any x ∈ Bq,r, it follows that

TBq,r (x) =

{
{d = (dTΓ , 0

T )T ∈ Rn : ∇φ(xΓ)
T dΓ ≤ 0}, if x ∈ ∂Bq,r;

Rn, if x ∈ intBq,r.

and

NBq,r (x) =

{
{d = (λ∇φ(xΓ)

T , uT )T : ∀λ ≥ 0, ∀u ∈ Rn−|Γ|}, if x ∈ ∂Bq,r;
{0}, if x ∈ intBq,r.

where Γ = supp(x).

Proof. Obviously, the result holds for the case x ∈ intBq,r. We now prove the desired result
for the case x ∈ ∂Bq,r. For simplicity, we denote S1 = {d = (dTΓ , 0

T )T ∈ Rn : ∇φ(xΓ)
T dΓ ≤

0}. It is not hard to prove the second result when TBq,r (x) = S1. So, we only give the proof
of the first.

If |Γ| = n, it is easy to check that

TBq,r (x) = {d ∈ Rn : ∇φ(x)T d ≤ 0},

and then
NBq,r (x) = λ∇φ(x), ∀λ ≥ 0.

That is, the result holds.
We now prove the desired results when |Γ| < n. We first prove TBq,r (x) ⊆ S1. For any

d ∈ TBq,r (x), it follows from the definition of tangent cone that there exist a sequence of
real numbers tk → 0+ and a sequence of vectors dk → d such that x+ tkdk ∈ Bq,r. Assume
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that ∇φ(xΓ)
T dΓ > 0 or dΓc ̸= 0. If ∇φ(xΓ)

T dΓ > 0, the limit dkΓ → dΓ implies that there
exist a positive number ϵ1 and a positive integer K1 such that

∇φ(xΓ)
T dkΓ > ϵ1, for each k ≥ K1. (3.1)

If dΓc ̸= 0, the limit dkΓc → dΓc implies that there exist a positive number ϵ2 and a positive
integer K2 such that

∥dkΓc∥qq > ϵ2, for each k ≥ K2. (3.2)

From (3.1) or (3.2), one can conclude that there exist a positive number ϵ3 and a positive
integer K3 such that

∇φ(xΓ)
T dkΓ + t−1

k o(tk∥dkΓ∥) + tq−1
k ∥dkΓc∥qq > ϵ3, for each k ≥ K3.

Combing this, x+ tkdk ∈ Bq,r and x ∈ ∂Bq,r, we have

r ≥∥x+ tkdk∥qq
=∥xΓ + tkdkΓ∥qq + ∥tkdkΓc∥qq
=∥xΓ∥qq + tk∇φ(xΓ)

T dkΓ + o(tk∥dkΓ∥) + ∥tkdkΓc∥qq
=r + tk

(
∇φ(xΓ)

T dkΓ + t−1
k o(tk∥dkΓ∥) + tq−1

k ∥dkΓc∥qq
)

≥r + tkϵ3

>r,

which is absurd. So, ∇φ(xΓ)
T dΓ ≤ 0 and dΓc = 0 which yield that

TBq,r (x) ⊆ S1.

Next we prove S1 ⊆ TBq,r (x). For any d ∈ int(S1) which yields that d = (dTΓ , 0
T )T ∈ Rn

and ∇φ(xΓ)
T dΓ < 0, we choose

dkΓ → dΓ, dkΓc = 0.

Since dk := (dTkΓ, 0
T )T → (dTΓ , 0

T )T and∇φ(xΓ)
T dΓ < 0, it follows that there exist a positive

number ϵ4 and a positive integer K4 such that ∇φ(xΓ)
T dkΓ < −ϵ4 and |t−1

k o(tk∥dkΓ∥)| ≤
ϵ4/2. So,

∥x+ tkdk∥qq =∥xΓ + tkdkΓ∥qq
=∥xΓ∥qq + tk∇φ(xΓ)

T dkΓ + o(tk∥dkΓ∥)
=r + tk

(
∇φ(xΓ)

T dkΓ + t−1
k o(tk∥dkΓ∥)

)
≤r − tkϵ4/2

<r

which leads to d ∈ TBq,r (x). That is, S1 ⊆ TBq,r (x). Since cl
(
int(S)

)
⊆ cl

(
TBq,r (x)

)
and both S1 and the Tangent cone are closed set, it follows from S1 = cl

(
int(S)

)
that

S1 ⊆ TBq,r (x). Then, we prove TBq,r (x) = S1.

Remark 3.2. For the ℓq-ball, one can use the similar method to prove that the so-called
Clarke tangent cone coincides with the Bouligand tangent cone. So, we only use the latter
and the corresponding normal cone.
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From Theorem 6.12 in [12] and Proposition 3.1, one can get immediately the following
result.

Theorem 3.3. Let x∗ be a minimizer of problem (1.4). Then,

0 ∈ ∇f(x∗) + NBq,r (x
∗). (3.3)

Proposition 3.4. The generalize equation (3.3) holds if and only if there exists a number
µ ≥ 0 such that

X∗∇f(x∗) + µq|x∗|q = 0, (3.4)

where X∗ = diag(x∗).

Proof. Based on Theorem 3.1 and Proposition 3.1, it is not hard to prove the desired result.
So, we omit the details.

Obviously, (3.4) states that there exists a number λ ≥ 0 such that

∇f(x∗)Γ = −λ∇φ(x∗
Γ).

For ∇f(x∗)Γc , however, the equality tells us nothing but ∇f(x∗)Γc ∈ Rn−|Γ|
which is trivial.

A natural question is how to get some further information of ∇f(x∗)Γc . We next employ
a projector onto ℓq-ball to discuss another optimality condition which not only helps us to
answer the question but also provides an appropriate algorithm to solve the minimization
(1.4).

Theorem 3.5. Let x∗ be a minimizer of problem (1.4). For any τ ∈ (0, 1/Lr], it follows
that

x∗ ∈ PBq,r (x
∗ − τ∇f(x∗)), (3.5)

where Lr = sup
∥x∥∞≤r

1
q
∥∇2f(x)∥.

Proof. Since the ℓq-ball Bq,r is bounded and closed, the continuous differentiability of f
ensures that there exists at least one minimizer of the problem (1.4). For any τ > 0 and
y ∈ Bq,r, define the following auxiliary problem

min
x∈Bq,r

Fτ (x, y) := f(y) +∇f(y)T (x− y) +
1

2τ
∥x− y∥22. (3.6)

For any x, y ∈ Bq,r and τ ∈ (0, 1/Lr], it follows that

f(x) = f(y) +∇f(y)T (x− y) +
1

2
(x− y)T∇2f(ξ)(x− y)

= Fτ (x, y) +
1

2
(x− y)T∇2f(ξ)(x− y)− 1

2τ
∥x− y∥2

≤ Fτ (x, y) +
1

2
∥∇2f(ξ)∥∥x− y∥2 − 1

2τ
∥x− y∥2

≤ Fτ (x, y) +
1

2
∥x− y∥2(Lr −

1

τ
)

≤ Fτ (x, y), (3.7)

where ξ = y+t(x−y) for some t ∈ (0, 1) which implies that ∥ξ∥∞ < r
1
q and then ∥∇2f(ξ)∥ ≤

Lr. Denote
x̄ ∈ arg min

x∈Bq,r

Fτ (x, x
∗).
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For any τ ∈ (0, 1/L], we conclude from the definition of x̄ and (3.7) that

f(x∗) = Fτ (x
∗, x∗) ≥ Fτ (x̄, x

∗) (3.8)

and
Fτ (x̄, x

∗) ≥ f(x̄) ≥ f(x∗), (3.9)

which yield that
f(x∗) = Fτ (x

∗, x∗) = Fτ (x̄, x
∗) = f(x̄).

Then,
x̄ ∈ arg min

x∈Bq,r

f(x)

and
x∗ ∈ arg min

x∈Bq,r

Fτ (x, x
∗).

On the other hand, it is easy to check that the problem (3.6) is equivalent to the following
minimization problem

min
x∈Bq,r

1

2
∥x− [y − τ∇f(y)]∥2.

By the definition of PBq,r , we get (3.5).

Proposition 3.6. Assume that a point x̄ satisfies (3.5) with a real number τ > 0. Then,
(3.3) holds. Furthermore for each i ∈ Γ̄c, it follows that

|∇if(x̄)| ≤ min
j∈Γ̄

(1
τ
|x̄j |+ |∇jf(x̄)|

)
(3.10)

where Γ̄ = supp(x̄).

Proof. Suppose x̄ satisfies (3.5) which means

x̄ ∈ arg min
u∈Bq,r

g(u) :=
1

2
∥u−

(
x̄− τ∇f(x̄)

)
∥2.

Similar to Theorem 3.5, we conclude from Theorem 6.12 in [12] and Proposition 3.1 that

0 ∈ ∇g(x̄) + NBq,r (x̄),

which together with
∇g(x̄) = x̄−

(
x̄− τ∇f(x̄)

)
yields that

0 ∈ τ∇f(x̄) + NBq,r (x̄).

Since NBq,r (x̄) is a cone, then we get (3.3) immediately.
We next prove (3.10). For each i ∈ Γ̄c, we conclude from the result (ii) of Lemma 2.1

that

τ |∇if(x̄)| = |x̄i − τ∇if(x̄)| ≤ min
j∈Γ̄

(
|x̄j − τ∇jf(x̄)|

)
≤ min

j∈Γ̄

(
|x̄j |+ τ |∇jf(x̄)|

)
which together with τ > 0 leads to the desired result.
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Remark 3.7. From Propositions 3.4 and 3.6, one can see that the necessary optimality
condition (3.5) is stronger than the condition (3.4). Indeed, the former is similar to the so-
called L-stationary property introduced by [2] in the frame work of the sparsity constrained
problem. They stated the property is an extension of the concept of stationarity for convex
constrained problems. Inspired by this, we here call the point x̄ satisfying (3.5) a stationary
point. On the other hand, the inequality (3.10) can be used as a stopping criteria for our
algorithm.

4 Algorithm and its convergence

By the above analysis, we will use the fixed point equation (3.5) and the inequality (3.10)
to provide the following algorithm.

Step 0. Given q ∈ (0, 1), λ > 0, ϵ ≥ 0, γ, α ∈ (0, 1), δ > 0, choose an arbitrary x0 and set
k = 0.
Step 1.
(a) Compute ∇f(xk) from ∇f(x) = 2

∑m
i=1(x

TAix+ bTi x+ ci − yi)(2Aix+ bi);
(b) Compute xk+1 as

xk+1 = PBq,r (x
k − τk∇f(xk)) (4.1)

with τk = γαmk and mk is the smallest nonnegative integer m such that

f(xk)− f(xk(γαm)) ≥ δ

2
∥xk − xk(γαm)∥22 (4.2)

and xk(τ) = PBq,r (x
k − τ∇f(xk)).

Step 2. Stop if

∥xk+1 − xk∥2
max{1, ∥xk∥2}

≤ ϵ and |∇if(x̄)| ≤ min
j∈Γ̄

( 1

τk
|x̄j |+ |∇jf(x̄)|

)
for each i ∈ (Γk+1)c (4.3)

where Γk+1 = supp(xk+1). Otherwise, replace k by k + 1 and go to Step 1.

Notice that Remark 2.3 provides the method for computing the subproblem (4.1). To find
the τk, we use the so-called Armijo-type line search method in the step (b). It is a natural
question whether or not we can find the smallest nonnegative integer mk. We provide the
following lemma to answer the question.

Lemma 4.1. Let L̄ = supx∈B ∥∇2f(x)∥2 where B = {x ∈ Rp : ∥x∥2 ≤ r1/q}. For any
δ > 0, γ, α ∈ (0, 1), define

mk =

{
0, if γ(L̄+ δ) ≤ 1;
−[ logα γ(L̄+ δ)]+ 1, otherwise.

Then (4.2) holds.
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Proof. From the definition of τk and mk, it is easy to check that

L̄− 1

τk
≤ −δ. (4.4)

Indeed, by taking τk = γ we have

L̄− 1

τk
=

γL̄− 1

γ
≤ −δ,

when γ(L̄+ δ) ≤ 1. If γ(L̄+ δ) > 1,

τk = γαmk ≤ γα− logα γ(L̄+δ) =
1

L̄+ δ

which also leads to (4.4).
Note that

xk+1 ∈ arg min
x∈Rn

Fτk(x, x
k) (4.5)

and
xk+1 ∈ Br,q.

Similar to (3.7), we obtain from (4.4) that

f(xk+1) ≤ Fτk(x
k+1, xk) +

1

2
∥xk+1 − xk∥22

(
∥∇2f(ξk)∥2 −

1

τk

)
≤ Fτk(x

k+1, xk) +
1

2
∥xk+1 − xk∥22(L̄− 1

τk
)

≤ Fτk(x
k+1, xk)− δ

2
∥xk+1 − xk∥22,

where ξk = xk + ϱ(xk+1 − xk) for some ϱ ∈ (0, 1) and then ξk ∈ B leads to the second
inequality. Combining this and (4.5), we have

f(xk)− f(xk+1) = Fτk(x
k, xk)− f(xk+1) ≥ Fτk(x

k+1, xk)− f(xk+1)

≥ δ

2
∥xk+1 − xk∥22,

which completes the proof.

We now consider the convergence of the iterated sequence {xk}.

Theorem 4.2. Let {xk} be the sequence generated by the above algorithm. Then,
(i) {f(xk)} converges to f(x̃), where x̃ is any accumulation point of {xk};
(ii) limk→∞

∥xk+1−xk∥2

τk
= 0;

(iii) any accumulation point of the sequence {xk} is a stationary point of the minimiza-
tion problem (1.4).

Proof. (i) Notice that {xk} is bounded which yields that it has at least one accumulation
point. Since {f(xk)} is monotonically decreasing and f(·) ≥ 0, {f(xk)} converges to a
constant f̃(≥ 0). By the continuousness of f(x), we then have {f(xk)} → f̃ = f(x̃), where
x̃ is an accumulation point of {xk} as k → ∞.
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(ii) From the definition of xk+1 and (4.2), we have

n∑
k=0

∥xk+1 − xk∥22 ≤ 2

δ

n∑
k=0

[f(xk)− f(xk+1)] =
2

δ
[f(x̃)− f(xn+1)] ≤ 2

δ
f(x̃).

Hence,
∑∞

k=0 ∥xk+1 − xk∥22 < ∞ which implies that ∥xk+1 − xk∥2 → 0 as k → ∞. From
Lemma 4.1, we have τk ∈ [γαm̄, γ] where m̄ = max(0, [− logα γ(L̄ + δ)] + 1). Then, we get
the result (ii).

(iii) Notice that both {xk} and {τk} are bounded which implies that there exist two
subsequences xkj and τkj such that

xkj → x̃, τkj → τ̃ , as j → ∞

where x̃ ∈ Br,q. By the algorithm, we have

xkj+1 ∈ PBq,r [x
kj − τkj∇f(xkj )]

which means that for any x ∈ Rn,

∥xkj+1 − (xkj − τkj∇f(xkj ))∥2 ≤ ∥x− (xkj − τkj∇f(xkj ))∥2.

From ∥xkj+1−xkj∥ → 0 and the continuity of ∇f(·), we then conclude that for any x ∈ Rn,

∥x̃− (x̃− τ̃∇f(x̃))∥2 ≤ ∥x− (x̃− τ̃∇f(x̃))∥2

which together with the definition of the projection onto the ball Br,q and x̃ ∈ Br,q implies
that x̃ ∈ PBr,q

(
x̃− τ̃∇f(x̃)

)
. Then, we complete the proof.

5 Numerical Examples

In this section we calculate the following quadratic equations problem to illustrate the pro-
posed algorithm,

yi = ⟨ai, x⟩2 + εi, i = 1, . . . ,m, s.t. ∥x∥0 ≤ s.

A noise-free version of this model was considered by [2]. In each simulation 100 Monte
Carlo samples are generated and in each case the true value x∗ is generated randomly with
s nonzero components from the standard Gaussian distribution and the noise εi ∼ N(0, σ2)
with σ. The vectors {ai} ∈ Rn are generated from the standard Gaussian or uniform
distribution. Similar to [2] we consider the cases n = 120 and m = 80 with s = 3, 4, . . . , 10,
respectively. The numerical optimization is done using the proposed algorithm with iteration
stopping criterion (4.3) or the maximum iterative time of 5000s is reached. We compare
the proposed algorithm performed by using q = 0.8 and q = 0.5 respectively with the
greedy sparse-simple method and the partial sparse-simple method in [2] (For convenience,
we denote them as GSS and PSS respectively).

To evaluate the selection and estimation accuracy of our method, we calculate the mean
squared error (MSE) which is the average of ∥x̂ − x∗∥22. Especially, we report the rate of
successful recovery (SR) using the criterion ∥x̂− x∗∥22 ≤ 10−4 when σ is small, for example
σ = 0.01. From Tables 1 and 2, one can see that our SR rates are lower than that of GSS
and PSS methods. However, Table 3 shows that our method has certain advantages in the
case that σ is relatively large and {ai} are generated from the uniform distribution. The
MSE of our method with q = 0.8 is significantly smaller that of GSS and PSS, especially
for the case σ = 1. These numerical results show that our method is more robust than GSS
and PSS.
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Table 1: The rate of SR in the case of Gaussian distribution with σ = 0.01

Table 2: The rate of SR in the case of uniform distribution with σ = 0.01

Table 3: The MSE in the case of uniform distribution with σ = 0.5 and σ = 1
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