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by the relation X = C−1(X−L)(C−1)T . In this paper, we use the superscript T to denote
the transpose of a matrix.

A box-constrained nonlinear optimization problem

min f(x) subject to l ≤ x ≤ u,x ∈ Rn. (1.2)

is an important case of (1.1), since if the variable matrixX in (1.1) is a diagonal matrix, (1.1)
is reduced to (1.2). The problem (1.2) is a basic problem in constrained optimization and
many methods are proposed. Hei et. al. [11] compared the performance of four active-set
methods and two interior-point methods. Trust-region methods for (1.2) are also discussed
in [4, 5, 24],

On the other hand, the positive semidefinite condition on a matrix (X ≽ O) is extensively
studied in the context of SDP (semidefinite programs). The range of SDP applications
is very wide and includes control theory [3], combinatorial optimization [9], polynomial
optimization [14] and quantum chemistry [8]. Many software packages, for example [23,26],
have been developed for SDP. A number of studies on SDP can be found in the survey of
Todd [22], the handbook edited by Anjos and Lassere [1] and the references therein.

For solving the box-constrained SDP (1.1), we may apply the penalty barrier method
proposed in [2, 13]. Though it can handle the problem (1.1) with additional constraints, it
requires the full information of the second derivative of the objective function, and it can
solve the problems in practical time only when the size of variable matrix is small; n ≤ 500.

To solve large problems with n ≥ 500, we should discuss methods specialized for solving
(1.1). Xu et al [25] proposed a feasible direction method for (1.1). This method is an
iterative method and it searches a point which satisfies a first-order optimality condition.

We say that X∗ ∈ F satisfies a first-order optimality condition of (1.1) if

⟨∇f(X∗) | X −X∗⟩ ≥ 0 for ∀X ∈ F . (1.3)

Here, we use ⟨A | B⟩ to denote the inner-product between A ∈ Sn and B ∈ Sn, and
∇f(X∗) ∈ Sn is the gradient matrix of f at X∗. In particular, when f(X) is a convex
function, a point X∗ ∈ F that satisfies (1.3) is an optimal solution. We can derive an
equivalent but more convenient condition for X∗ ∈ F ,

f(X∗) = 0

where

f(X̂) := min {⟨∇f(X̂) | X − X̂⟩ : X ∈ F}. (1.4)

Xu et al [25] proved that the feasible direction method generates an sequence {Xk} ⊂
F that attains limk→∞ f(Xk) = 0. They conducted numerical tests on simple objective
functions that involved the variable matrix X in linear or quadratic terms.

In this paper, we propose an iterative method for the box-constrained SDP (1.1) using
the distance from the current point to the boundary of F . We introduce a concept of the
distance to the boundary of the feasible set from a trust-region method of Coleman and
Li [4] proposed for the simple-bound problem (1.2). However, we can not directly apply the
search direction of [4] to the box-constrained SDP (1.1) by copying the interval condition
l ≤ x ≤ u to the eigenvalue conditions O ≼ X ≼ I, since the matrix X involves not
only the eigenvalues but also the eigenvectors. In particular, it is not straightforward to
guarantee a non-zero step length if we define a search direction ignoring the property that
the eigenvectors are not always continuous functions on X. We devise a new search direction
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by taking both the eigenvalues and the eigenvectors into consideration. We give a non-zero
range of the step length, and we ensure that a movement along the search direction in this
range remains in F .

We also introduce a quadratic approximation function and a radius adjustment from
the trust-region methods [6, 10, 18, 21, 27]. In ordinary trust-region methods, the search
direction is obtained by solving a trust-region sub-problem, and the sub-problem is usually an
optimization problem that minimizes a quadratic function with a constraint where the search
direction is bounded by a trust-region radius. The search direction by such a trust-region
sub-problem was examined for nonlinear semidefinite complementarity programs in [15],
but an evaluation of the second derivative functions required a huge computation cost and
the problem size there was at most n = 100. In our approach, we first obtain the search
direction based on the distance to the boundary, then we obtain the step length along this
search direction so that the next point will stay in the region determined by a radius. In
the computation of the step length, we utilize the second derivative in its quadratic form,
hence the computation cost in each iteration is lower than the evaluation of whole entries
of the second derivative. We update the radius for the next iteration using an deviation of
the quadratic approximation function from the objective function.

In this paper, we discuss convergence properties of the generated sequence for the first-
order optimality condition. Numerical tests in this paper show that the proposed method
solves strongly-nonlinear functions faster than the feasible direction method. The com-
putation cost of the proposed method in each iteration is low compared to the penalty
barrier method implemented in PENLAB [7], and the proposed method can handle larger
problems than the penalty barrier method. This paper is organized as follows. Section 2
discusses equivalent conditions of the first-optimality conditions. We introduce the new
search direction D(X), and propose the iterative method with adaptive radius adjustment
in Algorithm 2.3. Section 3 establishes the convergence properties of the proposed method.
Section 4 reports numerical results on the performance comparison of the proposed method,
the feasible direction, and the penalty barrier method. Finally, Section 5 gives a conclusion
of this paper and discusses future directions.

1.1 Notation and preliminaries

The inner-product betweenA ∈ Rm×n andB ∈ Rm×n is defined by ⟨A|B⟩ := Trace(ATB).
Here, Trace(X) for a matrix X ∈ Rn×n is the summation of its diagonal elements, that is,
Trace(X) :=

∑n
i=1 Xii.

For A ∈ Rm×n, we define the Frobenius norm by ||A||F :=
√
⟨A | A⟩. From the Cauchy-

Schwartz inequality, it holds |⟨A | B⟩| ≤ ||A||F ||B||F for A ∈ Rm×n and B ∈ Rm×n.
Throughout the paper, we often use the relation ⟨A | B⟩ = ⟨B | A⟩. In addition, we use
the inequality ⟨A | B⟩ ≥ 0 for two positive semidefinite matrices A ≽ O and B ≽ O.

The notation diag(κ1, κ2, . . . , κn) stands for the diagonal matrix whose diagonal elements
are κ1, κ2, . . . , κn. When A = QKQT is the eigenvalue decomposition of A ∈ Sn with the
diagonal matrix K = diag(κ1, κ2, . . . , κn), the rth power of A for r ∈ R is given by Ar :=
Qdiag(κr

1, κ
r
2, . . . , κ

r
n)Q

T and the two-norm ||A||2 is given by ||A||2 := (λmax(A
TA))1/2 =

maxi=1,...,n |κi|. Here, λmax(A
TA) is the largest eigenvalue of the matrix ATA

The gradient matrix ∇f(X) ∈ Sn and the Hessian mapping ∇2f(X) at X ∈ Sn are
defined so that a Taylor expansion for D ∈ Sn holds with

f(X +D) = f(X) + ⟨∇f(X) | D⟩+ 1

2
⟨D | ∇2f(X) | D⟩+ o(||D||2F ),
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where o(d) is of the higher order of d. For example, for a function f̂(X) = ⟨X |X⟩, we have
∇f̂(X) = 2X and ⟨D | ∇2f̂(X) | D⟩ = 2⟨D | D⟩ from the relation ⟨X +D | X +D⟩ =
⟨X | X⟩+ 2 ⟨X | D⟩+ ⟨D | D⟩. The gradient matrix ∇f(X) corresponds to the Fréchet

derivative, and we have ⟨A | ∇2f(X) | B⟩ =
∑n

i,j,k,l=1
∂2f(X)
∂Xkl∂Xij

AijBkl for A,B ∈ Sn.
We use the matrices P (X) and Γ(X) to denote the eigenvalue decomposition of ∇f(X)

as ∇f(X) = P (X)Γ(X)P (X)T . The matrix Γ(X) is the diagonal matrix whose diagonal
elements are the descending-order eigenvalues of ∇f(X), denoted by γ1(X) ≥ γ2(X) ≥
· · · ≥ γn(X). The jth column of P (X), denoted by pj(X), is the associated eigenvec-
tor of γj(X). We use n+(X) and n−(X) to denote the number of positive and non-
positive eigenvalues of ∇f(X), respectively. We divide Γ(X) into the two blocks, Γ+(X) :=
diag(γ1(X), γ2(X), . . . , γn+(X)), Γ−(X) := diag(γn+(X)+1(X), γn+(X)+2(X), . . . , γn).

Note that the sizes of Γ+(X) and Γ−(X) can be zero, but the total is always n+(X) +
n−(X) = n. We also divide P (X) into the two matrices P+(X),P−(X) by collecting
the corresponding vectors, so the columns of P+(X) are p1(X), . . . ,pn+(X)(X) in this

order. As a property of eigenvectors, we have P+(X)TP−(X) = O. We also know that
P+(X)TP+(X) is the identity matrix of dimension n+(X) and P−(X)TP−(X) is the
identity matrix of dimension n−(X). Finally, we define γmax(X) := ||∇f(X)||2. From the
definition of the two-norm, it holds that γmax(X) = max{|γ1(X)|, |γn(X)|}.

2 An Iterative Method Using Boundary Distance Information

For the simple bound problem (1.2), Coleman and Li [4] proposed a trust-region method
which measures the distance from the current feasible point x ∈ Rn to the boundary of the
feasible set (l ≤ x ≤ u). They defined the vector v(x) ∈ Rn as

vi(x) =


xi − li if ∂f(x)

∂xi
≥ 0 and li > −∞

xi − ui if ∂f(x)
∂xi

< 0 and ui <∞
1 if ∂f(x)

∂xi
≥ 0 and li = −∞

−1 if ∂f(x)
∂xi

< 0 and ui =∞.

This vector was used to control the approach to the boundary, and the key observation in
the discussion of [4] was that x∗ satisfies the first-order optimality condition if and only

if ∂f(x)
∂xi

vi(x) = 0 for each i = 1, . . . , n. Though the cases li = −∞ or ui = ∞ are
considered in [4], we will focus the situation li > −∞ and ui < ∞ in this paper, since the
box-constrained SDP (1.1) has a bounded feasible set.

We can not directly extend the definition of v(x) to the box-constrained SDPs (1.1)
using the conditions on the eigenvalue of X, since the distance to the boundary of F relates
to not only the eigenvalues but also the eigenvectors. To take the effect of eigenvectors into
account, we define two positive semidefinite matrices for X ∈ F ;

V +(X) := P+(X)TXP+(X), and V −(X) := P−(X)T (I −X)P−(X).

The definition of these matrices brings us other properties of the first-order optimality
condition in Lemma 2.1. In the lemma, we use a matrix D(X) ∈ Sn and a scalar N(X)
defined by

D(X) := P (X)

(
V +(X)1/2Γ+(X)V +(X)1/2 γmax(X)P+(X)TXP−(X)
γmax(X)P−(X)TXP+(X) V −(X)1/2Γ−(X)V −(X)1/2

)
P (X)T

(2.1)
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N(X) := ⟨∇f(X) | D(X)⟩. (2.2)

The definition of the matrix D(X) includes the distance information to the boundary of
the feasible sets F via the matrices V +(X) and V −(X) like v(x) above. In particular,
|vi(x)| measures the distance of x from the lower (upper) bound xi − li ≥ 0 (ui − xi ≥ 0)

by xi − li (ui − xi) for the case ∂f(x)
∂xi

≥ 0 (∂f(x)
∂xi

< 0), respectively. The matrices V +(X)
and V −(X) use this concept; V +(X) (V −(X)) evaluates the distance of X from the
lower (upper) bound of F , that is X − O ≽ O (I −X ≽ O), with an adjustment by the
eigenvectors P+(X) (P−(X)) that correspond to the positive (non-positive) eigenvalues of
∇f(X), respectively.

Using the relations ∇f(X) = P+(X)Γ+(X)P+(X)T +P−(X)Γ−(X)P−(X)T , we can
compute ||D(X)||2F and N(X) as follow;

||D(X)||2F = ||V +(X)1/2Γ+(X)V +(X)1/2||2F + ||V −(X)1/2Γ−(X)V −(X)1/2||2F
+ 2(γmax(X))2||P+(X)TXP−(X)||2F , (2.3)

N(X) = ||V +(X)1/4Γ+(X)V +(X)1/4||2F + ||V −(X)1/4Γ−(X)V −(X)1/4||2F . (2.4)

Lemma 2.1. For a matrix X∗ ∈ F , the following conditions are equivalent.

(a) X∗ satisfies the first-order optimality condition (1.3).

(b) ⟨Γ+(X
∗) | V +(X

∗)⟩ = ⟨Γ−(X
∗) | V −(X

∗)⟩ = 0.

(c) N(X∗) = 0.

(d) ||D(X∗)||F = 0.

Proof. [(a) ⇒ (b)] We define a matrix X̂ := P+(X
∗)P+(X

∗)TX∗P+(X
∗)P+(X

∗)T +

P−(X
∗)P−(X

∗)T . Since X∗ ∈ F , we obtain X̂ ≽ O and

I − X̂ = (P+(X
∗)P+(X

∗)T + P−(X
∗)P−(X

∗)T )

−(P+(X
∗)P+(X

∗)TX∗P+(X
∗)P+(X

∗)T + P−(X
∗)P−(X

∗)T )

= P+(X
∗)P+(X

∗)T (I −X∗)P+(X
∗)P+(X

∗)T ≽ O,

hence, X̂ ∈ F . Substituting X̂ ∈ F into the inequality (1.3), we have

⟨∇f(X∗) | X̂ −X∗⟩
= ⟨P+(X

∗)Γ+(X
∗)P+(X

∗)T + P−(X
∗)Γ−(X

∗)P−(X
∗)T

| P+(X
∗)P+(X

∗)TX∗P+(X
∗)P+(X

∗)T + P−(X
∗)P−(X

∗)T −X∗⟩
= ⟨Γ−(X

∗) | I⟩ − ⟨Γ−(X
∗) | P−(X

∗)TX∗P−(X
∗)⟩ = ⟨Γ−(X

∗) | V −(X
∗)⟩ ≥ 0.

Here, we used ⟨A | B⟩ = Trace(ATB) = Trace(BTA), P+(X
∗)TP+(X

∗) = I
and P+(X

∗)TP−(X
∗) = O. Since −Γ−(X

∗) ≽ O and V −(X
∗) ≽ O, we also have

⟨−Γ−(X
∗) | V −(X

∗)⟩ ≥ 0, so that we obtain ⟨Γ−(X
∗) |V −(X

∗)⟩ = 0.
Similarly, for the matrix X := P−(X

∗)P−(X
∗)TX∗P−(X

∗)P−(X
∗)T ≽ O, we can

show I −X = P+(X
∗)P+(X

∗)T + P−(X
∗)P−(X

∗)T (I −X∗)P−(X
∗)P−(X

∗)T ≽ O,
therefore we have X ∈ F . Putting X ∈ F into (1.3), we have ⟨∇f(X∗) | X − X∗⟩ =
−⟨Γ+(X

∗) | V +(X
∗)⟩ ≥ 0. On the other hand, from the properties Γ+(X

∗) ≽ O and
V +(X

∗) ≽ O, it holds ⟨Γ+(X
∗) |V +(X

∗)⟩ ≥ 0. Hence, we obtain ⟨Γ+(X
∗) |V +(X

∗)⟩ = 0.
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[(b)⇒ (a)] For any X ∈ F , it holds that

⟨∇f(X∗) | X −X∗⟩
= ⟨P+(X

∗)Γ+(X
∗)P+(X

∗)T + P−(X
∗)Γ−(X

∗)P−(X
∗)T | X −X∗⟩

= ⟨Γ+(X
∗) | P+(X

∗)TXP+(X
∗)⟩ − ⟨Γ+(X

∗) | V +(X
∗)⟩

−⟨Γ−(X
∗) | P−(X

∗)T (I −X)P−(X
∗)⟩+ ⟨Γ−(X

∗) | V −(X
∗)⟩

= ⟨Γ+(X
∗) | P+(X

∗)TXP+(X
∗)⟩+ ⟨−Γ−(X

∗) | P−(X
∗)T (I −X)P−(X

∗)⟩ ≥ 0.

For the last equality, we used ⟨Γ+(X
∗) | V +(X

∗)⟩ = ⟨Γ−(X
∗) | V −(X

∗)⟩ = 0 from (b). In
addition, the last non-negativity came from P+(X

∗)TXP+(X
∗) ≽ O and P−(X

∗)T (I −
X)P−(X

∗) ≽ O.
[(b) ⇒ (c)] Since ⟨Γ+(X

∗) | V +(X
∗)⟩ = Trace(V +(X

∗)1/2Γ+(X
∗)V +(X

∗)1/2) and
V +(X

∗)1/2Γ+(X
∗)V +(X

∗)1/2 ≽ O, the condition ⟨Γ+(X
∗) | V +(X

∗)⟩ = 0
indicates all the eigenvalues of V +(X

∗)1/2Γ+(X
∗)V +(X

∗)1/2 are 0, therefore,
V +(X

∗)1/2Γ+(X
∗)V +(X

∗)1/2 = O. We now consider the eigenvalue decomposition
V +(X

∗) = QKQT such that
K = diag(κ1, κ2, . . . , κn+(X∗

)) is the diagonal matrix with the eigenvalues of V +(X
∗).

Since V +(X
∗) ≽ O, it holds that κi ≥ 0 for i = 1, . . . , n+(X

∗). We define a positive
semidefinite matrix W := QTΓ+(X

∗)Q. Since the matrix Q is an orthogonal matrix,

V +(X
∗)1/2Γ+(X

∗)V +(X
∗)1/2 = O leads to K1/2WK1/2 = O. By taking the diago-

nal elements, we know κ
1/2
i Wiiκ

1/2
i = 0 for i = 1, . . . , n+(X

∗). Therefore, it holds that

κ
1/4
i Wiiκ

1/4
i = 0. Since a matrix K1/4WK1/4 is positive semidefinite and its diagonal ele-

ments are zero, we obtain K1/4WK1/4 = O, hence, V +(X
∗)1/4Γ+(X

∗)V +(X
∗)1/4 = O.

Similarly, the condition ⟨Γ−(X
∗) | V −(X

∗)⟩ = 0 implies V −(X
∗)1/4Γ−(X

∗)V −(X
∗)1/4 =

O. Hence, we obtain (c) by (2.4).
[(c)⇒ (b)] The condition N(X∗) = 0 leads to V +(X

∗)1/4Γ+(X
∗)V +(X

∗)1/4 = O
and V −(X

∗)1/4Γ−(X
∗)V −(X

∗)1/4 = O. Hence, it holds that

⟨Γ+(X
∗) | V +(X

∗)⟩ = ⟨Γ+(X
∗) | V +(X

∗)1/4V +(X
∗)1/2V +(X

∗)1/4⟩
= ⟨V +(X

∗)1/4Γ+(X
∗)V +(X

∗)1/4 | V +(X
∗)1/2⟩ = 0.

Similarly, we obtain ⟨Γ−(X
∗) | V −(X

∗)⟩ = 0 from V −(X
∗)1/4Γ−(X

∗)V −(X
∗)1/4 = O.

[(b)⇒ (d)] As a first step of [(b)⇒ (c)] above, we obtained V +(X
∗)1/2Γ+(X

∗)V +(X
∗)1/2 =

O and
V −(X

∗)1/2Γ−(X
∗)V −(X

∗)1/2 = O. Since all the eigenvalues in Γ+(X
∗) are positive, the

properties ⟨Γ+(X
∗) | V +(X

∗)⟩ = 0 and V +(X
∗) ≽ O lead to V +(X

∗) = O. Furthermore,
the decomposition V +(X

∗) = P+(X
∗)T (X∗)1/2(X∗)1/2P+(X

∗) = O implies
P+(X

∗)T (X∗)1/2 = O. Therefore, it holds that
P+(X

∗)TX∗P−(X
∗) = P+(X

∗)T (X∗)1/2(X∗)1/2P−(X
∗) = O. Hence, we conclude

||D(X∗)||F = 0 from (2.3).
[(d)⇒ (b)] From the relation (2.3), the condition ||D(X∗)||F = 0 indicates
V +(X

∗)1/2Γ+(X
∗)V +(X

∗)1/2 = O and V −(X
∗)1/2Γ−(X

∗)V −(X
∗)1/2 = O. By taking

the traces of these matrices, we obtain (b).

Lemma 2.1, (2.2) and (2.4) indicate that when X does not satisfy the first-order optimal-

ity condition, we can take − D(X)

||D(X)||F
as a descent direction of f(X), that is, ⟨∇f(X) | −

D(X)

||D(X)||F
⟩ < 0. Hence, we can expect that the decrease of the objective function f(X −
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α D(X)

||D(X)||F
) < f(X) for a certain value α > 0. The next lemma gives a non-zero range of

α to ensure X − α D(X)

||D(X)||F
∈ F .

Lemma 2.2. If X ∈ F does not satisfy the first-order optimality condition, then X −
α D(X)

||D(X)||F
∈ F for α ∈ [0, ||D(X)||F

γmax(X)
].

Proof. From the definition of γmax(X), the matrix I − Γ+(X)

γmax(X)
is a nonnegative diagonal

matrix, hence this matrix is positive semidefinite. Using P (X)P (X)T = I and −Γ−(X) ≽
O, it holds

In a similar way, noticing P+(X)T (I − X)P−(X) = −P+(X)TXP−(X) and I +
Γ−(X)

γmax(X)
≽ O, we derive

From two linear combinations

X − α
D(X)

||D(X)||F
=

(
1− α

γmax(X)

||D(X)||F

)
X

+α
γmax(X)

||D(X)||F

(
X − D(X)

γmax(X)

)
I −

(
X − α

D(X)

||D(X)||F

)
=

(
1− α

γmax(X)

||D(X)||F

)
(I −X)

+α
γmax(X)

||D(X)||F

(
I −X +

D(X)

γmax(X)

)
,

we obtain X−α D(X)

||D(X)||F
≽ O and I−

(
X − α D(X)

||D(X)||F

)
≽ O for α ∈ [0, ||D(X)||F

γmax(X)
].

Based on the property that − D(X)

||D(X)||F
is a descent direction of f(X), we can use

S(X) := D(X)

||D(X)||F
as a normalized search direction to find a minimizer.

We propose an iterative method for the box-constrained SDP (1.1) as Algorithm 2.3. In
Algorithm 2.3, we use a quadratic approximation of f with the direction −S(X);

q(α,X) := f(X)− α⟨∇f(X) | S(X)⟩+ α2

2
⟨S(X) | ∇2f(X) | S(X)⟩.
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Algorithm 2.3. An iterative method using boundary distance for box-constrained SDPs

Step 1: Choose an initial point X0 ∈ F . Set an initial radius ∆0 > 0 and set a stopping
threshold ϵ ≥ 0. Choose parameters µ1, µ2, η1, η2 such that 0 < µ1 < µ2 < 1 and
0 < η1 < 1 < η2. Set an iteration count k = 0.

Step 2: If N(Xk) ≤ ϵ, output Xk as a solution and stop.

Step 3: Solve a quadratic problem with respect to α;

min q(α,Xk) subject to 0 ≤ α ≤ min

{
||D(Xk)||F
γmax(X

k)
,∆k

}
, (2.5)

and let the step length αk be the minimizer of (2.5).

Step 4: Let X
k
:= Xk − αkS(X

k) where S(Xk) := D(Xk
)

||D(Xk
)||F

. Compute the ratio

rk :=
f(Xk)− f(X

k
)

f(Xk)− q(αk,X
k)

, (2.6)

and set

Xk+1 =

{
X

k
if rk ≥ µ1

Xk otherwise.

Step 5: Update the radius ∆k by

∆k+1 =

 η1∆k if rk < µ1

∆k if µ1 ≤ rk ≤ µ2

η2∆k if rk > µ2.

Step 6: Set k ← k + 1 and return to Step 2.

We should note that the quadratic approximation function q(α,Xk) requires ∇2f(Xk)
in only the scalar value ⟨S(Xk) | ∇2f(Xk) | S(Xk)⟩. Hence, we do not always
need to evaluate each element of ∇2f(Xk) in each iteration. For example, for a func-

tion f̂(X) = cos(⟨X | X⟩) and a symmetric matrix S ∈ Sn, it holds ⟨S | ∇2f̂(X) | S⟩ =
−2 sin(⟨X |X⟩)⟨S | S⟩−4 cos(⟨X |X⟩)⟨X | S⟩2. This makes each iteration of Algorithm 2.3
low cost compared to the interior-point methods or the penalty barrier method.

We note that the generated sequence by Algorithm 2.3 remains in F , that is, {Xk} ⊂ F
from Lemma 2.2. In Steps 4 and 5, we adjust the radius ∆k. This adjustment is necessary
to discuss the convergence properties.
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3 Convergence properties

A matrix X∗ ∈ F satisfies the first-order optimality condition (1.3) if and only if f(X∗) = 0,

as noted in Section 1. In this section, we show that the sequence {Xk} ⊂ F generated by
Algorithm 2.3 with the stopping threshold ϵ = 0 attains limk→∞ f(Xk) = 0. We divide

the proof into two parts. The first part shows there exists a subsequence of {N(Xk)} that
converges to zero. The second part shows limk→∞ N(Xk) = 0 in Theorem 3.2, and finally
limk→∞ f(Xk) = 0 in Theorem 3.3. We should remark that if we use the threshold ϵ = 0

and Xk at some iteration k satisfies N(Xk) = 0 exactly, we can terminate Algorithm 2.3
since Xk satisfies the first-order optimality condition from Lemma 2.1. For the conver-
gence analysis in this section, therefore, we discuss the case where {Xk} ⊂ F is an infinite
sequence.

Using the matrix D(X), we can employ similar approaches to [4] for the proof of the
first part. However, we can not directly apply the results of [4] to the second part. This is
mainly because that the eigenvector matrices P+(X) and P−(X) are not always continuous
functions in X. Instead, our proof relies on the boundedness of ⟨Γ+(X) | V +(X)⟩ and
⟨−Γ−(X) | V −(X)⟩.

3.1 Convergence of subsequence

To analyze Algorithm 2.3, we introduce two constant values

M1 := max
X∈F

||∇f(X)||2,

M2 := max

{
max

X∈F ,D∈Sn
,D ̸=O

∣∣∣∣ ⟨D | ∇2f(X) | D⟩
⟨D | D⟩

∣∣∣∣ , ω
}
.

Here, ω is a small positive number.
The valuesM1 andM2 are finite from the assumptions that the feasible set F is a bounded

and closed set and that the objective function f(X) is a twice continuously differentiable
function on an open set containing F . We can assume thatM1 > 0 without loss of generality,
since, if M1 = 0, then f(X) is a constant function in F and every point X ∈ F is optimal.
We remark that ω > 0 in the definition of M2 ensures that we can take 1

M2
. We do not need

to determine a specific value for ω, since M1 and M2 will be used for only the discussions
of the convergence analysis and they do not appear in Algorithm 2.3. Hence, the value of ω
does not affect numerical performance.

We now evaluate the quadratic approximation function q(αk,X
k).

Lemma 3.1. The step length αk in Step 3 satisfies

q(αk,X
k) ≤ f(Xk)− 1

2
min

{
N(Xk)2

M2||D(Xk)||2F
,

N(Xk)

γmax(X
k)

,
∆kN(Xk)

||D(Xk)||F

}
.

Proof. We define a quadratic function ϕ(α) := −α N(Xk
)

||D(Xk
)||F

+ α2

2 M2. From the definitions

of N(Xk) and M2, we have q(α,Xk) ≤ f(Xk) + ϕ(α), hence,

q(αk,X
k) ≤ f(Xk) + min

α∈
[
0,min

{
||D(Xk

)||F

γmax(Xk
)

,∆k

}]ϕ(α).
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Since N(Xk) = ⟨∇f(Xk) | D(Xk)⟩ > 0 (otherwise, Lemma 2.1 indicates that
Xk already satisfies the first-order optimality condition) and ϕ(α) is a quadratic func-
tion with respect to α, the minimum of ϕ is attained at one of the three candidates
||D(Xk

)||F
γmax(X

k
)
,∆k or α̂ := N(Xk

)

M2||D(Xk
)||F

. Let αmin be the minimizer of ϕ(α) subject to

0 ≤ α ≤ min

{
||D(Xk

)||F
γmax(X

k
)
,∆k

}
.

If αmin = α̂, we have ϕ(α̂) = −1
2

N(Xk
)2

M2||D(Xk
)||2F

. Next, if αmin = ||D(Xk
)||F

γmax
, we have

||D(Xk
)||F

γmax(X
k
)
≤ α̂, therefore,

||D(Xk
)||2F

γmax(X
k
)
M2 ≤ N(Xk). Hence, it holds that ϕ

(
||D(Xk

)||F
γmax(X

k
)

)
=

− N(Xk
)

γmax(X
k
)
+ 1

2
||D(Xk

)||2F
γmax(X

k
)2
M2 ≤ − 1

2
N(Xk

)

γmax(X
k
)
. Finally, if αmin = ∆k, the inequality ∆k ≤ α̂

indicates that ∆k ≤ N(Xk
)

M2||D(Xk
)||F

. Hence, it holds that ϕ(∆k) = −∆k
N(Xk

)

||D(Xk
)||F

+

1
2∆

2
kM2 ≤ −∆k

N(Xk
)

||D(Xk
)||F

+ 1
2∆k

N(Xk
)

||D(Xk
)||F
≤ − 1

2
∆kN(Xk

)

||D(Xk
)||F

.

Taking the maximum of the three cases, we obtain the inequality of this lemma.

To simplify the inequality of Lemma 3.1, we replace γmax(X
k) and ||D(Xk)||F by con-

venient upper bounds. Since γmax(X
k) is bounded by M1, we consider an upper bound on

||D(Xk)||F .

Lemma 3.2. For X ∈ F , it holds that ||D(X)||2F ≤ N(X) + 1
2M

2
1n

3.

Proof. Let V +(X) = QKQT be the eigenvalue decomposition of V +(X) such
that K = diag(κ1, κ2, . . . , κn+(X)) is the diagonal matrix with the eigenvalues of V +(X).

Since O ≼ X ≼ I, we have O ≼ V +(X) ≼ I, hence, 0 ≤ κi ≤ 1 for i = 1, 2 . . . , n+(X).
Using a matrix W := QTΓ+(X)Q, we show ||V +(X)1/2Γ+(X)V +(X)1/2||F ≤
||V +(X)1/4Γ+(X)V +(X)1/4||F ;

||V +(X)1/4Γ+(X)V +(X)1/4||2F − ||V +(X)1/2Γ+(X)V +(X)1/2||2F
= ⟨Γ+(X) | V +(X)1/2Γ+(X)V +(X)1/2⟩
−⟨V +(X)1/2Γ+(X)V +(X)1/2 | V +(X)1/2Γ+(X)V +(X)1/2⟩

= ⟨Γ+(X)− V +(X)1/2Γ+(X)V +(X)1/2 | V +(X)1/2Γ+(X)V +(X)1/2⟩
= ⟨Γ+(X)−QK1/2QTΓ+(X)QK1/2QT | QK1/2QTΓ+(X)QK1/2QT ⟩
= ⟨W −K1/2WK1/2 | K1/2WK1/2⟩
= ||K1/4WK1/4||2F − ||K

1/2WK1/2||2F

=

n+(X)∑
i=1

n+(X)∑
j=1

(Wijκ
1/4
i κ

1/4
j )2 −

n+(X)∑
i=1

n+(X)∑
j=1

(Wijκ
1/2
i κ

1/2
j )2

=

n+(X)∑
i=1

n+(X)∑
j=1

W 2
ij(κ

1/2
i κ

1/2
j − κiκj) ≥ 0.

The last inequality comes from 0 ≤ κi ≤ 1 for i = 1, . . . , n+(X). In a similar way, we also
derive ||V −(X)1/2Γ−(X)V −(X)1/2||2F ≤ ||V −(X)1/4Γ−(X)V −(X)1/4||2F . We evaluate
the last term of (2.3) by a property of the Frobenius norm,

||P+(X)TXP−(X)||2F ≤ ||P+(X)||2F · ||X||2F · ||P−(X)||2F ≤ n+(X) · n · n−(X) ≤ n3

4
.
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Here, we used ||P+(X)||2F = Trace(P+(X)TP+(X)) = n+(X). In addition, we used
||X||F ≤

√
n||X||2 from [20, (1.2.27)] and O ≼ X ≼ I to derive ||X||2F ≤ n, and we used

the relation n+(X) + n−(X) = n to derive n+(X) · n−(X) ≤ n2

4 .
Consequently, it holds from (2.3) that

||D(X)||2F = ||V +(X)1/2Γ+(X)V +(X)1/2||2F + ||V −(X)1/2Γ−(X)V −(X)1/2||2F
+ 2γmax(X)2||P+(X)TXP−(X)||2F
≤ ||V 1/4

+ (X)Γ+(X)V +(X)1/4||2F

+ ||V 1/4
− (X)Γ−(X)V −(X)1/4||2F + 2γmax(X)2

n3

4

≤ N(X) +
1

2
M2

1n
3.

We put Lemma 3.2 into Lemma 3.1 to obtain a new upper bound on q(αk,X
k);

q(αk,X
k) ≤ f(Xk)

− 1

2
min

 N(Xk)2

M2

(
N(Xk) + 1

2M
2
1n

3
) , N(Xk)

M1
,

∆kN(Xk)√
N(Xk) + 1

2M
2
1n

3

 .
(3.1)

In Algorithm 2.3, we call the kth iteration a successful iteration if Xk+1 is set as X
k
in

Step 4, that is, rk ≥ µ1. Otherwise, the kth iteration is called an unsuccessful iteration. For
a successful iteration, we obtain a decrease in the objective function

f(Xk+1) ≤ f(Xk)− µ1(f(X
k)− q(αk,X

k))

≤ f(Xk)

− µ1

2
min

 N(Xk)2

M2

(
N(Xk) + 1

2M
2
1n

3
) , N(Xk)

M1
,

∆kN(Xk)√
N(Xk) + 1

2M
2
1n

3

 . (3.2)

Since it holds f(Xk+1) = f(Xk) for an unsuccessful iteration, the objective value f(Xk) is
non-increasing in Algorithm 2.3.

We are now prepared to show that there exists a subsequence of {N(Xk)} that converges
to zero.

Theorem 3.1. When the sequence {Xk} generated by Algorithm 2.3 with the stopping
threshold ϵ = 0 is an infinite sequence, it holds that

lim inf
k→∞

N(Xk) = 0.

Proof: We assume that there exists ϵ̂ > 0 such that N(Xk) ≥ ϵ̂ for any k ≥ 0, and we will
derive a contradiction.

Let K = {k1, k2, . . . , ki, . . .} be the successful iterations. If K is a finite sequence, let ki
be the last iteration of K. Since all of the iterations after ki are unsuccessful, the update rule
of ∆k (Step 5 of Algorithm 2.3) implies ∆ki+j = ηj1∆ki . Hence, we obtain limj→∞ ∆j = 0.
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Next, we consider the case when K is an infinite sequence. The function x2

x+ 1
2M

2
1n

3 is an

increasing function for x > 0, so that it holds from (3.2) that for ki ∈ K,

f(Xki+1) ≤ f(Xki)− µ1

2
min

 N(Xki)2

M2

(
N(Xki) + 1

2M
2
1n

3
) , N(Xki)

M1
,

∆kiN(Xki)√
N(Xki) + 1

2M
2
1n

3


≤ f(Xki)− µ1

2
min

 ϵ̂2

M2

(
ϵ̂+ 1

2M
2
1n

3
) , ϵ̂

M1
,

∆ki ϵ̂√
ϵ̂+ 1

2M
2
1n

3

 .

Since f is continuous on a closed set F and Xk ∈ F for each k, f(Xki) is bounded below.
Therefore, it holds limi→∞ ∆ki = 0. From Step 5 of Algorithm 2.3, it holds that ∆j ≤ η2∆ki

for the unsuccessful iterations j = ki + 1 . . . , ki+1 − 1. Hence, we obtain limj→∞ ∆j = 0,

regardless of the finiteness of K. From (3.1) and N(Xk) ≥ ϵ̂, it holds for sufficiently large k
that

f(Xk)− q(αk,X
k) ≥ 1

2

∆k ϵ̂√
ϵ̂+ 1

2M
2
1n

3
> 0. (3.3)

We will take a close look at the ratio rk. From the Taylor expansion, there exists ξ ∈ (0, 1)
such that

f(Xk − αkS(X
k)) = f(Xk)− αk⟨∇f(Xk) | S(Xk)⟩

+
α2
k

2
⟨S(Xk) | ∇2f(Xk − ξαkS(X

k)) | S(Xk)⟩.

Therefore,

|f(Xk
)− q(αk,Xk)| ≤ α2

k

2

∣∣∣⟨S(Xk) | ∇2f(Xk − ξαkS(X
k)) | S(Xk)⟩

−⟨S(Xk) | ∇2f(Xk) | S(Xk)⟩
∣∣∣

≤ ∆2
k

2
(M2 +M2) = ∆2

kM2.

Using (3.3) in the denominator, the ratio rk is evaluated by

|rk − 1| = |f(X
k
)− q(αk,X

k)|
|f(Xk)− q(αk,X

k)|
≤ ∆2

kM2

1
2

∆k ϵ̂√
ϵ̂+ 1

2M
2
1n

3

= ∆k

2M2

√
ϵ̂+ 1

2M
2
1n

3

ϵ̂
.

Therefore, limk→∞ ∆k = 0 leads to limk→∞ rk = 1 > µ2. From Step 5 of Algorithm 2.3, we
have ∆k+1 = η2∆k ≥ ∆k for sufficiently large k. Thus, there exists k̂0 such that ∆k ≥ ∆k̂0

for ∀k ≥ k̂0, but this contradicts limk→∞ ∆k = 0. Hence, lim infk→∞ N(Xk) = 0. �

3.2 Convergence of the whole sequence

Using the convergence of the subsequence, we will show in Theorem 3.2 that the whole
sequence of {N(Xk)} converges to zero. We use the following two lemmas to prove Theo-
rem 3.2.
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Lemma 3.3. For X ∈ F and A,B ∈ Sn, we have

|⟨∇f(X) | A⟩| ≤
√
nM1||A||F∣∣⟨A | ∇2f(X) | B⟩

∣∣ ≤ 3M2||A||F ||B||F .

Proof. The first inequality holds by |⟨∇f(X) | A⟩| ≤ ||∇f(X)||F ||A||F and ||∇f(X)||F ≤√
n||∇f(X)||2 from [20, (1.2.27)].
For the second inequality, we start with the following inequality derived from the defini-

tion of M2; ∣∣⟨D | ∇2f(X) | D⟩
∣∣ ≤M2||D||2F for ∀D ∈ Sn.

Therefore, we get
∣∣⟨A | ∇2f(X) | A⟩

∣∣ ≤ M2||A||2F and
∣∣⟨B | ∇2f(X) | B⟩

∣∣ ≤ M2||B||2F .
Furthermore, we put A− tB into D to obtain the following inequality, which holds for any
t ∈ R; ∣∣⟨A− tB | ∇2f(X) | A− tB⟩

∣∣ ≤M2||A− tB||2F .

Therefore, the inequality

(M2||B||2F − ⟨B | ∇2f(X) | B⟩)t2 − 2(M2⟨A | B⟩ − ⟨A | ∇2f(X) | B⟩)t
+(M2||A||2F − ⟨A | ∇2f(X) | A⟩) ≥ 0

holds for any t ∈ R, and we can derive

(M2⟨A | B⟩ − ⟨A | ∇2f(X)| B⟩)2

≤
(
M2||A||2F − ⟨A | ∇2f(X) | A⟩

) (
M2||B||2F − ⟨B | ∇2f(X) | B⟩

)
≤ (2M2||A||2F )(2M2||B||2F ).

Consequently, it holds that

⟨A | ∇2f(X) | B⟩ ≤ M2⟨A | B⟩+
√
(2M2||A||2F )(2M2||B||2F )

≤ M2||A||F ||B||F + 2M2||A||F ||B||F = 3M2||A||F ||B||F

In addition, we replace A with −A to obtain

⟨−A | ∇2f(X) | B⟩ ≤ 3M2||A||F ||B||F .

By combining these inequalities, we get
∣∣⟨A | ∇2f(X) | B⟩

∣∣ ≤ 3M2||A||F ||B||F .

Lemma 3.4. For Xk ∈ F , it holds that f(Xk) ≥ −n
√

N(Xk).

Proof. The objective function of (1.4) at X ∈ F can be evaluated from below by

⟨∇f(Xk) | X −Xk⟩
= ⟨P+(X

k)Γ+(X
k)P+(X

k)T

+ P−(X
k)Γ−(X

k)P−(X
k)T | X −Xk⟩

= ⟨Γ+(X
k) | P+(X

k)TXP+(X
k)⟩ − ⟨Γ−(X

k) | P−(X
k)T (I −X)P−(X

k)⟩
− ⟨Γ+(X

k) | V +(X
k)⟩+ ⟨Γ−(X

k) | V −(X
k)⟩
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≥ −⟨Γ+(X
k) | V +(X

k)⟩+ ⟨Γ−(X
k) | V −(X

k)⟩.

Furthermore, an upper bound of ⟨Γ+(X
k) | V +(X

k)⟩ is given by

⟨Γ+(X
k) | V +(X

k)⟩ = Trace(V +(X
k)1/4V +(X

k)1/4Γ+(X
k)V +(X

k)1/4V +(X
k)1/4)

≤ ||V +(X
k)1/4||F ||V +(X

k)1/4Γ+(X
k)V +(X

k)1/4||F ||V +(X
k)1/4||F

≤ n+(X
k)||V +(X

k)1/4Γ+(X
k)V +(X

k)1/4||F .

Here, we used ||V +(X
k)1/4||2F ≤ n+(X

k) derived from O ≼ V +(X
k)1/4 ≼ I. In a similar

way, it also holds ⟨−Γ−(X
k) | V −(X

k)⟩ ≤ n−(X
k)||V −(X

k)1/4Γ−(X
k)V −(X

k)1/4||F .
Therefore, we obtain

f(Xk) ≥ −n+(X
k)||V +(X

k)1/4Γ+(X
k)V +(X

k)1/4||F
− n−(X

k)||V −(X
k)1/4Γ−(X

k)V −(X
k)1/4||F

≥ −(n+(X
k) + n−(X

k))

×
√
||V +(X

k)1/4Γ+(X
k)V +(X

k)1/4||2F + ||V −(X
k)1/4Γ−(X

k)V −(X
k)1/4||2F

= −n
√
N(Xk).

For the second inequality, we used an inequality ab+cd ≤ (a+c)
√
b2 + d2 for a, b, c, d ≥ 0.

We are ready to prove the convergence of the whole sequence.

Theorem 3.2. When the sequence {Xk} generated by Algorithm 2.3 with ϵ = 0 is an
infinite sequence, it holds that

lim
k→∞

N(Xk) = 0.

Proof. To derive a contradiction, we assume that there exist a positive number ϵ1 and
an infinite subsequence K := {k1, k2, . . . , ki, . . .} ⊂ {1, 2, . . .} such that N(Xki) ≥ ϵ1 for
∀ki ∈ K and 0 < ϵ1 ≤ 16n2M

2
1 hold.

From Theorem 3.1, we can take a subsequence L := {l1, l2, . . . , li, . . .} ⊂ {1, 2, . . .} such
that {

N(Xk) ≥ ϵ22 for k = ki, ki + 1, . . . , li − 1

N(X li) < ϵ22.

where ϵ2 := ϵ1
4nM1

. Note that this is consistent with N(Xki) ≥ ϵ1, since we took 0 < ϵ1 ≤
16n2M2

1 .

If the kth iteration is a successful iteration and ki ≤ k < li, we put N(Xk) ≥ ϵ22 into
(3.2) and obtain

f(Xk+1) ≤ f(Xk)− µ1

2
min

 ϵ42
M2

(
ϵ22 +

1
2M

2
1n

3
) , ϵ22

M1
,

∆kϵ
2
2√

ϵ22 +
1
2M

2
1n

3

 .
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Since f is bounded below and the sequence {f(Xk)} is non-increasing, limk→∞(f(Xk+1)−
f(Xk)) = 0. Hence, it holds that

0 = lim
k→∞

(f(Xk)− f(Xk+1)) ≥ lim
k→∞

µ1

2
min

 ϵ42
M2

(
ϵ22 +

1
2M

2
1n

3
) , ϵ22

M1
,

∆kϵ
2
2√

ϵ22 +
1
2M

2
1n

3

 ≥ 0.

Since the two terms
ϵ42

M2(ϵ22+ 1
2M

2
1n

3)
and

ϵ22
M1

are constant with repect to k, we know

limk→∞ ∆k = 0. Therefore, we have
ϵ42

M2(ϵ22+ 1
2M

2
1n

3)
≥ ∆kϵ

2
2√

ϵ22+
1
2M

2
1n

3
and

ϵ22
M1
≥ ∆kϵ

2
2√

ϵ22+
1
2M

2
1n

3

for sufficiently large k.
Hence, if k is sufficiently large, it holds that

f(Xk+1) ≤ f(Xk)−∆kϵ3

where ϵ3 := µ1

2
ϵ22√

ϵ22+
1
2M

2
1n

3
. We update the matrix with Xk+1 = Xk − αkS(X

k) in a

successful iteration, therefore, we use αk ≤ ∆k and ||S(Xk)||F = ||D(Xk
)||F

||D(Xk
)||F

= 1 to derive

||Xk −Xk+1||F ≤ ∆k ≤
f(Xk)− f(Xk+1)

ϵ3
.

The inequality ||Xk −Xk+1||F ≤ f(Xk
)−f(Xk+1

)
ϵ3

is also valid when the kth iteration is an

unsuccessful iteration, since the matrix is updated with Xk+1 = Xk. Hence, it holds that

||Xki −X li ||F
≤ ||Xki −Xki+1||F + ||Xki+1 −Xki+2||F . . .+ ||X li−1 −X li ||F

≤ 1

ϵ3

(
(f(Xki)− f(Xki+1)) + (f(Xki+1)− f(Xki+2)) + · · ·+ (f(X li−1)− f(X li))

)
=

f(Xki)− f(X li)

ϵ3
.

Since the objective function f(Xk) is non-increasing and bounded below, this implies that

limi→∞ ||Xki −X li ||F = 0. Therefore, for ϵ4 :=
√
nϵ2

M1+3M2
> 0, there exists i0 such that

||Xki −X li ||F < ϵ4 for ∀i ≥ i0.
Since Xki ∈ F , it holds that −I ≼ X −Xki ≼ I for X ∈ F . Therefore, we have an

inequality ||X −Xki ||F ≤
√
n. For X ∈ F and i ≥ i0, it holds that∣∣∣⟨∇f(Xki) | X −Xki⟩ − ⟨∇f(X li) | X −X li⟩

∣∣∣
=
∣∣∣⟨∇f(X li + (Xki −X li)) | X −Xki⟩ − ⟨∇f(X li) | X −X li⟩

∣∣∣
=

∣∣∣∣⟨∇f(X li) | X −Xki⟩+
∫ 1

0

⟨Xki −X li | ∇2f(X li + ξ(Xki −X li)) | X −Xki⟩dξ

−⟨∇f(X li) | X −X li⟩
∣∣∣

=

∣∣∣∣∫ 1

0

⟨Xki −X li | ∇2f(X li + ξ(Xki −X li)) | X −Xki⟩dξ − ⟨∇f(X li) | Xki −X li⟩
∣∣∣∣
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≤
∫ 1

0

∣∣∣⟨Xki −X li | ∇2f(X li + ξ(Xki −X li)) | X −Xki⟩
∣∣∣ dξ

+
∣∣∣⟨∇f(X li) | Xki −X li⟩

∣∣∣
≤ 3M2||Xki −X li ||F ||X −Xki ||F +

√
nM1||Xki −X li ||F

≤ 3M2ϵ4
√
n+
√
nM1ϵ4

=
√
n(3M2 +M1)ϵ4 = nϵ2.

Here, we used Lemma 3.3 for the second inequality. Hence, we have

⟨∇f(Xki) | X −Xki⟩ ≥ ⟨∇f(X li) | X −X li⟩ − nϵ2. (3.4)

If γmax(X
ki) = 0, then ∇f(Xki) = O, and this results in N(Xki) = 0 from (2.2).

Therefore, from the assumption N(Xki) ≥ ϵ22 we know that γmax(X
ki) > 0. Since Xki −

D(Xki )

γmax(X
ki )
∈ F from Lemma 2.2, we can put X = Xki − D(Xki )

γmax(X
ki )

into (3.4) to get

⟨
∇f(Xki) | − D(Xki)

γmax(X
ki)

⟩
≥

⟨
∇f(X li) |

(
Xki − D(Xki)

γmax(X
ki)

)
−X lj

⟩
− nϵ2

≥ f(X lj )− nϵ2.

With Lemma 3.4 and N(X li) < ϵ22, we have an upper bound on N(Xki);

N(Xki) = ⟨∇f(Xki) | D(Xki)⟩ ≤ γmax(X
ki)(−f(X lj ) + nϵ2)

≤ γmax(X
ki)(n

√
N(X lj ) + nϵ2) ≤M1(nϵ2 + nϵ2) = 2nM1ϵ2.

Therefore, we obtain the contradiction;

ϵ1 ≤ N(Xki) ≤ 2nM1ϵ2 =
1

2
ϵ1 < ϵ1.

Hence, limk→∞ N(Xk) = 0.

Combining Lemma 3.4 and Theorem 3.2, we derive the property for the first-order opti-
mality condition.

Theorem 3.3. When the sequence {Xk} generated by Algorithm 2.3 with ϵ = 0 is an
infinite sequence, it holds that

lim
k→∞

f(Xk) = 0.

Proof. From Lemma 3.4, we know that −n
√
N(Xk) ≤ f(Xk) ≤ 0. Hence, Theorem 3.2

indicates limk→∞ f(Xk) = 0.

Using Theorem 3.3, we can show an additional result on the convergence. To make the
generated sequence {Xk} itself converge, we need a stronger assumption on the objective
function, for example, strong convexity.
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Corollary 3.5. If the objective function f is strongly convex, that is, there exists ν > 0
such that

f(Y ) ≥ f(X) + ⟨∇f(X) | Y −X⟩+ ν

2
||Y −X||2F for ∀X, ∀Y ∈ F ,

and the sequence {Xk} generated by Algorithm 2.3 with ϵ = 0 is an infinite sequence, then
{Xk} converges. Furthermore, the accumulation point X∗ := limk→∞ Xk is an optimal
solution.

Proof. From Xk ∈ F and the definition of f(Xj) for Xj ∈ F , we have an inequality

f(Xj) ≤ ⟨∇f(Xj) | Xk −Xj⟩. By swapping Xk and Xj , we also obtain the inequality

f(Xk) ≤ ⟨∇f(Xk) | Xj −Xk⟩. The addition of these two inequalities results in

⟨∇f(Xk)−∇f(Xj) | Xk −Xj⟩ ≤ −f(Xk)− f(Xj).

Theorem 2.1.9 of [17] gives equivalent conditions of strong convexity, and one of them is

⟨∇f(Y )−∇f(X) | Y −X⟩ ≥ ν||Y −X||2F ∀X, ∀Y ∈ F .

Due to this inequality, we get

||Xk −Xj ||F ≤
1

ν

√
−f(Xk)− f(Xj).

Theorem 3.3 implies that the sequence {Xk} is a Cauchy sequence. Since {Xk} is generated
in the closed and bounded set F , it converges to a point of F . Hence, the accumulation
point X∗ = limk→∞ Xk satisfies the first-order optimality condition. From the assumption
that the objective function is strongly convex, X∗ is an optimal solution.

4 Numerical Results

To evaluate the performance of the proposed method, we conducted a numerical test. The
computing environment was Debian Linux run on AMD Opteron Processor 4386 (3 GHz)
and 128 GB of memory space, and we used Matlab R2014a.

The test functions used are listed below and they are classified into the two groups.
The functions of Group I were selected from [25], and we added new functions as Group II.
Function 5 and 6 are an extension of Generalized Rosenbrock function [16] and its variant
with cosine functions, respectively.

Group I: Function 1. f(X) = −2⟨C1 | X⟩+ ⟨X | X⟩;
Function 2. f(X) = 3 cos(⟨X | X⟩) + sin(⟨X +C1 | X +C1⟩);
Function 3. f(X) = log(⟨X | X⟩+ 1) + 5⟨C1 | X⟩;

Group II: Function 4. f(X) = 1 + 2 ⟨X−C1 |X−C1⟩3
n3 ;

Function 5. f(X) = 1 +
∑n

i=1

∑n
j=i(Aij −Xij)

2

+100
∑n−1

i=1

∑n−1
j=i

(
A2

ij

Ai,j+1
Xi,j+1 −X2

ij

)2
+100

∑n−1
i=1

(
A2

in

Ai+1,i+1
Xi+1,i+1 −X2

i,n

)2
;
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Function 6. f(X) = 1
n2

∑n
i=1

(∑n
j=1,j ̸=i

Xij

Aij
− (n− 1)

X2
ii

A2
ii

)2
− 1

n2

∑n
i=1

∑n
j=1 cos((Xij −Aij)

2);

Function 7. f(X) = ⟨C1 | X⟩ − log det(X + ϵ̄I)− log det((1 + ϵ̄)I −X);

To generate the matrix C1 in Functions 1, 4, and 7, we chose the eigenvalues κ1, . . . , κn

randomly from the interval [−1, 2] and multiply a randomly-generated orthogonal matrix
Q, namely, C1 := Qdiag(κ1, . . . , κn)Q

T . The elements Aij in Functions 5 and 6 were set
as Aii =

1
2 for i = 1, . . . , n and Aij = 1

2(n−1) for i ̸= j. The parameter ϵ̄ in Function 7 was
set as ϵ̄ = 0.02.

We compared the performance of three methods, PIM (the proposed iterative method,
Algorithm 2.3), FEAS (the feasible direction method of Xu et. al. [25]), and PEN (the
penalty barrier method [2, 13] implemented in PENLAB [7]). We started PIM and FEAS
with the initial pointX0 = 1

2I, while PEN automatically chose its initial point. For PIM, we
used the parameters µ1 = 0.25, µ2 = 0.75, η1 = 0.5, η2 = 2.0, and ∆0 = 1. These parameters
were chosen from preliminary experiments on Functions 1 and 4. We used the following
condition as the stopping criterion;

PIM N(Xk) < 10−7 or |f(Xk
)−f(Xk−1

)|
max{|f(Xk

)|,1}
< 10−6

FEAS |Trace(Γ−(X
k))− ⟨f(Xk) | Xk⟩| < 10−6 or |f(Xk

)−f(Xk−1
)|

max{|f(Xk
)|,1}

< 10−6

PEN the default parameter of PENLAB.

For details of the stopping criterion on FEAS and PEN, refer to [25] and [7], respectively.
We also stopped the computation when the computation time exceeded 24 hours.

Tables 1 and 2 show the numerical results of Group I and Group II, respectively. The
first column is the function type, and the second column n is the size of the matrix X. The
third column indicates the method we applied, and the fourth column is the objective value.
The fifth column is the number of main iterations, and the six column is the computation
time in seconds. The last three columns correspond to the evaluation count of the function
value f(X), the gradient matrix ∇f(X), and the Hessian mapping ∇2f(X).

From these tables, PEN was much slow compared to PIM and FEAS. We did not include
the results of PEN for large problems n ≥ 500, since PEN did not finish the computation
for n = 500 in 24 hours. Though it attained better solution for Function 5, PENLAB [7]
handled the symmetric matrix X as n(n+ 1)/2 independent variables (X11, X12, . . ., X1n,
X22, . . ., X2n, . . ., Xnn), and it stored all the elements of the Hessian mapping ∇2f(X),
therefore, the computation cost was estimated as O(n4) from [13]. This heavy cost restricted
PENLAB to the small sizes. PIM also used the information of the Hessian mapping, but in
only the scalar value ⟨S | ∇2f(X) | S⟩. Hence, the computation cost of each iteration in
PIM is much lower than PEN, and this low cost is the key to handling large problems as
noted at the end of Section 2.

In the comparison between PIM and FEAS, the computation time of FEAS was shorter
than PIM in Table 1, but longer in Table 2. The functions in Group I involved the variable
matrix X in the linear form ⟨C1 | X⟩ or the quadratic form ⟨X | X⟩, and this simple
structure was favorable for the feasible direction method, which was based on a steepest
descent direction. In contrast, the functions in Group II have stronger nonlinearity than
Group I. The evaluation count with respect to the function value (co.f) implies that this
stronger nonlinearity demanded FEAS have a large number of back-step loop. In particular,
FEAS needed many iterations for Rosenbrock-type functions (Functions 5 and 6). PIM
reduced the number of iterations by the properties of the search direction D(X) and the
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Table 1: Numerical results on Group I.
type n method obj iter cpu co.f co.∇f co.∇2f

1 50 PIM −3.631× 101 48 0.08 95 48 48
1 50 FEAS −3.633× 101 36 0.04 215 36 0
1 50 PEN −3.633× 101 22 323.70 62 31 22
1 100 PIM −7.930× 101 67 0.30 133 67 67
1 100 FEAS −7.932× 101 36 0.11 239 36 0
1 100 PEN −7.932× 101 23 5554.30 64 32 23
1 500 PIM −3.572× 102 81 7.70 161 81 81
1 500 FEAS −3.574× 102 37 2.24 250 37 0
1 1000 PIM −8.648× 102 64 30.16 127 64 64
1 1000 FEAS −8.651× 102 32 9.62 204 32 0
1 5000 PIM −3.861× 103 80 3497.86 159 80 80
1 5000 FEAS −3.862× 103 36 1111.89 232 36 0
1 10000 PIM −7.731× 103 73 24730.04 145 73 73
1 10000 FEAS −7.734× 103 34 7782.18 213 34 0

2 50 PIM −4.000 23 0.04 45 23 23
2 50 FEAS −4.000 31 0.04 293 31 0
2 50 PEN −4.000 115 1808.54 1857 124 116
2 100 PIM −4.000 40 0.19 79 40 40
2 100 FEAS −4.000 13 0.05 122 13 0
2 100 PEN −3.985 15 4581.35 114 21 18
2 500 PIM −4.000 26 2.40 51 26 26
2 500 FEAS −4.000 17 1.31 183 17 0
2 1000 PIM −4.000 17 6.32 33 17 17
2 1000 FEAS −4.000 10 4.30 134 10 0
2 5000 PIM −4.000 28 1205.24 55 28 28
2 5000 FEAS −4.000 13 449.59 161 13 0
2 10000 PIM −4.000 27 8461.01 53 27 27
2 10000 FEAS −3.951 8 2009.73 73 8 0

3 50 PIM −3.756× 101 201 0.35 401 201 201
3 50 FEAS −3.756× 101 2 0.01 3 2 0
3 50 PEN −3.756× 101 28 418.41 76 36 28
3 100 PIM −7.418× 101 208 0.93 415 208 208
3 100 FEAS −7.419× 101 7 0.02 24 7 0
3 100 PEN −7.419× 101 30 7316.99 81 37 30
3 500 PIM −3.625× 102 257 25.62 513 257 257
3 500 FEAS −3.625× 102 2 0.13 3 2 0
3 1000 PIM −7.739× 102 269 128.23 537 269 269
3 1000 FEAS −7.741× 102 2 0.65 3 2 0
3 5000 PIM −4.129× 103 257 11996.45 513 257 257
3 5000 FEAS −4.129× 103 2 74.63 3 2 0
3 10000 PIM −8.294× 103 256 92901.29 511 256 256
3 10000 FEAS −8.295× 103 2 575.84 3 2 0
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Table 2: Numerical results on Group II.
type n method obj iter cpu co.f co.∇f co.∇2f

4 50 PIM 1.041 26 0.07 51 26 26
4 50 FEAS 1.041 16 0.03 77 16 0
4 50 PEN 1.041 23 328.07 75 37 23
4 100 PIM 1.039 42 0.19 83 42 42
4 100 FEAS 1.039 24 0.07 138 24 0
4 100 PEN 1.039 25 5824.27 83 40 25
4 500 PIM 1.024 21 2.08 41 21 21
4 500 FEAS 1.024 23 1.35 123 23 0
4 1000 PIM 1.023 14 6.77 27 14 14
4 1000 FEAS 1.023 25 7.35 142 25 0
4 5000 PIM 1.024 12 517.62 23 12 12
4 5000 FEAS 1.024 25 715.68 134 25 0
4 10000 PIM 1.025 12 4140.26 23 12 12
4 10000 FEAS 1.025 21 4866.45 109 21 0

5 50 PIM 1.122 4 0.01 7 4 4
5 50 FEAS 1.126 19 0.05 252 19 0
5 50 PEN 1.000 20 294.58 61 30 20
5 100 PIM 1.117 6 0.06 11 6 6
5 100 FEAS 1.125 16 0.15 226 16 0
5 100 PEN 1.000 20 4814.74 61 30 20
5 500 PIM 1.004 4 0.82 7 4 4
5 500 FEAS 1.125 16 4.28 286 16 0
5 1000 PIM 1.008 4 4.02 7 4 4
5 1000 FEAS 1.125 18 26.96 352 18 0
5 5000 PIM 1.002 4 192.25 7 4 4
5 5000 FEAS 1.125 90 6345.17 2279 90 0
5 10000 PIM 1.013 4 1332.14 7 4 4
5 10000 FEAS 1.124 122 51611.04 3285 122 0

6 50 PIM −1.000 20 0.11 39 20 20
6 50 FEAS −1.000 12 0.10 92 12 0
6 50 PEN −1.000 300 4577.01 915 1218 300
6 100 PIM −1.000 20 0.36 39 20 20
6 100 FEAS −1.000 16 0.56 150 16 0
6 100 PEN −9.997× 10−1 300 73262.02 1005 1308 300
6 500 PIM −1.000 18 10.00 35 18 18
6 500 FEAS −1.000 12 9.36 110 12 0
6 1000 PIM −1.000 4 9.42 7 4 4
6 1000 FEAS −1.000 12 56.33 110 12 0
6 5000 PIM −1.000 4 406.01 7 4 4
6 5000 FEAS −1.000 13 2046.55 130 13 0
6 10000 PIM −1.000 3 2076.17 5 3 3
6 10000 FEAS −1.000 14 10416.77 130 14 0

7 50 PIM 7.817× 101 10 0.03 19 10 10
7 50 FEAS 7.817× 101 15 0.06 108 15 0
7 50 PEN 7.817× 101 13 195.41 38 19 13
7 100 PIM 1.583× 102 10 0.11 19 10 10
7 100 FEAS 1.583× 102 17 0.30 13 17 0
7 100 PEN 1.583× 102 14 3427.86 40 20 14
7 500 PIM 7.825× 102 10 2.73 19 10 10
7 500 FEAS 7.825× 102 16 6.22 116 16 0
7 1000 PIM 1.556× 103 10 12.02 19 10 10
7 1000 FEAS 1.556× 103 10 15.79 60 10 0
7 5000 PIM 7.707× 103 11 1708.11 21 11 11
7 5000 FEAS 7.707× 103 16 4931.70 115 16 0
7 10000 PIM 1.533× 104 11 13379.96 21 11 11
7 10000 FEAS 1.533× 104 14 32643.49 94 14 0
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quadratic approximation with the Hessian mapping. In particular, D(X) encompassed the
information of the distance to the boundary to the box-constraints as V +(X) and V −(X).
Therefore, PIM was faster than FEAS for the functions of Group II.

5 Conclusions and Future Directions

In this paper, we proposed an iterative method for box-constrained SDPs. The search
direction D(X) studied in Section 2 enabled us to include the information of the distance
from the current point to the boundary of the feasible set F . We discussed the convergence
property of the generated sequence. The numerical tests in Section 4 showed that the
proposed method was more favorable for functions with strong nonlinearity than the feasible
direction method, mainly due to the distance information included in D(X). In addition,
the proposed method handled the larger problems than the penalty barrier method, since
our method did not hold the Hessian mapping in memory space.

One of future researches would be the combination of the feasible direction and the
proposed method, since the feasible direction method fits simple functions. For such a com-
bination, we should extend the convergence analysis from this paper. Another point is the
convergence for a second-order optimality condition, as proven in [4] for box-constrained
problem (1.2). The proof in [4] required further stronger assumptions than this paper and
the second-order optimality condition for nonlinear semidefinite programs involves not only
the Hessian mapping but also an additional mapping [19], so we remain it as a matter to
be discussed further. In this paper, we fixed the parameters µ1, µ2, η1, η2 in the convergence
analysis and the numerical tests. By adjusting these parameters along with the iteration
progress, there is a possibility that we can improve the numerical performance. Such ad-
justments, however, will need careful update of the radius ∆k, and a further investigation
should be conducted.
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